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I. INTRODUCTION

Charging phenomena in insulators have long been
studied due to their importance in such areas as scan-
ning electron microscopy (SEM), memory-based tech-
nologies, particle detectors, ceramic surfaces, industrial
cables, and the safety of spacecraft1–5. Probably, the
earliest systematic studies of electron-irradiation effects
in solids and charging phenomena in insulators, as parts
of research on electrets, were carried out by B. Gross
who has had a great impact on this research field. In
his seminal works on irradiation phenomena6,7 Gross in-
vestigated the electron trapping and charge buildup in
high-resistivity solid insulators bombarded with energetic
electrons. Further studies by Gross and coworkers pro-
duced new experimental techniques and mathematical
models8–11.

These and more recent12–18 studies have not yet been
able to provide a complete and coherent account of all
observed phenomena. This could be due to the prevail-
ing emphasis on static (stationary) models19–21 rather
than time-domain analysis. Studying the dynamics of
charging in time domain is especially important in the
analysis of response times in particle detectors2 and in
designing novel scanning strategies for SEM16. The ex-
isting dynamic models are either one-dimensional14,15 or
do not include some of the essential physical processes,
e.g., dynamic recombination, trapping, etc17,18.

While the prevailing semi-classical Monte-Carlo (MC)
method22 makes very few assumptions about the com-
plicated electron-sample interaction process, realizing its
full theoretical potential is technically very challenging.
First of all, MC simulations are slowed down by the need
to continuously update the long-rage electrostatic poten-
tial. Secondly, it is computationally difficult to keep
track of all the trapped and de-trapped electrons. Fi-
nally, achieving acceptable variance not only in particle
numbers, but also in the times of events (e.g. emission

times), may require a prohibitive number of statistical
realizations.

Instead of sampling the probability space, the drift-
diffusion-reaction (DDR) approach, mainly used to
model low-energy transport in semiconductors23,24, di-
rectly describes the space-time evolution of a continuous
probability density function. The pertaining partial dif-
ferential equations are obtained from the semi-classical
Boltzmann equation applying the method of moments
and a few assumptions about the distribution of particles
over the momentum space. From the mathematical point
of view the DDR approach assumes that the symmetric
part of the secondary electrons (SE) probability density
function is isotropic about the origin of the momentum
space and is well-described by a shifted Maxwellian dis-
tribution.

In our previous publication25 we argued that the DDR
approach can be applied to electron-beam irradiated in-
sulators if the initial high-energy transport stage is ap-
proximated by an empirical source function. We showed
that this pulsed source function allows modeling both the
short-time processes immediately following the primary
electron (PE) impact and the long-time charge evolution
due to sustained bombardment. Importantly, we demon-
strated that the sustained irradiation can also be mod-
eled by a continuous current source, which gives prac-
tically the same secondary electron (SE) emission cur-
rent as the time-averaged SE emission produced by many
single-impact pulsed sources.

However, the original DDR model25 had serious short-
comings as well. First of all, it was not calibrated against
experimental data. Although we were able to reproduce
any SE yield at a chosen PE energy by tuning a single
parameter – the electron emission velocity (surface re-
combination velocity) at the sample-vacuum interface, it
was not clear which yield should be taken as a reference,
since yields tend to change over time and depend on beam
currents. Secondly, using the same SE emission velocity
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for all PE energies resulted in curves not fully compat-
ible with published SE yield data over the whole range
of PE energies. And more seriously, the model produced
nonphysical results in the case of prolonged irradiation.
Namely, the surface potential at low PE energies could
reach very large positive values, which is not possible,
since positive potential attracts secondary electrons back
to the sample leading to the neutralization of any poten-
tials exceeding ∼ 10 V.

We have identified the main reasons behind the bad
long-time behavior of the original DDR approach25.
These were the employed steady-state generation-
recombination model, which is not really suitable for
the analysis of transient effects, and the neglected ter-
tiary electron current. Incorporating fully dynamic gen-
eration and recombination processes is relatively easy.
Here we employ the so-called trap-assisted generation-
recombination model, which also reduces the number of
equations to be solved and charge species to be tracked.

In hybrid MC-DDR methods17,18 tertiary currents are
estimated with direct MC simulations of particle trajec-
tories. Here we propose an alternative approach that
keeps intact the self-consistent nature of the DDR model.
Namely, we introduce a novel boundary condition at the
sample-vacuum interface that accounts not only for the
total number of electrons returning to the sample, but
also for the spatial distribution of this tertiary current
along the sample interface.

We have also developed and implemented a clear cal-
ibration procedure for our DDR model. It uses the fact
that certain types of yield measurements – the so-called
standard-yield measurements – correspond to the situ-
ation where single PE impacts happen sufficiently far
enough from each other across the sample surface for
their mutual interaction to be neglected. As our code
is able to simulate single impacts, its calibration can be
performed in this single-impact mode.

In Section II we outline the mathematical details of
the modified DDR model. Its physical applicability is
further discussed in Section III, where we also investi-
gate the sensitivity of the model, explain our parame-
ter choices, develop a calibration procedure against pub-
lished experimental data, and compare our results for
defocused beams with an alternative one-dimensional ap-
proach. Section IV presents further quantitative analysis
of more realistic scenarios with focused stationary and
moving beams, including a dynamic line-scan of a later-
ally inhomogeneous target.

II. MODIFIED DDR MODEL

In this section we recall the main features of the DDR
model25 and describe several significant modifications
that have been implemented since its introduction.

A. Basic equations

The continuum approximation of the equilibrium
transport of charged particles in insulators consists of
both partial (PDE) and ordinary (ODE) differential
equations augmented with a semi-empirical source func-
tion accounting for the initial ballistic transport stage.
The PDE’s are the Poisson equation for the potential
and the transport equations for the free charge density:

−∇ · (ε∇V ) =
q

ε0
(C + p− n− nT ), (1)

∂n

∂t
+∇ · Jn = Sn − (Rn −Gn), (2)

∂p

∂t
+∇ · Jp = Sp − (Rp −Gp), (3)

with the constitutive relations for the current densities
given by

Jn = −Dn∇n+ µnn∇V, (4)

Jp = −Dp∇p− µpp∇V, (5)

where q is the elementary charge, V (x, t) is the electro-
static potential, n(x, t) is the density of free electrons,
nT (x, t) is the density of trapped electrons, p(x, t) is the
density of free holes, C is the density of empty traps,
the constant ε0 is the dielectric constant of vacuum, the
function ε(x) is the (static) relative permittivity of the
sample, µn and µp are the electron and hole mobilities
and Dn and Dp are the diffusion coefficients.

B. Generation, recombination, trapping, and de-trapping

In the present modification of the DDR approach the
dynamic trap-assisted Shockley-Read-Hall (SRH) gener-
ation/recombination model is implemented. Here we ex-
plain it along the lines of the PhD study by Robert Ent-
ner conducted at TU Wien23. An attractive feature of
this model is that there is no need to keep the track
of trapped holes as all the relevant physics is already
contained in the single equation for the rate of electron
trapping:

∂nT
∂t

= (Rn −Gn)− (Rp −Gp). (6)

This process is coupled to the basic equations (1)–(5)
and can be divided into four subprocesses illustrated in
Fig. 1.

(a) Electron capture: An electron from the conduction
band gets trapped at the band-gap of the insulator and
the surplus energy of Ec−Et is transmitted to the phonon
emission. The average rate of this process is

Rn = σnυthn(NT − nT ). (7)
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FIG. 1. Trap-assisted generation/recombination model.

(b) Hole capture: A trapped electron moves to the va-
lence band and neutralizes a hole (i.e. the hole is cap-
tured by the occupied trap), producing a phonon with
the energy Et − Ev. The corresponding rate is

Rp = σpυthpnT . (8)

(c) Hole emission: An electron leaves a hole in the
valence band and is trapped (i.e. the hole is emitted
from the empty trap to the valence band). The energy
Et−Ev is needed for this process, and the corresponding
rate is

Gp = σpυthni(NT − nT ). (9)

(d) Electron emission: A trapped electron moves to
the conduction band. The required energy is Ec − Et,
and the rate is

Gn = σnυthninT . (10)

In the above equations: σn(x) and σp(x) are the elec-
tron and hole mean trapping cross sections, NT (x) is the
total density of traps, nT (x, t) is the density of trapped
electrons, υth(x) is the thermal velocity, and ni(x) is the
intrinsic carrier density. The spatial variable x indicates
the possibility of spatial inhomogeneity, i.e., the presence
of different adjacent materials.

The initial conditions on n and p at t = 0 are set as the
corresponding intrinsic carrier densities of the materials
under consideration, whereas the initial condition for nT
has been derived based on the assumption of the initial
steady state for the density of trapped electrons prior to
the start of irradiation (i.e. ∂nT /∂t = 0) and is set to

nT (x, 0) =
NT (x)

2
. (11)

C. Charge injection

As has been discussed in our earlier work25, there
are two possibilities within the DDR approach to model
charge injection by a low- to moderate-energy electron
beam via the source terms Sn and Sp. The first fine-scale
model captures the discrete nature of the electron beam.
The rate of particle production resolved at the level of
pulses produced by individual PE impacts is given by:

Sn,p(x, t) =
∑
i

gn,p(x, Elan)

L(tg)− L(ti)

dL

dt
(t− ti), (12)

where L(t) is the logistic function, i is the number of
the particular individual PE, ti is the i-th PE impact
time, and tg is the generation time of the electron-hole
pairs, whose choice is discussed in the next section. With
single-impact events, due to a relatively small number of
produced pairs, the continuous results of the DDR model
should be interpreted as probability densities rather than
particle densities, especially at lower PE energies.

The second model is designed for studying the sus-
tained bombardment of the sample and is based on the
temporal average of the above pulsed source function:

Sn,p(x, t) =
j0
q
gn,p(x, Elan), (13)

where j0 is the average electron beam current.
Both source functions contain the semi-empirical dis-

tribution function of the charge pairs at the end of the
initial generation stage:

gn,p(x, Elan) =

(
A
Elan

Ei
+B

)
1

πR3
exp

(
−7.5

R2
|x− x0|2

)
(14)

where E0 and Elan = E0 + Vs are the beam energy and
the effective landing energy of PE’s, Vs is the surface po-
tential at the point of PE impact, Ei is the pair creation
energy, R is the maximum PE penetration depth (dis-
cussed further in detail), x0 is the center of the Gaussian
distribution with the distance of 0.3R from the sample-
vacuum interface, and A is the constant corresponding to
the backscattering rate. In the hole distribution function
gp the constant B is zero, however, it is different from
zero in the electron distribution function gn accounting
for the remaining PE’s.
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In the continuous irradiation mode we consider two ad-
ditional modifications of the source functions. One per-
tains to a defocused beam such that the computational
domain is smaller than the beam radius. In this case we
use the following distribution function derived from (14)
by integrating over horizontal coordinates and enforcing
the conservation of the amount of generated charge pairs:

gn,p(x(r, z), Elan) = A
′

n,p exp
(
−β|z − z0|2

)
, (15)

where

A
′

n,p =
1− exp(−βδ2)

βδ2
An,p, (16)

An,p =

(
A
Elan

Ei
+B

)
1

πR3
, β =

7.5

R2
, (17)

and δ is the radius of the irradiated area (computational
domain) at the surface. Accordingly, the beam current
can be calculated as

j0 = i0πδ
2, (18)

where i0 is the current density. The formula (18) adjusts
the beam current to achieve results independent of δ.

If, on the other hand, the radius of a partially focused
beam is smaller than the radius of the computational
domain we resort to the following distribution:

gn,p(x(r, z), Elan) =
1

βδ2 + exp(−βδ2)
An,p×{

exp
(
−β|z − z0|2

)
, r ≤ δ

exp
(
−β(r2 + |z − z0|2)

)
, r > δ.

(19)

Here δ denotes the beam radius rather than the radius
of the computational domain.

D. Sample-vacuum interface and tertiary electrons

The boundary conditions on V , n, p at the interfaces of
the sample with its holder and at the walls of the vacuum
chamber are standard: Dirichlet at ohmic contacts and
Neumann to simulate isolation and prevent any currents
from flowing through the corresponding interface.

The sample-vacuum interface, however, is not common
in DDR-type simulations. Previously25 we have used a
Robin-type boundary condition Jn · ν = ve(n − ni) for
n > ni at this interface, which sets the SE current den-
sity at the level proportional to the charge density at the
boundary with the emission velocity ve ≤ vth controlling
the magnitude of the current (ν is the outward normal
vector at the surface). As mentioned in the Introduction
this model does not account for the electrons that are be-
ing pulled back to the sample by a positive surface poten-
tial – the so-called tertiary electrons (TE’s). This leads
to nonphysical results – very strong positive charging

of samples under prolonged irradiation with low-energy
beams.

Experiments show60 that the energy of secondary elec-
trons, although greater than the electron affinity of the
material, rarely exceeds 10 eV. Therefore, even a rela-
tively weak positive potential at the surface will pull back
some of the emitted secondary electrons. To account for
this tertiary electron current we propose the following
modified version of the Robin-type boundary condition
at the sample-vacuum interface:

Jn · ν =

ve(n− ni)− α∂V∂ν
−
, if n > ni;

0, otherwise,
(20)

Jp · ν = 0, on Σ2 × [0, tend], (21)

where

∂V

∂ν

−
|Σ2

=


∂V

∂ν
|Σ2
, if

∂V

∂ν
< 0;

0, otherwise,
(22)

α(max(V +)) = (23)
0, if max(V +) < Vmin;

αmax
max(V +)−Vmin

Vmax−Vmin
, if Vmin ≤ max(V +) < Vmax;

αmax, otherwise,

V +|Σ2
=

{
V |Σ2 , if V > 0;

0, otherwise,
(24)

max(V +) = Maximum of (V +|Σ2
− Vg), (25)

and

αmax =

ve

∫
Σ2

(n− ni)dA∫
Σ2

∂V

∂ν
dA

, (26)

where Vg is the applied potential at the upper boundary,
which in the present study is set to zero (Vg = V |Σ1

=

0 V ). The term −α∂V∂ν
−

in (20) represents the tertiary
electrons current density. The function α controls the to-

tal magnitude of this current and the factor −∂V∂ν
−

deter-
mines its spatial distribution. We assume that tertiary
electrons will re-enter the sample only through regions
where the normal component of the electric field is nega-
tive. The stronger is the local attractive electric field, the
higher is the density of tertiary current at that location.

The function α(t) is chosen here in such a way, see
(23)–(26), that the magnitude of the total tertiary cur-
rent varies linearly from zero, when the maximum sur-
face potential V +(t) is below a certain value Vmin, to
the value of the total outward SE current, when V +(t)
reaches Vmax. This means that the net current through
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the sample-vacuum interface will be zero if V +(t) ≥ Vmax
as all SE’s leaving the sample will re-enter the sample as
tertiary electrons. Typically this leads to the surface po-
tential never raising above Vmax (or Vmax + Vg). This
choice of α(t) is not unique and could be further refined
to take the energy spectrum of the SE’s into account.
One should also mention that, from the computational
point of view, the mesh along the sample-vacuum inter-
face should be fine enough in order to capture the gradi-
ent of the potential at the surface.

E. Numerical solution

The first step toward obtaining a numerical solution of
an equation or a system of equations is to investigate the
existence and uniqueness of the solution. With regards to
the present model, the consistency analysis relies on pre-
viously published results. A detailed investigation con-
cerning the existence and uniqueness of stationary drift-
diffusion equations can be found in24. In a study con-
ducted by Jerome26 a mathematical analysis of a system
solution map for the weak form of the DDR model, which
forms a basis for the numerical solution of the model, has
been provided. Also, in a follow-up study by Busenberg
et al.27 the wellposedness of a DDR model similar to the
present one (with different source/sink terms) has been
demonstrated.

The multiscale nature of the problem calls for the same
strategy as was used in25 regarding the scaling of vari-
ables. We apply the finite element method (FEM) for
the numerical solution of the model equations and im-
plement it as a solver within the COMSOL Multiphysics
package. To balance the accuracy and the computa-
tional costs a careful strategy is needed. Our investiga-
tions show that the best (i.e., most reliable) results are
obtained when we use adaptive (or local) mesh refine-
ment, Lagrange shape functions, the fully coupled ap-
proach with the Newton-Raphson solver, and an adap-
tive time-stepping algorithm. The use of the adaptive
grid refinement, although costly, alleviates the need for
more sophisticated approaches, such as the traditional
exponential fitting applied in semiconductor studies28,29.
To reduce the computational cost of the adaptive mesh
refinement, a simple strategy has been followed by using a
combination of both adaptive and local refinement meth-
ods. Namely, the adaptive refinement was applied only
in the initial simulations to identify the regions where a
fine mesh is needed and then the local refinement is used
in the follow-up simulations.

In some cases, we reduce the original 3D problem to a
2D problem in the (r, z)-plane of the cylindrical coordi-
nate system as the geometry, boundary conditions, and
the source are all axially symmetric. In the simulations
of beam scanning over laterally inhomogeneous samples
a fully three-dimensional implementation was used.

III. CALIBRATION AND COMPARISON

In this section we provide a detailed account of the
calibration procedure for alumina and silica, which em-
ploys experimental data from the studies by Dawson30

and Young et al33, simultaneously explaining the under-
lying approximations of the DDR approach. We also
compare our time-domain simulations with the results
of an alternative one-dimensional approach.

A. Reproducing the standard yield of insulators

There are two main kinds of yield measurements from
insulators: dedicated measurements with homogeneous
pure samples30,33 and SEM scans of insulator-containing
targets34. In the former case often a great care is taken to
avoid the charging effects. Typically, a defocused beam,
a weak beam current, and a pulse of short duration are
used. We define the SE yield free of charging effects as
the standard yield and calibrate our code to reproduce
such data as close as possible.

Parameters of standard-yield experiments30,33 (cur-
rent, pulse duration, irradiation area) imply that the
probability for the primary electrons to land anywhere
close to each other on the surface is very small. In fact,
with defocused beams and low, short-duration currents
the expected distance between PE’s is large enough to
permit neglecting mutual interaction between any two
impact zones. This is the main reason why standard-yield
measurement are free of charging effects. The single-
impact source function (12) with i = 1 allows to com-
pute directly the expected number of emitted SE’s per
single (isolated) PE impact and is, therefore, applicable
for modeling the standard yield. The cross-section of the
axially-symmetric configuration used for calibrating the
code is shown in Fig. 2. With sufficiently large computa-
tional domain the boundary conditions at the sides of the
sample have no influence on the SE yield from a single
PE impact and were set to Neumann (zero current).

There are two classes of parameters that may be tuned
within their physically admissible ranges: those that de-
termine the shape of the source function approximating
the initial pair generation and the short-time high-energy
transport stage, and the material (bulk) parameters that
determine the transport and trapping/de-trapping at
much longer time scales. While these time scales may
seem well-separated, in the DDR model material param-
eters, especially the emission velocity ve, have some in-
fluence on the initial transport stage as well.

The pair generation time tg, defined as the time when
all pairs have already been generated, determines the
time width of the pulsed source functions Sn,p(x, t) and
of the resulting SE emission current pulse. According to
theoretical and experimental investigations by D.I. Vais-
burd et al63, between 10−17 and 10−14 s after impact the
generated secondary pairs have already lost their ability
to ionize the medium and their energy spectrum begins
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FIG. 2. The schematic representation of the model.

to evolve away from the spectrum of the primary beam
as the result of collisions. However, up to 10−14 s most of
the generated pairs still have energies above 20 eV. Since
“true” SE’s dominating the emission spectrum have en-
ergies below 20 eV, most of them must be emitted af-
ter 10−14 s. It has also been found that 10−11 s after
impact all generated pairs are already thermalized with
their energy spectra tightly localized around the edges
of conduction and valence bands and trapping becomes
more pronounced. Hence, the SE emission current pulse
following a single PE impact should start after 10−17 s
and be almost finished by 10−11 s. Moreover, if one aims
at modeling “true” SE’s, then the relative contribution to
the total emission between 10−17 and 10−14 s should be
small, compared to the contribution between 10−14 and
10−11 s. The DDR method produces exactly this type of
pulses for tg set between 10−16 and 10−14 s, see Fig. 3.
Notably, other parameters influence only the magnitude,
not the duration of the emission current pulse.

We emphasize that the curves of Fig. 3 should be in-
terpreted in the probabilistic sense. Namely, the integral
of this curve between any two time instants tA ≤ tB is
the number of particles expected to be emitted from the
sample surface during the corresponding time interval.
Thus, the expected yield at a given PE energy can be
computed by numerically integrating the emission cur-
rent between t = 0 and some sufficiently large t > 10−11.

Among the material parameters the carrier mobili-
ties µn,p have been determined with the highest pre-
cision and are simply assumed here to have the same
values as in25,58,61,62. Strictly speaking, these are the
so-called low-energy mobilities and a more rigorous ap-
proach would be to use femtosecond and picosecond mo-
bilities to model the transport of particles during the

Time (s)
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×10 12
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t
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t
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t
g
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FIG. 3. Calibrated emission current pulse from sapphire sam-
ple after the impact of a single 500 eV PE. Corresponding
standard yields are: 6.07 (tg = 10−14 s), 6.17 (tg = 10−15 s),
and 6.14 (tg = 10−16 s).

corresponding time intervals after the impact63. How-
ever, mainly due to the absence of data about these high-
energy mobilities, here we use the same low-energy mo-
bility values at all times. Nevertheless, the extremely
short duration [10−17, 10−12] s of the high-energy regime
allows us to expect the approximations made in the DDR
approach concerning the mobility values during this stage
to be appropriate at least in the numerical sense. Notice
that the changes in the yield do not exceed 0.1 when we
vary the generation time tg between 10−16 and 10−14 s in
Fig. 3. Thus, to have any significant impact on the yield
the mobility would have to vary dramatically during this
interval of time.

Parameters σn,p and NT related to trapping weakly
influence the magnitude of the emission current pulse
and have, generally, large uncertainties. For example,
in a study set out to investigate electron trapping in
alumina35 a relatively large variation of 10−21 to 10−15

cm2 was reported for the electron capture cross section
σn in polycrystalline alumina. The same study also re-
vealed that polycrystalline metal oxide materials like sap-
phire (α-alumina) generally have trap site densities NT
in the order of 1018 cm−3. Insulating solids are often
grouped into three types: crystals, polycrystalline and
amorphous36. The trap site density has been estimated
to be around 1016 cm−3 for an alumina crystal, from 1017

to 1020 cm−3 for polycrystals, and around 1021 cm−3 for
an amorphous sample.

Probably one of the most comprehensive and system-
atic studies on charge transport and trapping in silica
has been done by DiMaria and co-workers37–40, where
a strong link has been identified between the capture
cross sections and the nature of traps and the capture
cross sections have been estimated to range from 10−18
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to 10−13 cm2. Confusingly, the values and ranges for
these parameters are not limited to the above mentioned
estimates64–66.

Another parameter that strongly influences the mag-
nitude of the emission current pulse is the maximum PE
penetration depth R. It determines the spatial shape
of the source functions Sn,p(x, t) and, therefore, the ex-
pected number of particles in the neighborhood of the
sample-vacuum interface – the main contributors to the
emission current. Many semi-empirical expressions have
been proposed for R with the following general form
R(ρ,E0) = CEΓ

0 , where the values for C and Γ vary
from study to study41,42. The constant C depends on the
material and the exponent Γ has been mostly assumed
to have a certain material-independent value, although,
in some studies Γ has also been considered material-
dependent43.

The exponential expression for R emanates from
Bethe’s theory for the stopping power of charged particles
in matter. Bethe’s formula involves the density, atomic
number, and atomic weight of the material. However,
with the exception of studies by Kanaya and Okayama44

and by Feldman43, the density of the material is consid-
ered to be the only parameter influencing the electron
penetration depth. As of now the estimation of R is far
from being certain as can be seen from large discrepancies
in the penetration depth estimates employed by different
authors, see Fig. 4 (left) and Fig. 5 (left). Apparently,
similar disagreement concerning the penetration depth
exists for metals as well55.

Having identified ve, σn,p, NT , and R as the most un-
certain of the model parameters influencing the magni-
tude of the emission current pulse we have performed a
series of numerical experiments to determine the sensi-
tivity of the DDR model output (SE yield) with respect
to changes in these parameters. During these simula-
tions some of the factors would be held fixed while other
were varied with the goal to achieve the best possible fit
between the computed SE yields and the experimental
data. Three key points emerged from this analysis:

• The shape of the yield-energy curve is influenced by
the capture cross section and the density of traps.
Namely, the larger are the trap density and the
capture cross section, the lower is the high-energy
tail of the curve.

• The emission velocity affects the height not the
shape of the yield-energy curve.

• Following any one of the published penetration
depth formulas together with adjusting the val-
ues of material parameters within their permitted
ranges does not produce yield-energy curves fully
compatible with the experimental data over the
whole range of PE energies.

In view of these facts and the aforementioned uncer-
tainty about the energy dependence of the penetration
depth, fine-tuning R for each PE energy against the

available experimental data was deemed by us as not
only admissible, but also necessary. While tuning R
other parameters have been fixed at the best found fit-
ting values within their reported ranges. In particular,
the electron and hole capture cross-sections were set at
the frequently used values of 10−15 cm2 and 10−17 cm2,
respectively. The trap site density turned out to be
slightly higher than the reported upper bound 1019 cm−3,
namely, 3×1019 cm−3, leading to the initial (equilibrium)
density of trapped electrons of 1.5× 1019 cm−3, close to
what was used by us previously25.

For PE energies higher than 2 keV the tuned pen-
etration depths for sapphire and silica presented in
Fig. 4 (left) and Fig. 5 (left), perfectly match those of
Lane and Zaffarano45 and are well-described by the for-
mula of Young46:

R(ρ,E0) = 115
E1.66

0

ρ
[nm], E0 ≥ 2 keV. (27)

However, according to Young46 the exponent of E0

is 1.35, while the present results agree with the ear-
lier reported45 value of 1.66. There is some argument
about this exponent in the literature. For instance, the
study about Kapton and Teflon47 supports the idea of
1.66. Yet, the investigation of Salehi and Flinn48 with
V2O5 − P2O5 materials shows that, although at low en-
ergies the exponent is close to 1.35, neither 1.35 nor 1.66
provide good matches with higher-energy experimental
data. The value of 1.66 was assumed for sapphire in sev-
eral other investigations as well49,50.

As can be seen from the insets of Fig. 4 (left) and
Fig. 5 (left) at energies below 2 keV the tuned pene-
tration depths deviated from the formula (27) and did
not follow any other published formulas, while remaining
within their range. Least squares fitting of a separate
exponential formula of the type (27) to the tuned pen-
etration depths for alumina and silica did not provide a
satisfactory fit. This suggests that below 2 keV the en-
ergy exponent Γ is indeed material dependent. Hence,
for calibration purposes penetration depths bellow 2 keV
must be determined by fitting to the corresponding stan-
dard yield data, whereas above this energy the depth may
be safely deduced from the formula (27).

With the tuned penetration depths the DDR method
provides practically exact yield-energy curves for the
whole range of PE energies. As was mentioned previ-
ously, the height of the yield-energy curve is mainly con-
trolled by the electron emission velocity at the vacuum-
sample interface. In Fig. 4 (right) we compare the out-
put of the calibrated DDR model with the standard-yield
data30 (reported also in the database of Joy51), as well as
Monte-Carlo simulations52 and the empirical formula of
Agarwal53 for alumina samples. As far as the DDR model
is concerned the only difference between the unpolished
and polished alumina samples is the electron emission ve-
locity at the sample-vacuum interface (1.35 × 105 cm/s
and 2×105 cm/s, respectively), which sounds reasonable,
since surface polishing should not affect the maximum
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penetration depth.

Comparison of the results by the calibrated DDR
model with the experimental data33, Monte-Carlo
simulations54, and the formula of Agarwal53 for a sil-
ica sample is shown in Fig. 5 (right). The tuned elec-
tron emission velocity at the silica-vacuum interface
(0.8×105 cm/s) is lower than the emission velocity at the
alumina-vacuum interface, indicating that ve depends on
both the material and the surface properties.

DDR simulations indicate that the first and the second
unit yields for sapphire occur around 50 eV and 10 keV,
respectively. For silica, the unit yields are observed below
50 eV and again at 4.35 keV. The values of the calibrated
material parameters used in the present study are listed
in Table I.

B. Continuous irradiation with defocused beams

Sustained bombardment, even with defocused beams,
increases the probability for an incoming PE to fall in
a close proximity to a previous impact zone. This will
introduce the interaction between the previously trapped
charges and the newly generated pairs, so that the yield
will vary with time.

At the moment a standard experimental procedure for
measuring yield variation during sustained bombardment
does not exist. Therefore, here we compare predictions
of the DDR model with the earlier one-dimensional simu-
lations by the Flight-Drift (FD) model – a self-consistent
approach by Touzin et al15. FD model is a current-
density based formalism incorporating a detailed recom-
bination and trapping mechanism. For comparison pur-
poses we have considered the same material (amorphous
alumina), current density, and the penetration depth for-
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TABLE I. Parameters of dielectric materials.
Parameter SiO2 Al2O3 Unit

ε 3.9 10
µn 20 4 cm2V−1s−1

µp 0.01 0.002 cm2V−1s−1

σn 10−15 10−15 cm2

σp 10−17 10−17 cm2

vth 107 107 cms−1

ρ 2.2 3.98 gcm−3

Ei 28 28 eV

Nt 3 × 1019 3 × 1019 sapphire
1020 amorphous

cm−3

ve 0.8 × 105
1.35 × 105 unpolished
2.0 × 105 polished
1.4 × 105 amorphous

cms−1

mula (energy exponent in (27) is set as Γ = 1.55). We
switch now to the continuous (time-integrated) source
function (13), (15)–(18) suitable for long-time modeling.

Since the sample is amorphous alumina rather than
sapphire, we choose a higher trap density of 1020 cm−3

pertaining to the so-called shallow traps15. We set the
emission velocity to 1.4×105 cm/s, close to what we have
obtained above for unpolished sapphire. We note that in
time-domain investigations the quantity of interest is not
the charge yield, but the instantaneous ratio of the net
SE emission current to the incident beam current – SE
emission rate.

Taking into account that our approach is fundamen-
tally three- not one-dimensional, the results presented in
Figs. 6 and 7 show general agreement with the Figures 10
and 11 by Touzin et.al15, especially for the surface po-
tentials at low PE’s and the corresponding SE emission
rates. However, at higher PE energies the accumulated
negative potential is smaller (lower bounds: −0.9 kV in
3D-DDR against −2.5 kV in 1D-FD) and the yield col-
lapses to unity faster (upper bounds: ∼ 1 ms in 3D-DDR
against ∼ 10 ms in 1D-FD).

It appears that the distance to the closest Dirichlet
boundary, where the electric potential is maintained at
some fixed value, e.g., zero, strongly affects the value
of the surface potential at the sample-vacuum interface.
Apparently, the most important parameter controlling
the magnitude of the potential is not the total charge
density, as one would naively assume, but the proxim-
ity to an ohmic contact. Most likely this is due to the
image-charge effect, which partially screens the charge
accumulated in the sample.

Things are complicated by the fact that providing at
least one Dirichlet boundary condition is essential for the
numerical stability (possibly, existence and uniqueness of
the solution as well) of the DDR equations. In fact, in the
case of an isolated sample, the numerical solution of our
nonlinear problem is only possible through the so-called
fully coupled approach, since the Dirichlet condition is
associated with the Poisson equation, which, therefore,
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must remain coupled to the rest of equations during the
iterations. As the boundary conditions at the interfaces
of the sample are not of Dirichlet type, the only available
remote surface to impose this type of condition is Σ1.

Numerically, the screening effect of the Dirichlet condi-
tion can be minimized by placing the ohmic contact Σ1 as
far as computationally possible from the sample surface
Σ2. Thus, we have placed Σ1 at various distances from
Σ2 and, as can be seen in Fig. 8, the surface potential
does reach significant negative values when the Dirichlet
boundary is far enough. However, the time of collapse
of yield to unity becomes even shorter in these numeri-
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cal experiments and remains at odds with the previous
one-dimensional FD simulations.

IV. FOCUSED AND MOVING BEAMS

In this section we simulate sustained irradiation of sap-
phire, silica, and mixed targets by focused stationary
and moving electron beams with beam currents typical
in SEM. In the first series of numerical experiments we
use the axially symmetric target of Fig. 2 illuminated
in the middle by a focused stationary beam. The dis-
tance between Σ1 and Σ2 is set to 0.1 mm. The sam-
ples studied in Fig’s 9–11 are isolated in the sense that
the only boundary penetrable for particles in the sample-
vacuum interface Σ2. We consider the worst case scenario
– perfect focusing – where all PE’s hit the same spot on
the sample surface. It is easy to deduce that defocusing
will affect low-energy PE’s with their small impact zones
much stronger than higher energy PE’s with their ex-
tended impact zones. To anticipate the results for more
realistic partially focused beams the reader is advised to
compare plots of this Section IV with those presented in
Section III B.

Figure 9 pertains to an unpolished sapphire sample ir-
radiated at 5 keV, where the standard yield is around
1.7 as can be deduced from Fig. 4 (right). The net SE
emission rate – yield for short – starts at the standard
yield value, but after a certain interval of time drops to
unity for all beam currents. The stronger the current,
the shorter is the standard yield interval preceding the
drop. In fact, it is easy to calculate that the drop in
the yield happens after a certain amount of charge has
been injected into the sample by the beam, which con-
firms conclusions of many previous investigations. The
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vacuum interface, solid line – net SE emission rate, including
the negative tertiary-electron current.

point of fastest decline in the yield roughly corresponds
to 3 × 10−18 C of injected primary charge, i.e., approx-
imately 19 primary electrons.

The DDR model does not substantiate the usual intu-
itive explanation15,58 concerning the reasons behind this
seemingly inevitable convergence of yield to unity with
time. Commonly it is argued that the charging of the
sample leads to the change in the landing energy of PE’s,
so that the yield no longer corresponds to the standard
yield of that energy, but rather to another point on the
standard yield curve of Fig. 4 (right). If, for example, the
standard yield is greater than one, then the sample ac-
cumulates positive charge. The landing energy increases
and one should look to the right along the standard-yield
curve to know what the new yield should be. If, on the
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other hand, the standard yield is less than one, then the
accumulated negative charge reduces the landing energy
of the PE’s, thus, moving to the left along the standard-
yield curve. Thus, it is argued, a yield larger than one
would eventually lead to a positive potential high enough
to shift the landing energy of primary electrons to the
second unity-crossing point on the standard yield curve.
This argument, while intuitively appealing, does not take
into account the spatial distribution, the dynamics, and
the screening of charges. In fact, in our simulations the
accumulated potential was never strong enough for the
landing energy to reach a unity-crossing point.

For example, Figure 9 (bottom) clearly shows that
the value of the positive surface potential is insignifi-
cant with respect to the PE energy and cannot possibly
change the landing energy by so much that it becomes
10 keV – the second point along the standard-yield curve
where it crosses the unity line. What the DDR model
shows, though, is that the drop in the yield coincides
with the rapid increase in the tertiary current, caused
by the relatively weak positive surface potential attract-
ing low-energy SE’s back to the sample. Figure 9 (top)
compares the contribution of the positive part ve(n−ni)
of the emission current density (dashed lines) to the net
SE emission rate (solid lines). The onset of the tertiary
current can be deduced from the emergent discrepancy
between the solid and dashed curves, which coincides
with the positive surface potential reaching the value
Vmin = 1 V in the bottom plot of Fig. 9. Moreover, ter-
tiary current remains significant even after the net yield
reaches unity. Thus, the unity yield is the product of a
neat dynamic balance between the PE injection, positive
outward SE emission, and the reverse tertiary current.
The result is a steady-state process and the conservation
of total charge (on average): one PE in, one SE out,
and a conserved ‘circular’ current at the sample-vacuum
interface.

Figure 10 (sapphire) and Figure 11 (silica) correspond
to the beam current of 100 pA and show the time evo-
lution of the yield and potential for various PE ener-
gies. Comparison with the defocused beam irradiation
of Fig’s. 6–7 reveals a larger discrepancy in convergence
times of the yield to unity for different energies in the fo-
cused beam case. The yield drops much sooner at lower
PE energies than it increases at higher PE energies.

Similarly, from the surface potential plots of Fig’s 10–
11 we conclude that the rise of sub-unit yields (above
10 keV for sapphire and above 4 keV for silica) to unity
cannot be explained by the change in the landing energy,
as the associated potential is never negative enough for
that. Minimizing the screening by removing the Dirich-
let boundary Σ1 farther away from the sample-vacuum
interface Σ2 we could bring the surface potential in silica
down to −15 kV, which, however, was still not enough to
decrease the landing energy of PE’s from 30 keV down to
the required 4.35 keV, where the standard yield of silica
is equal to one. We propose a much simpler alternative
explanation: sub-unit yields increase the number of free
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FIG. 10. Time evolution of the yield (top) and the surface
potential at the beam entry point (bottom) for a sapphire
sample continuously irradiated by a focused stationary beam
of 100 pA – effect of PE energy.

electrons near the sample-vacuum interface, which, in its
turn, increases the SE emission rate up until the steady-
state condition of unit yield is reached. Sometimes, as at
20 keV in sapphire and at 4 keV in amorphous alumina,
the yield grows so fast that there is an overshoot, and
it temporarily becomes larger than one, causing a posi-
tive surface potential, which creates the tertiary current
pulling the yield back to unity.

The yield does not always have to drop/increase to
unity, though. If it was the case, all insulators would
look exactly the same under SEM. One possible scenario,
where the yield may not converge to unity, is a (partially)
grounded sample. The condition on charge conservation
that requires a unit yield in an isolated sample may be re-
laxed if the sample is grounded. It is, of course, an open
question whether a contact between an insulator and,
say, a metallic grounded holder can ever be made effi-
cient enough to allow for an easy passage of charges. As-
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suming for simplicity a perfect ohmic contact, the charge
conservation no longer requires the exact unit yield for
the sample-vacuum interface as additional electrons may
enter the sample via the ground channel. This situation
is illustrated in Fig. 12, where we have imposed an ohmic
boundary condition on the side of sapphire sample. Al-
though the yield in such a grounded sample does not stay
at the level of the standard yield at that energy, after a
few oscillations it stabilizes at a slightly lower value, well
above unity. This effect is also observed in samples with a
relatively poor ground contact described by a Robin-type
boundary condition with a low surface recombination ve-
locity.

Although, the surface potential does take longer to
build up in a sample with contact, Fig. 12 (bottom), the
behavior of the surface potential at the injection point
is not very revealing. It is, perhaps, more instructive to
look at the distribution of the total charge at the surfaces
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FIG. 12. Time evolution of the yield and the surface potential
from isolated and grounded sapphire samples for 5 keV PE
energy and 100 pA beam current. The distance between Σ1

and Σ2 is 0.1 mm.

of isolated and grounded samples under identical irradia-
tion conditions. While the surface potential is weaker in
the grounded case, Fig. 12 (bottom), the images of Fig. 13
explicitly show that the amount of accumulated positive
charge at the surface of a grounded sample is higher.
Also the spatial distributions of the surface charge are
different. A large disk of positive charge surrounded by
a ring of negative charge is seen in the grounded sam-
ple, whereas, in the isolated sample most of the positive
surface charge is concentrated around the injection point
followed by a weaker positive ring some distance away.

Another situation well-known to SEM practitioners
where the yield does not drop/increase to unity is the
rapid scanning of the sample by a moving focused beam.
To simulate the scanning process the source function (14)
has to be modified to account for the motion of the beam.
This is achieved by setting x0(t) = x0 + vt, where v
is the velocity of beam displacement in the horizontal
plane. Consider a 1× 1 µm2 sample surface imaged with
a 1000 × 1000 pixels resolution at the rate of 30 frames
per second. Then, the beam moves across the sample
with the horizontal speed |v| ≈ 33 µm/s.

We consider an inhomogeneous sample consisting of
adjacent blocks of sapphire and silica, see Fig. 14.
Samples consisting of one insulator on top of another
have been previously studied with a one-dimensional
approach59, while vertical stacks of insulators, similar to
the one considered here, have been recently investigated
experimentally34.

We simulate a single scan line through the middle of
the sample perpendicular to the interface between the ad-
jacent insulators. Across the vertical interface between
the two different insulators the source function (14) ex-
hibits a discontinuity due to the change in material den-
sity and the corresponding maximum PE penetration
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FIG. 13. Build up of the surface charge (C + p− n− nT )q (C/cm3) in isolated (top row) and grounded (bottom row) sapphire
samples irradiated by a focused stationary 100 pA beam of 5 keV PE’s. The distance between Σ1 and Σ2 is 0.1 mm.
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Scan line

FIG. 14. An inhomogeneous sample consisting of vertically
stacked sapphire and silica blocks.

depth.

Since cylindrical symmetry is lost, the following DDR
computations had been performed in the full three-
dimensional mode. Figure 15 shows the yield as a func-
tion of the beam position along its trajectory for an iso-
lated sample. These curves correspond to the intensity
of pixels in a single-line SEM image. The standard yields
of both insulators at the considered PE energy are also
shown as dotted lines.

First of all we notice the difference between the left-to-
right (from sapphire to silica) and the right-to-left (from
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FIG. 15. Yield as a function of beam position while scan-
ning an inhomogeneous sapphire-silica sample (5 keV, 10 pA).
Solid lines – SE emission rate; dotted – positive part of the
emission current; dashed – standard yield.

silica to sapphire) scanning modes. This difference is easy
to understand by looking at Fig. 16 where the images
show the surface potential at the same beam locations
during these two scans. Since the charging of sapphire is
stronger than that of silica, the resulting residual charge
strongly depends on the scan history.

Otherwise, the scans of Fig. 15 have several common
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FIG. 16. Surface potential at three beam locations (white circles) during sample scanning (5 keV, 10 pA). Top and bottom
rows correspond to opposite scanning directions (indicated by arrows).

features. One can notice higher yields in the neighbor-
hood of the sample edges due to increased emission via
the vertical interfaces. This is a well-known effect – the
sample edges look brighter in SEM images compared to
the rest of the sample surface. One can also see the drop
of the yield to unity during left-to-right scanning due to
continuous charging of the sapphire part. This charging
also causes the yield in silica part to drop below its stan-
dard value. The relatively smaller charging during the
right-to-left scanning does not allow the yield in silica
to reach its standard below-unity value after the initial
edge-related surge, and keeps the yield below the stan-
dard value when the beam crosses into the sapphire part.
Additional simulations show that reducing the beam cur-
rent (down to a few pA) while maintaining a high beam
displacement velocity gives scans that truthfully reflect
the standard yields of each part of the sample. Unfortu-
nately, in practice this would, probably, result in a bad
signal to noise ratio.

V. CONCLUSIONS

The self-consistent DDR method proposed in25

has been substantially modified in the present pa-
per to include the dynamic trap-assisted generation-
recombination model and a novel self-consistent bound-

ary condition accounting for tertiary electrons. The
method has been calibrated against experimental data
do deliver exact standard yields for alumina and silica
samples over a large range of PE energies. For alu-
mina and silica all calibrated parameters remain within
or close to their reported uncertainty bounds, thereby
further confirming the acceptability of model approxima-
tions. Time-domain simulations with defocused beams
have been compared to the previously published results
from a one-dimensional Flight-Drift model demonstrat-
ing similar long-time behavior. Our investigations so far
show that the initial high-energy transport stage can, in-
deed, be approximated by a semi-empirical source func-
tion and low-energy material parameters, whereas, sub-
sequent transport stages fall within the original domain
of validity of the low-energy DDR method.

Simulations with stationary focused beams confirm
that in electrically isolated samples the yield collapses to
unity after a certain number of primary electrons, which
depends on the PE energy, has been injected roughly
at the same location on the sample surface. However,
our simulations do not support the widespread intuitive
explanation of this phenomenon in terms of the chang-
ing landing energy of PE’s. The effect appears to have
dynamic origins and is related to tertiary currents and
transient changes in the distribution of charges close to
the sample surface.
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The surface potential is strongly affected by the prox-
imity of metallic grounded surfaces due to the associated
charge screening. This may lead to misinterpretation of
charging effects, if one relies solely on the surface po-
tential measurements, but also may present an opportu-
nity to alleviate SEM image distortions. Our simulations
show that a good ground contact could also prevent the
collapse of the yield to unity.

We have presented, probably, the first 3D simulations
of a laterally inhomogeneous sample irradiated by a mov-
ing beam that take into account both the dynamic charge
trapping/de-trapping and the tertiary electrons. While
to a certain extent the yield obtained during this realis-
tic simulations could be interpreted on the basis of time-
domain results with stationary beams, some effects are
unique to dynamic scanning. For example, the scan pro-
file appears to depend on the direction of scanning.

A recent review by Walker et al16 mentions the lack of
reliable simulations related to low-energy SEM studies.
We hope to partly fill this gap with the present modified
and calibrated version of the DDR method. Our method
as well as other simulation software would greatly benefit
from publicly available high-quality time-domain data in
addition to the already available standard yields. While
we realize that direct time-domain sampling of detector
currents may be difficult, it should be possible to collect
and publish single line scans of ∼ 1 µm insulator targets
for a rage of dwell times (scan speeds).
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