DELFT UNIVERSITY OF TECHNOLOGY

REPORT 07-15

PRECONDITIONERS FOR THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS

M. UR REHMAN, C. VUIK AND G. SEGAL

ISSN 1389-6520
Reports of the Department of Applied Mathematical Analysis

Delft 2007

Copyright 0 2007 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission from Department of Applied
Mathematical Analysis, Delft University of Technology, The Netherlands.

PRECONDITIONERS FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

M. UR REHMAN, C. VUIK, AND G. SEGAL

ABSTRACT. We compare a number of efficient preconditioners, published in
recent papers, with our own developed SILU method. Some preconditioners are
modified in order to get a more efficient implementation. All preconditioners
are applied to a couple of standard benchmark problems. The final goal is
to select the best preconditioners for large three - dimensional engineering
problems.

1. INTRODUCTION

The Navier-Stokes equations describe the general motion of fluid. Analytical so-
lution of these equations is nearly impossible, so a numerical discretization technique
is necessary. In our case we apply the finite element method (FEM) to discretize the
incompressible Navier-Stokes equations. The resulting system of non-linear equa-
tions has to be linearized before using a linear solver. Both Newton and Picard
methods could be applied for the linearization. The resulting systems of linear
equations gives rise to a "saddle - point” problem, with a large number of zeros on
the main diagonal. Efficient solution of these equations by an iterative solver is only
possible in combination with a suitable preconditioner. In ur Rehman et al [17], we
compared SILU (Saddle point ILU preconditioner) with some block preconditioners.
In general, [17] is more focused on the introduction to the new ILU method. In this
report, our goal is to compare a number of block - preconditioners, published in
recent literature, with the straight-forwards S ILU preconditioner, suitable for sad-
dle point problems. The comparison has been done on the basis of two benchmark
problems: the simple channel flow and the two dimensional backward facing step.
Based on this report, we will make a choice of the most favorite preconditioner,
and implement them in the FEM package SEPRAN. This allows us to compare the
methods for complex 3D problems.

2. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The incompressible Navier-Stokes equations, given as
—vV*u+u-Vu+Vp=finQ, (1)
V-u=0in , (2)
are used to simulate fluid flow in a medium with the following properties: the
fluid is incompressible and has a Newtonian character. Equation (1) represents
the momentum equation and (2) is the continuity equation or mass conservation
equation. v is the viscosity (inversely proportional to the Reynolds number), u is
the velocity vector and p is the pressure. For v — oo, the system of equations in
(1) and (2) tends to a linear system of equations known as the Stokes problem.
The boundary value problem we consider, is system (1) and (2) posed on a two-
dimensional domain €2, together with boundary conditions on 992 = 9Qp U 00y
given by

u . . .
— —np =0 on 00y, where w is a given function.

on

u=won dQp, v

1

The system given in (1) and (2) is discretized by the finite element method. For
the unique solution of u and p, the elements used in the discretization must satisfy
the well known LBB(inf-sup) condition [1], [2], [3]. Elements that satisfy LBB
conditions are known as stable elements. Two well-known families of stable elements
are distinguished: Taylor Hood (continuous pressure approximation) and Crouzeix
Raviart (discontinuous pressure) [5] [6]. Elements that do not satisfy the LBB
condition are stabilized and commonly known as stabilized elements. In this report,
we only use stable elements. Due to the presence of the convective term (u-Vu) in
the momentum equation, the discretization of the Navier-Stokes equation leads to
a system of non-linear equations. Next the Navier-Stokes system are linearized by
a Picard or Newton method. The linearized Navier-Stokes equations can be written

in matrix notation as: .
F B u|l | f
5 516l ®

where F' is the convection diffusion operator, BT is the gradient operator, and B
is the divergence operator. In order to solve the linear system (3) we will apply
a Krylov subspace method. To that end we use GMRES [9], GCR [16] and Bi-
CGSTAB [10] with a suitable preconditioner. Before discussing the preconditioners,
we will also consider a slightly adapted system; where we replace the matrix F' by
F+~+BTW !B, with v a parameter and W a suitable positive definite matrix, only
used for scaling purposes. Due to the incompressibility constraint, system (3) is

equivalent with
T
B VG-l 2

where F, = F +~+BTW~!B. This adapted equation is known as the augmented La-
grangian formulation. It is closely related to the classical Uzawa iteration scheme [7]
and also to the penalty function method [8]. An important point with respect to
the augmented matrix F’, is that the structure of this matrix may be different from
the matrix F.

Definition 1:

We define A; as the non-zero pattern of the matrix F' and Ay as the non-zero pat-
tern of the matrix F,.

Figure 1 shows the non-zero pattern (A4;) of the original matrix and of the updated
matrix F., with diagonal matrix W (Az). A; results in a small profile. In the Ao
non-zero pattern we see a coupling of velocity components due to the product BT B.
In case of Crouzeix Raviart elements the extra coupling is not a big problem since
in practice velocity components are always coupled if the viscosity is not a constant.
However, in case of Taylor-Hood elements, the non-zero pattern A, contains much
more elements then pattern Aj, even if the velocity components are coupled.

In the next section we consider various preconditioners that are used to solve
either system (3) or (4).

3. BLOCK PRECONDITIONERS FOR THE INCOMPRESSIBLE NAVIER-STOKES
PROBLEM

In general, preconditioners are used to improve the convergence of Krylov solvers.
Instead of solving a system Az = b, one solves a system P! Az = P~1b, with P the
preconditioner. A good preconditioner must satisfy at least the following properties.

e The application of the preconditioner must improve the convergence behav-
ior. Usually this implies that the spectrum of P~!.4 must be more favorable
than that of A. Such a spectrum must not be close to zero, and perfectly
clustered around one.

e Solution of the equation of the form Pz = r must be simple.

2

e Construction of the preconditioner should be efficient in both CPU time
and memory.

For an overview of preconditioners, we refer to [25], [19] and [29].

We especially discuss preconditioners, that are developed for saddle point prob-
lems. Our goal is to get preconditioners with the property, that the number of it-
erations in the linear solver is nearly independent of the Reynolds number. Besides
that, grid refinement should only give a small increase in the number of iterations.
We shall distinguish between two types of preconditioners,

(1) Block preconitioners, which have the property that velocity and pressure
solver are decoupled during iterations.
(2) ILU preconditioners, that are applied to the integrated system. These type
of preconditioners require at least some form of pivoting.
In this section, we will focus on the block preconditioners. Block preconditioners,
exploit the block structure of the Navier-Stokes problem. One easily verifies that
the block LDU decomposition of (3) can be written as

F BT | 1 0 F 0 I F1BT (5)
B 0 | | BF' I 0o s 0 I '
where S = —BF~!'BT is known as the Schur complement matrix. Combination of
L, D and U leads to three types of preconditioners.

F~1 0
D! = 0o St Block diagonal preconditioner, (a)
rF BT ¢
(DU)™" = 0 S Block triangular preconditioner, (b)
: I - I N S W
[(LD)U | = 0 I B S SIMPLE preconditioner [22], (c),

(6)

where F = diag(F), S =BF'BT S =BF BT and F~! is an approximation
of F~1. F~1y may be, for example the result of some iterations of an iterative solver.

It is clear, from formulation (6-a), that the block diagonal preconditioner sepa-
rates the computation of velocity and pressure. It can be shown, that the combi-
nation of GMRES, with this preconditioner, converges in at most three iterations
to the exact solution, provided the matrices F~1 and S~! in (6-a) are computed
exactly [28]. In general the use of the exact inverse of these matrices is not very
practical. In order to get a cheap solution, both F~! and S~! have to be approxi-
mated. Of course by doing so, the number of GMRES iterations, increases. In case
of a Stokes problem, this preconditioner is symmetric, positive definite. Usually,
the Schur complement matrix is approximated by a simplified matrix.

The block triangular preconditioner (6-b) also separates pressure and velocity
computations. The extra cost per iteration, is the multiplication of the matrix B”
by a vector, which is almost negligible. Since according to [12], the preconditioner
(6-b) requires as half as many iterations as (6-a), in practice (6-b) is preferred.
Eigenvalue analysis of preconditioner (6-b) suggests that GMRES converges in two
iterations, if exact arithmetic is used [28].

The iteration scheme for the block triangular preconditioner (6-b) can be written
as
o = [ry, 7] and z = [z, 2p)
e Solve Sz, =1y,
e Update r, =1, — Bsz
e Solve Fz, =r,

The SIMPLE preconditioner (6-c) is a different type of preconditioner. Theoret-
ical results shows that if ' = F, SIMPLE preconditioned GMRES converges in one
iteration [23]. We shall compare its practical performance with that of the other
preconditioners.

In all the preconditioners (6), the expensive part, is the computation of F~! and
S~!. In practice both matrices are approximated . The type of approximation,
defines the actual preconditioner.

In the next section, we shall treat some examples of such preconditioners.

4. EXAMPLES OF PRECONDITIONERS FOR THE INAVIER-STOKES EQUATIONS

In this section we shall treat some examples of popular block preconditioners.
We start with diagonal block preconditioners, followed by block triangular precon-
ditioners and SIMPLE. Finally we treat the coupled ILU-type preconditioners.

4.1. The grid-div preconditioner. A special block diagonal preconditioner known
as grid-div preconditioner, is given by

F+~BBT 0

where 7 is a scaling parameter [30]. The preconditioner itself is of augmented type,
but it is applied to the original system (3). Eigenvalue analysis of this preconditioner
shows, that the preconditioned system has n eigenvalues 1, with n the number of
velocity unknowns. The remaining eigenvalues are equal to — 11/;;1, , hence depends
on v. p; are the eigenvalues of the Schur complement matrix. For the Stokes
problem, this preconditioner is symmetric positive definite if v > 0. In practice

(F +~vBBT)~1v is solved by an iterative solver.

4.2. Augmented Lagrangian Approach(AL). An example of a block triangular
preconditioner is the AL preconditioner of Benzi and Olshanskii [27]. This precon-
ditioner is based on and applied to the augmented system (4). The inverse Schur
complement is approximated by

S = (@ AW, (8)

where Qp denotes the approximate pressure mass matrix, and v is the viscosity.
Usually W is also replaced by (), and + is the parameter in the augmented system

(4)-

In case of a constant pressure approximation, Qp is already diagonal. In case of
a linear pressure approximation, Qp is constructed as a diagonal matrix, which is
spectrally equivalent to @, [27]. Hence the computation of S—1is very cheap. Re-
sults in [27] reveal that convergence of an iterative method with this preconditioner
is independent of the mesh size and Reynolds number. Note that this concerns only
the number of outer iterations. The number of inner iterations for the solution of
(F +yBBT)v = f, may depend on the grid size and Reynolds number. A good
choice of 7 is important. Usually, the parameter v is taken equal to 1.

In [27], multigrid iterations are recommended for the solve step (F' +~vyBBT)z, =
ry. In this report, however, we shall use an ILU preconditioned GMRES [9] or
Bi-CGSTAB [10] method.

4.3. Least Squares Commutator (LSC). A different approximation of the Schur

complement in the block triangular preconditioner is the LSC preconditioner of El-

man, Howle, Shadid, Shuttleworth and Tuminaro [15]. This method is applied to

the original system of equations (3). The approximation is defined by the complex
expression:

BFTUBY ~ (BQ ' BT)(BQTIFQ BT (BQ T BY), (9)

where @ is the velocity mass matrix. Since the inverse of the matrix Q! is dense,

Q@ is usually replaced with its diagonal). This preconditioner only converges for

stable elements. Each iteration requires two solve steps of Poisson-type matrices.

According to [29] LSC is independent of the mesh size and mildly dependent on the
Reynolds number.

4.4. Artificial compressibility (AC) preconditioner. A slightly different type
of preconditioner is the AC preconditioner [30]. This preconditioner is based on
the original system (3), where the zero pressure matrix is replaced by the diagonal
matrix —1/v:
T

Pac = [g 5/7] . (10)
This is equivalent to adding some artificial compressibility to the continuity equa-
tion. In this case only the preconditioner is adapted. The original system (3) is
solved.

This preconditioned system, also has n eigenvalues 1. The remaining eigenvalues
are equal to Jﬂ; uz So apart from the minus sign the eigenvalues of GD and AC
are the same. The Ps¢ preconditioner is written as LDU in the following way

() = G (™ L) 607 o

From this expression it is clear that there is some relation with the GD precon-
ditioner. Of course the extra term, vB” B, will introduce extra non-zero entries in
the matrix F,. The convergence of the subsystem, Fz, = r,, strongly depends on
~. The larger v, the more difficult it is to solve the system. This is similar to the
penalty function method. Although for this type of system multigrid iterations are
suggested, we apply an ILU preconditioned Krylov method.

4.5. SIMPLE type preconditioners. A complete different class of block pre-
conditioners is formed by the SIMPLE family. SIMPLE (Semi Implicit Method
for Pressure Linked Equations) [20], is a classical algorithm for solving the Navier-
Stokes equations, discretized by a finite volume technique. However, SIMPLE can
also be considered as a distributive method, in which a system Az = b is postcon-
ditioned by a matrix B, such that ABy = b, = = By is easy to solve [21].

The SIMPLE algorithm reads:

(1) Estimate pressure p* (From prior iteration)
(2) Solve Fu* =r, — BTp*
(3) Solve Sdp = r, — Bu*, where S = —BD~'BT | D = diag(F)
(4) update u and p,
u=u*—D"'BTépand p=p* + dp
(5) If not converged, p* = p and goto 1.
5

The initial p* equal to zero, the SIMPLE method can also be written in distributive
iterative method form [22].

() = Ge) = () - G) w
P=(0 G S (19

K= (g %T> . (14)

We shall use one iteration of the SIMPLE method as a preconditioner for the
GCR method applied to the discretized Navier-Stokes equations. More details about
the SIMPLE preconditioner can be found in [22] and [24].

where

and

One of the many improvements of SIMPLE is called SIMPLER. In this method
the first step is replaced by solving p* from

Sp* =1y — BDfl((D - F)uk +7y), (15)

where u” is obtained from the prior iteration. In case SIMPLER is used as pre-
conditioner, u* is taken equal to zero. One iteration of the SIMPLER algorithm is
approximately 1.3 times more expensive than the SIMPLE iteration [24]. One step
of the SIMPLER method is used as a preconditioner in combination with a Krylov
subspace method.

To reduce the cost of the SIMPLER preconditioner, one might replace the matrix
S in (15) by its diagonal. That method is denoted as SIMPLE-S. Table 1 gives an
overview of these various SIMPLE implementations.

k

Stepl: (SIMPLE) | Estimate pressure p* (previous iterate)
Stepl:(SIMPLER) | Solve Sp* =1, — BD"*((D — F)u+1,),

u from the previous iterate

Stepl:(SIMPLE-S) | Solve diag(S)p* =1, — BD™'((D — F)u + 1),
u from the previous iterate

Step2: Solve Fu* =r, — BTp*
Step3: Solve Sép =r, — Bu*
Step4: update u=u*— D 'BTép
Stepb: update p = p* + dp

TABLE 1. Variants of SIMPLE method, one iteration is used as preconditioner

We also tried a variant of SIMPLE, which is in fact a combination of AL and
SIMPLE. We call this method SIMPLE(AL). In this method we solve the augmented
system (4) and replace F' by F' = F +~yBTW~1B. Besides that the approximation
S-1 = —(VQ;1 + W1 is used. The advantage of this system is that no system
of equations for the pressure has to be solved.

4.6. ILU-type preconditioners. A completely different approach, is to solve the
coupled system (3) by a suitable iteration method. This is only possible if pivoting
is applied, since the diagonal elements corresponding to the pressure unknowns are
zero. The preconditioning used is standard ILU combined with a suitable ordering.
Our method is to use a- priori reordering of unknowns, such that during computa-
tion of the ILU matrix, no zero pivots arise. The other method is to use pivoting
during elimination. The first approach is possible by reordering the unknowns as
follows: first number all the velocity unknowns, and then the pressure afterwards.
However, a more clever reordering, based on the renumbering of nodal points, by
6

100F

200

300

500

0 100 200 300 400 500

100F

200+

300

400 §\\\§
N §\§
\\§\§
500 \\§\\

FIGURE 1. Al-Nonzero pattern of the coefficient matrix obtained
from Picard iterations (Left), A2- Nonzero pattern of the coefficient
matrix after adding yBTW !B in the coefficient matrix (Right)

some standard method, and the definition of levels is possible. This method, SILU
is described in [17].

The alternative is to use pivoting during elimination. To that end we applied the
software package ILUPACK developed by Matthias Bollhéfer! [18]. This package
creates an ILU preconditioner based on the following points:

e Static reordering of a matrix done with various efficient reordering schemes
(like approximate minimum degree(AMD), reverse Cuthill McKee(RCM)
etc).
e row and column scalings
e At each step of the ILU factorization, it is ensured that the inverse factors
satisfy an upper bound K, ||Li '] < K and ||U || < K.
ILUPACK produces a robust and stable ILU factorization. A drop tolerance strat-
egy is employed to reduce the amount of fill-in. As a consequence we can not predict
the memory and fill-in a priori. However, in this package, the fill-in is limited to a
certain extent. The approximate memory can be assigned. See [18].

IDepartment of mathematics, TU Berlin, http://www.math.tu-berlin.de/ilupack
7

5. NUMERICAL EXPERIMENTS

In this section we consider a number of numerical experiments. The Stokes and
Navier-Stokes problems are solved in the following domains:

(1) The Poiseuille channel flow in a square domain (—1,1)? with a parabolic
inflow boundary condition and a natural outflow condition having the an-
alytic solution: u, = 1 —y?% wu, = 0; p = 2vz. In case of Stokes flow
v=1.

(2) The L-shaped domain (—1,L) x (—1,1), known as the backward facing
step shown in Figure 2. A Poiseuille flow profile is imposed on the inflow
(x = —1; 0 <y < 1) and zero velocity conditions are imposed on the walls.
Neumann conditions are applied at the outflow which automatically sets
the mean outflow pressure to zero.

(-1,1) u=0,v=0 (L,1)

— u—p=0

v, =0

(0-1) u=0,v=0 (Z.1)

FI1GURE 2. Backward facing step domain

Experiments are performed with preconditioned GCR, GMRES and Bi-CGSTAB
methods. An ILU preconditioned GMRES or Bi-CGSTAB method is used for solv-
ing the linear system arising from the preconditioner, Pz = r. In the tables, ”in-it “
is defined as the number of inner iterations. This is the number of iterations to
solve subsystems Pz = r. "out-it” is defined as the number of outer iterations.
This is the number of iterations of the Krylov subspace method to solve Ax = b. In
block preconditioners, we use a preconditioned method as inner solver. That means
that we have a different preconditioner at each step of the Krylov subspace method.
At each step of the outer Krylov subspace method, the inner iterative method is
stopped after a certain number of iterations. This number can be either fixed or de-
fined by some stopping criterium. Therefore some flexible type Krylov method like
GMRESR or GCR must be used. We use the GCR method since it allows variable
preconditioners and shows robust convergence behavior [22]. In the IFISS package,
we can only test the preconditioner after a certain number of linearization steps. In
our case, we do our experiments after the first step of the Picard linearization. The
Sloan reordering scheme is used for the reordering of grid points. The grid size in
the tables and figures refer to the number of nodes instead of the number of ele-
ments. The Q2-P1 elements are quadratic quadrilaterals with linear discontinuous
pressure (Crouzeix Raviart elements). The Q2-Q1 Taylor-Hood elements have a
"bilinear” continuous pressure approximation. The comparision of augmented type
preconditioners and overall comparison is done on the system Intel Dual Core, 2.66
GHz processor with 8GB RAM. All other comparisons are made on Intel Pentium
4, 2.66 GHz processor with 1GB RAM.

First we compare the various SIMPLE type, augmented type and ILU type pre-
conditioners separately and finally we do an overall comparison.
8

Comparison between SIMPLE and SIMPLER. In Table 2 the SIMPLE, SIM-
PLER, SIMPLE-S preconditioners are compared for the channel problem. Table 3
shows the same results for the backward-facing step. From Tables 2 and 3 it is clear
that SIMPLER is the best choice of the three options. It can also be shown that
SIMPLE type solvers perform better for Taylor-Hood elements than for Crouzeix
Raviart elements. Hence, in the remainder we shall use the SIMPLER implemen-
tation as the only one of the SIMPLE family.

SIMPLE | SIMPLER | SIMPLE-S
Grid | GCR outer iterations(time in seconds)
Q2-P1
9% 9 | 12(0.05) | 8(0.05) 10(0.04)
17 x 17 | 20(0.2) | 11(0.16) 19(0.2)
33 %33 | 34(1.8) | 19(1.7) 32(1.64)
Q201
9% 0 | 11(0.03) | 9(0.04) 11(0.04)
17 x 17 | 18(0.15) | 12(0.14) 21(0.17)
33 x 33 | 28(0.94) | 18(0.95) 38(1.13)

TABLE 2. Stokes channel flow problem, GMRES(le-2(p),le-
1(u),le-2(p)) for inner iterations, GCR(20) method with an ac-
curacy = 1074

SIMPLE | SIMPLER | SIMPLE-S
Grid | GCR outer iterations(time in seconds)
Q2-P1

9x25 | 54(0.39) | 11(0.1) 22(0.17)
17x49 | 82(2.6) | 11(0.46) 47(1.60)
33 x 97| 137(29.93) | 21(7.35) 111(27.63)
Q2-Q1
9x25 | 32(02) | 15(0.11) 20(0.17)
1749 | 77(1.7) | 17(0.41) 43(1.06)
33 x 97| 119(19) 23(3.59) 108(17.24)
TABLE 3. Navier-Stokes backward facing step problem, Re=100,
GMRES(1e-2(p),le-1(u),1e-2(p)) for inner iterations, GCR(20)
method with an accuracy = 10~

COMPARISON OF AUGMENTED TYPE PRECONDITIONERS

Comparison between AL and SIMPLE(AL). As mentioned earlier, a multi-
grid solver is suggested to solve the linear system F,z, = 7, — BTz, in the AL
preconditioner. However, we are using a Krylov solver in combination with an ILU
preconditioner. In some cases, the ILU preconditioner is used with Sloan reorder-
ing. Table 4 shows the results of the AL and SIMPLE(AL) preconditioner applied
in combination with GCR. We have used the Al-nonzero pattern. It is clear that
AL performs better than SIMPLE(AL). The same conclusion can be drawn from
Table 5, where we solved the backward facing step problem with Reynolds number
= 100. Note that with a reordering of grid points both methods become much faster

due to a decrease of inner iterations.

AL preconditioner | SIMPLE(AL) preconditioner
Grid size | out-it in-it time(s) | out-it in-it time(s)
9x9 76 0.07 7 125 0.30
17 x 17 139 0.39 7 193 0.55
33 x 33 128 1.36 7 229 2.32
65 x 65 226 4.27 9 604 11.56

TABLE 4. Solution of the
P, discretization

lema QQ -

GMRES(1e-2), Al nonzero pattern, Re=100

Navier-Stokes channel flow
with preconditioned GCR
(accuracy of 107*), Picard linearization, inner iterations with

No reordering with-reordering
Grid size | out-it in-it time(s) | out-it time(s)
AL preconditioner
9 x 25 8 159 0.28 8 0.260
17 x 49 10 164 1.40 10 0.92
33 x 97 7 541 6.45 8 3.97
SIMPLE(AL) preconditioner

9 x 25 9 186 0.35 9 0.35
17 x 49 9 329 2.24 9 1.75
33 x 97 9 734 8.93 9 5.05

TABLE 5. Solution of the Navier-Stokes backward facing step
discretization with preconditioned GCR
(accuracy of 107*), Picard linearization, inner iterations with

problem, Qs — P;

GMRES(1le-2),A1 nonzero pattern, Re=100

10

Prob-

Comparison between the AL, AC and GD preconditioners. In Table 6, we
have solved the Navier-Stokes problem with the GD and AC preconditioners for the
Q2-P1 discretization. All preconditioners give nice convergence for a problem solved
on a stretched grid. However, unlike the AL preconditioner, the AC and GD precon-
ditioners are more sensitive to the choice of the parameter v. Even with v = 16, the
number of iterations with AC and GD preconditioners increases with the increase
in number of grid elements. Increasing the value of v make it more difficult to solve
the subsystem F.z, = r,. The AL preconditioner shows a robust behavior with
v = 1 for which AC and GD preconditioner fail to give desired convergence. With
~v = 16, the AC preconditioner is competing with the AL preconditioner. Therefore,
AL preconditioner is preferred due to its less dependence on the parameter 7. The
memory requirements for these preconditioners are almost equal to that of the AL
preconditioner, but the AL preconditioner makes use of an augmented system.

A comparison is also made between these preconditioners for the Q2-Q1 dis-
cretization. The AL preconditioner gives faster convergence than the AC and GD
preconditioners.

vy=1 v =16 v = 256
Grid AL | AC | GD AC | GD AC [GD
GCR(20) iterations-time in seconds
9x25 |7(0.13) | 16(0.98) | 23(0.91) | 5(0.34) | 8(0.4) | 4(0.5) | 6(0.8)
17 x 49 | 7(0.30) | 35(2.96) NC 8(0.91) | 12(0.97) | 4(0.92) | 7(2.13)
33x97 | 7(3.4) | 91(26) NC 14(4.36) | 23(6.39) | 5(4.0) | 8(7.26)
65 x 193 | 8(59) NC NC NC NC 8(54) | 12(83)

TABLE 6. Comparison of the AL, AC and GD preconditioners in

the backward facing step Q2-P1 grid for the Navier-Stokes problem

with Re=100, GCR for outer iterations with accuracy=10"% and

GMRES for inner iterations with an accuracy = 1072

11

Some remarks about the ILU preconditioner used in AL. ILU is a cheap and
a simple preconditioner to implement. Moreover, the preconditioner gives a good
performance for medium range problems. Some reordering and pivoting techniques
make it more powerful and increases the band of convergence. However, in case of
the augmented Lagrangian preconditioner, we have seen that solving the problem
F,z, = r, with an increasing value of 7, an ILU preconditioner does not give
desirable convergence. This is true even for small problems. Though with relatively
small v the AL preconditioner converges, it takes a large number of outer iterations.
In our experiments «y is taken to one. We have seen that lumping in Q2 — Q1 and
using the actual matrix pattern in Q2 — P1 works fine in some cases. Here, we want
to investigate the causes of failure of an ILU preconditioner for the problems that
are solved with the augmented Lagrangian preconditioner with a moderate value
v =1

We know that the ILU preconditioner performs better if the system matrix is
diagonally dominant. The addition of the term yBTW =1 B to F introduces a large
number of off diagonal nonzero entries. If F'is SPD and diagonally dominant, F
with v > 0 will still be SPD but this makes the system less diagonally dominant
because some of the entries that are introduced are positive [30]. ILU in this case
will strongly depend on the factor v and the entries dropped. According to [14],
there are three major causes when ILU breaks down:

(1) Inaccuracy: With inaccuracy we mean how far is the incomplete LU matrix
from the system matrix

F=LU+R,

where R consists of the dropped entries. There are two major reasons
why R can be large. One is due to inaccuracies caused by the dropped
entries in the ILU factors. The other one is due to small pivots which
cause elements to grow considerably due to the long recurrence associated
with solving ILU factors. In the first case adding extra fill-in may imrpove
convergence. In the second case this will not help at all.

(2) Zero pivot: In some cases we face a problem due to the occurence of a
zero pivot. The problem can be solved by pivoting or a suitable reordering
method.

(3) Unstable ILU factors: This problem arises if the matrix is far from di-
agonally dominant. The stability of the ILU factors can be checked by
[(LU) 'e||o where e is a vector consisting of ones. We will refer to this
quantity as condest. This is also known as a condition estimate of (LU)™?.
If there are small pivots, the condition estimate will be large.

If m is comparable to condest, and both quantities are large, then it is
assumed that at least one pivot is small. Otherwise if condest is much larger than
m, we assume long recurrences are the cause of the large condest.

Another comparison is made with the largest entry in the L and U factors. if
maxz(L + U) is much larger than maxz(F), this also gives an indication of unstable
factors. Usually the order of ﬁ and maxz(L 4 U) is the same. However, if pi{mt
is large and maxz(L 4 U) is small, that means that a small pivot is not used in
factorization [14].

All these problems can occur together. A factorization that is initially inaccu-
rate due to dropping can produce small pivots that in turn make the factorization
unstable and more inaccurate. For more details see [14].

In Table 7 we report the above described quantities for a number of problems.
We see that even with the A2 nonzero pattern that has a higher number of non-zero
elements than the Al pattern, we do not get convergence in some cases. The reason
with the A2 nonzero pattern is - due to long recurrence - that small pivots play a role

12

to make the incomplete LU factors unstable. Hence, inaccuracy (||R|/) increases.
In some cases lumping can improve the convergence. We recommend lumping should
only be used when there is no convergence. Note that max(L 4+ U) and condest are
reliable indicators of convergence. If max(L + U) is much larger than max(F,) and
condest is large, the preconditioner is not useful because no convergence occurs. In
such a case it is advised to use lumping in the preconditioner.

Grid(nonzero | max(1/pivot) | max(L + U, Fy) | condest | [|R]/o Remarks
pattern) Q2-P1
9 x 25(A1) 2.55 3.48, 2.48 25 3.2 8(0.12)
(A2) 177 270, 2.48 10° 225 | NC(Unstable solve)
17 x 25(A1) 3.08 5.83, 1.88 27 3.4 8(0.28)
(A2) 203 104, 4.88 108 10 | NC(Unstable solve)
lump(A2) 0.66 8.61, 4.88 4.44 8.87 7(0.71)
33 x 25(A1) 3.31 10.7, 9.7 49 3.5 8(0.63)
(A2) 103 103, 9.7 1015 10* | NC(Unstable solve)
lump(A2) 1.01 15.84, 9.7 5.3 14.7 8(2.54)
Q201
9 x 25(A1) 7.23 7.23,1 27.3 1.87 9(0.27)
(A2) 1.15 2, 1 53 | 0.61 9(0.1)
17 x 25(A1) 32 32, 1.03 10° 4.8 NC(inaccuracy)
(A2) 1.65 2,1.03 261 | 0.97 9(0.44)
33 x 25(A1) 10° 10°, 2.01 10° 10% NC(inacurracy)
(A2) 700 103, 2.01 107 10% | NC(Unstable solve)
lump(A2) 0.67 5.60, 2.01 17 6.2 9(2.69)

lump(A) means nonzero pattern of A after lumping
NC= no convergence

TABLE 7. Various parameters comparison with AL preconditioner
in a backward facing step

13

options
options.
options
options
options.
options.
options
options.
options.
options.

COMPARISON OF ILU-TYPE PRECONDITIONERS

In order to compare ILUPACK and SILU, we have solved the Stokes problem
with a Q2-Q1 and Q2-P1 discretization. In ILUPACK we used the following options

.matching=1;

ordering=’amd’;

.x0=zeros(n,1);
.droptol=1le-2;

condest=1e2;
restol=1e-6;

.maxit=500;

elbow=20;
1fil=n+1;
1filS=n+1;

GMRES with nRestart =30

The following definitions are used:

S(0): SILU without fill-in,

S(1): SILU with extra fill-in,

ZP(0): ILUPACK with the same fill-in as in S(0),

ZP(1): ILUPACK with the same fill-in as in S(1) and

MR (memory ratio)/growth factor: This defines the ratio between the size of the
ILU matrix computed by ILUPACK/SILU and the size of the coefficient matrix.

Figure 3 compares the results of ILUPACK and SILU. It is clear that ILUPACK
requires less iterations than SILU. However, the CPU time of SILU is always less.
The reason being the fill-in growth factor of ILUPACK which is shown in Figure 4.
In Table 8, growth factor is brought to the value that is used in SILU. Again we see
that the results of both preconditioners are comparable. Moreover, SILU performs
better with the Bi-CGSTAB method, however, due to unavailability of the solver
in ILUPACK, we are experimenting only with the GMRES method. Most of the
CPU time in ILUPACK is spent in generating ILU factors. It shows robustness in
generating stable ILU factors. The increase in the amount of work and memory is
very large with the increase in problem size. The reason for this is that ILUPACK
involves pivoting, scaling and extra fill-in in the ILU factors. Thus it consumes large
CPU time in computing ILU factors compared to time consumed in computing the
solution.

The results given in this section is done with Q2-Q1 and Q2-P1 rectangular
elements. However, we have tested these preconditioners for triangular elements as
well and observed similar results as that in rectangular elements.

14

Grid S(0) ZP(0) MR S(1) IP(1) MR
Iter. Time(s) | Iter. Time(s) | MR | Iter. Time(s) | Iter. Time(s) | MR
Q2-Q1 rectangular elements
33 x97 | 56 0.27 34 0.54 1.73 | 19 0.23 17 0.60 2.78
65 x 193 | 207 3.1 83 3.70 1.79 | 54 1.76 34 3.15 2.80
Q2-P1 rectangular elements
33 x 97 | 143 0.55 35 0.67 177 22 0.3 19 0.73 2.98
65 x 193 | 482 7.2 75 3.86 1.73 | 56 1.96 29 4.1 2.95
TABLE 8. Comparison with matched memory ratio

F1GURE 3. Solution of the Stokes backward facing step problem
with the preconditioned GMRES(20), number of iterations for the
ILUPACK and SILU preconditioner (Left), CPU time in seconds

(Right)

Fill-in growth factor

10° .

-8 SILU
—¥— ILUPACK
1]
o 10°F B
c
o
©
2
S
S o
z 10 i
o
* ¥ ¥
10° L i
9x25 17x49 33x07 65x193
Grid size
10° T
—¥— [LUPACK
- SILU 3
10" |
) al
7]
£
E 10°
(@]
<
k]
=
107

10'2 L L
9x25 17x49 33x97
Grid size

Grid size

I I
9x25 17x49 33x97 65x193

65x193

F1GURE 4. Fill-ins growth factor in ILUPACK

15

SILU convergence. From the results in [17] and the previous sections, we con-
clude that the SILU preconditioner costs less CPU time compared to the other
preconditioners for a certain range of problems in 2D. The convergence of SILU can
sometimes be increased by allowing fill-in [17]. In general, SILU detoriates with the
increase in problem size and Reynolds number. Therefore we introduce fill-in in the
pressure part of the continuity equation. The fill-in pattern is shown in Figure 5.
Results given in Table 9, show that for small problems, fill-in in the pressure part
works fine. But the method is not recommended since the convergence becomes
worse in some cases.

We have analyzed the effect of stretching on the eigenvalues of the SILU precon-
ditioner. In Table 10, we see that an increase in length broadens the eigenvalues
spectrum of the coefficient matrix A. Some of the eigenvalues becomes closer to
zero and some becomes more negative. However the number of eigenvalues with
negative real part and positive real part remain the same. In the preconditioned
system P~'A stretching has a bad effect on the eigenvalues spectrum. The eigen-
value spectrum for P~'A for various lengths of the channel is shown in Figure 6.
From this figure it appears that some eigenvalues are close to zero and even shifted
from positive to negative in some cases. This in turn deteriorates the convergence
of Krylov subspace methods.

o Non zero pattern of Coefficient matrix

0 100 200 300 400 500 600
nz =10768

Non zero pattern with pressure fill
— . . .

0 100 200 300 400 500 600
nz = 47632

FIGURE 5. Nonzero pattern of the coefficient matrix (Left),
Nonzero pattern after fill-ins at pressure points in the continuity
equation (Right)

16

grid | Pressure-fill | nnz(A) | nnz(L+ U) iter
Picard
9 x 25 No 3720 7440 39.0
9 x 25 Yes 4440 8880 20.0
17 x 25 No 8544 17088 95.0
17 x 25 Yes 10648 21296 19.0
33 x 25 No 18364 36728 99.0
33 x 25 Yes 27890 55780 NC
33 x 25 No 18364 36728 297.0 GMRES
33 x 25 Yes 27890 55780 120.0 GMRES
65 x 25 No 38380 76760 372.0 GMRES
65 x 25 Yes 46382 92764 600.0 GMRES

TABLE 9. Navier-Stokes backward facing step, Q2-P1, Re=100, Bi-CGSTAB(10~%)

length | min A | max A | min |A]
L=5 | -0.19 | 185 0.004
L=10 | -0.34 | 33.7 | 0.0023
L=20 | -0.63 | 64.3 | 0.0012
L=40 | -1.2 125 | 0.0006
L=100| -3.1 309 | 0.0003
TABLE 10. Eigenvalues of the coefficient matrix with increasing length

15 T

«+ 0%

S
2N O
o oo
o

-0.5 0 0.5 1 15 2 25 3 35

eigenvalue distribution for M 1A

FIGURE 6. Eigenvalues of P~'A for SILU preconditioner with
increasing length

17

Overall comparison. In this section, we compare the preconditioners for the
Navier-Stokes problem that we treated in the previous section.

Table 11 shows results with a Q2 — Q1 and Q2 — P1 discretization. In iteration
count, we see that AL and SIMPLE(AL) show faster convergence than the other
preconditioners mentioned in the table. SIMPLE(AL) seems to be two times more
expensive than AL in CPU time. In Q2 — @1, these two preconditioners are ex-
pensive due to the addition of an extra term in the velocity matrix. However in
Q2 — P1, AL results shows a very good compromise between the number of itera-
tions and the CPU time. The good thing about the AL preconditioner is its mesh
and Reynolds number independent convergence.

In terms of the CPU time, SILU performs better than the other preconditioners
mentioned in Table 11. However the number of iterations with the SILU precon-
ditioner increases with the increase in number of grid elements. The number of
iterations can be reduced by using extra fill-in but it makes the preconditioner
more expensive because it consumes large amount of memory and CPU time.

The convergence of SIMPLER and LSC can be categorized almost between AL
and SILU. Both SIMPLER and LSC consume more iterations than AL and less than
SILU. In terms of CPU time, it is the other way around. The outer iterations of
block preconditioners may be constant, but the number of inner iterations increases
with the increase in grid size if an ILU preconditioner is used.

The block preconditioners that are discussed in this section have the common
property that their convergence is independent of the mesh size and the Reynolds
number. There are two reasons for the increase in the CPU time in these block
preconditioners. One reason is the increase in problem size, and the other is due to
increase in the number of inner iterations. Therefore to use the block preconditioners
efficiently, a demand for better inner solvers always exists. A multigrid solver can
reduce the CPU time of this block preconditioner. This is certainly the case if one
uses the AL preconditioner [27].

For the AL and SIMPLE(AL) preconditioners, with Q2 — Q1 discretization con-
vergence in some cases is only possible if one uses the A2- non-zero pattern with
lumping. In lumping, all the off diagonal elements that have the same sign as that
of diagonal element are added to the diagonal and the elements themselves are made
zero. The ILU decomposition of the lumped matrix is made by using the nonzero
pattern of the lumped matrix.

Stretching. In Table 12, we compare the preconditioners using stretched grids. A
channel flow domain with a variable length in the flow direction is used to solve the
Navier-Stokes problem with Re=200. Results show that none of the preconditioner
give convergence independent of stretching. However, some of these preconditioners
show very good behavior with grid stretching.

With Q2-Q1 discretization, LSC seems to be a better choice to use in stretched
grids. The SIMPLER preconditioner also performs better than the AL and SIM-
PLE(AL) preconditioners. However, if a comparison is made between LSC and
SIMPLER, than LSC is the better option due to the fact that its convergence is
less dependent on the grid size. Moreover, we see that LSC convergence is faster
than SIMPLER. The time comparison is not realistic in cases where * is used. *
is used where the MATLAB built-in ILU preconditioner based on drop tolerance is
used. For the other cases we use ILU without fill-in. SILU performs poor and does

18

Grid | AL | SIMPLE(AL) [SIMPLER| LSC [SILU
GCR(20) iterations-time in seconds
Q2-Q1
9x25 | 9(0.16) | 10(0.34) 14(0.22) | 15(0.19) | 17(0.02)
17 x 49 | 8(2.55) 10(4.9) 15(0.74) | 13(0.65) | 19(0.05)
33 x 97 | 8(23.17) 8(45) 17(6.92) | 11(4.22) | 36(0.37)
65 x 193 | 8(128) 8(265) 33(94) 16(46) | 154(6.0)
Q2-P1
925 | 7(0.13) 8(0.11) 11(0.15) | 14(0.23) | 61(0.1)
17 x 49 | 7(0.30) 8(0.54) 11(0.39) | 12(0.5) | 79(0.38)
33 x97 | 7(3.34) 8(7.39) 15(5.68) | 11(5.18) | 100(1.79)
65 x 193 | 8(59) 8(108) 24(28) 16(19) | 205(8.0)

TABLE 11. Comparison of various preconditioners in the backward
facing step for the Navier-Stokes problem with Re=100, and GCR
method, lumping used in the AL and SIMPLE(AL) preconditioners

in the Q2-Q1 discretization

not show convergence for highly stretched grids.

In Q2-P1, we see that AL and SIMPLE(AL) appear to be much better options
than the other preconditioners. However, the number of outer/inner iterations in-
creases with the increase in stretching. Other preconditioners fail to perform better
for highly stretched grids.

With a direct solver used as inner solver in these block preconditioner, we can get
convergence in all preconditioners. However, using direct solver is not of practical

use in large problems.

Grid | AL [SIMPLE(AL) [SIMPLER| LSC | SILU
GCR(20) iterations-time in seconds
33 x 33 Q2-Q1
L=2 | 4(1.85) 6(3.4) 19(0.73) 19(0.6) | 22(0.09)
L=10 | 7(5.13) 8(8) 46(1.69) | 34(1.14) | 57(0.26)
L =50 | 23(106) 24(133) 74(9.59) | 41(1.40) NC
L =100 | 36(16)* | 36(18)* 71(9.4) | 42(1.44) | NC
L =200 | 47(28)* | 49(34)* 73(9.7) | 42(1.44) | NC
33 x 33 Q2-P1
L=2 | 5(0.88) 6(1.17) 12(1.04) | 16(1.17) | 117(1.16)
L=10 | 10(1.38) | 10(1.29) 15(0.91) | 21(1.72) | 340(4.96)
L =50 |29(1.92) 29(1.92) 36(3.76)* | 39(4.63)* NC
L =100 | 29(1.01) 30(1.70) NC T7(25)* NC
L =200 | 50(2.05) 51(2.35) NC NC NC
TABLE 12. Comparison of various preconditioners in the channel

domain stretched in flow direction for the Navier-Stokes problem
with Re=200, and GCR method

19

Memory requirements for the preconditioners. The Navier-Stokes problem
given in matrix notation after linearization is:

5 b= b)

Since all the preconditioners except SILU use the submatrix F' and the matrix
B or BT, we exclude this memory requirement in our memory calculations. We
also exclude the memory requirements to store z and r. The subproblems are
solved with a direct solver or an ILU preconditioner. Therefore, we include memory
requirements of the ILU matrices. Below we give some definitions.

Definition 2: For calculating memory, we define ILU(F) as an incomplete LU
decomposition of matrix F, ILU(S) as an incomplete LU decomposition of the Schur
complement operator and ILU(sys) as that of system matrix. n is the number of
velocity unknowns and m is the number of pressure unknowns.

br is the average nonzero elements per row of F. bg, bsys and bgyg have the
same definition for the Schur complement, system matrix and augmented matrix,
respectively.

Table 13 shows the general memory requirements of a preconditioner, if the sub-
systems are solved with an ILU preconditioner. In Table 14 and 15, we calculate the
memory required for each preconditioner for the 9 x 25 and 33 x 97 grids discretized
by Q2-Q1 and Q2-P1 finite elements.

On the basis of these calculations, we see that memory requirements for each
preconditioner are strongly dependent on the type of discretization and linearization
scheme that we use. From a memory point of view, SILU requires lesser memory
than the other preconditioners. It is not a good idea to use AL or SIMPLE(AL)
for problems discretized by Q2-Q1 elements because the matrix, which arises due
to the coupling between velocities, introduces a large number of nonzero elements
in the matrix F. Compared to the Picard method, the Newton linearization - due
to the addition of the Newton derivative matrix - gives rise to approximately two
times the memory requirement in SIMPLER, SILU and the LSC preconditioner.
However, in AL type preconditioners -due to the addition of an extra term in F' -
the memory requirement with both linearization schemes is the same. In case of a
non-constant viscosity the space needed for Newton and Picard is always the same,
since we can not use the reduced stress tensor. Since the memory requirement of
AC and GD preconditioner are almost the same as that of the AL preconditioner,
they are not included in the tables.

(16)

Type of matrix | AL | SIMPLE(AL) | SIMPLER | LSC SILU
ILU(F) baug-n baug-n brp.n brp.n -
ILU(S) - - bs.m bs.m -

S m m bs.m bs.m -
vector - - m n -
ILU(sys) - - - - beys-(m +n)
TABLE 13. Memory requirements of various preconditioners

20

Type of matrix AL SIMPLE(AL) | SIMPLER | LSC SILU
ILU(F) 53 x 418 53 x 418 9x418 | 9x418 -
ILU(S) - - 17x 61 |17 x 61 -

S 61 61 17x 61 |17 x 61 -
vector - - 61 418 -
ILU(sys) - - - - 15 x 479
9 x 25(Picard) 22215 22215 5897 6254 7185
other examples
33 x 97 (Picard) | 2535369 2535369 487905 508002 | 345562
33 x 97 (Newton) | 2541069 2541069 832693 852666 | 690226

TABLE 14. Memory requirements in double precision numbers for
the preconditioners used in solving the Navier-Stokes backward fac-
ing step problem for different size Q2-Q1 grid, Re=100

Type of matrix AL SIMPLE(AL) | SIMPLER | LSC SILU
ILU(F) 16 x 418 16 x 418 9 x 418 9 x 418 -
ILU(S) - - 20 x 132 | 19 x 132 -

S 132 132 20 x 132 | 19 x 132 -
vector - - 132 418 -
ILU(sys) - - - - 12 x 550
9 x 25(Picard) 6820 6820 9174 9196 7185
other examples
33 x 97 (Picard) | 688600 688600 795144 806460 | 345562
33 x 97(Newton) | 698674 698674 1141114 | 1151124 | 690226

TABLE 15. Memory requirements in double precision numbers for
the preconditioners used in solving the Navier-Stokes backward fac-
ing step problem for different size Q2-P1 grid, Re=100

21

6. CONCLUSIONS

The Navier Stokes problem discretized by a finite element method is solved with
a preconditioned Krylov subspace method. Results are given with various precondi-
tioners which are popular for the incompressible Navier-Stokes problem. We com-
bine the SIMPLE method with the augmented Lagrangian matrix: SIMPLE(AL).
The approximation used in the augmented Lagrangian preconditioner is used in
the SIMPLE preconditioner. With this approximation, convergence of the SIMPLE
preconditioner improves and becomes comparable with AL.

Results for SILU and ILUPACK are compared. At the cost of large construction
time required to build ILU factors, ILUPACK gives faster convergence than SILU
if more fill-in is allowed in ILUPACK. We can assign predefined memory in SILU,
however since ILUPACK is based on a drop tolerance strategy it is hard to determine
memory costs beforehand . In fact a priori memory is computed in ILUPACK by
allowing certain amount of maximum fill-in per row. By using same amount of
fill-in in ILUPACK and SILU, SILU performs better than ILUPACK.

LSC is a better preconditioner than SIMPLER. Both involve two Poisson solves
with different approximations. However, as the problem size increases, the matrix
vector product with the full matrix in the LSC preconditioner becomes more expen-
sive. Compared to the AL preconditioner, the AC and GD preconditioner strongly
depend on the values of 7. AL preconditioner with v = 1 converges faster than the
AC and GD preconditioner.

In the overall comparison, SILU performs better than the other preconditioners.
However, the performance of SILU becomes poor when used in stretched grids.
For stretched grid, AL and LSC are better options to use in Q2-P1 and Q2-Q1
discretizations, respectively.

REFERENCES

[1] F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York,
1991.

[2] C. Dohrmann, P. Bochev. A stabilized finite element method for the Stokes problem based on
polynomial pressure projections. Int. J. for Num. Meth. in Fluids, 46. 183-201, 2004.

[3] M. Fortin. Old and new finite elements for incompressible flows. Int. J. for Num. Meth. in
Fluids, 1. 347-364, 1981.

[4] J. A. Meijerink, H. A. van der Vorst. An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix. Math. Comput. 31. 148, 1977.

[5] C. Taylor, P. Hood. A numerical solution of the Navier Stokes equations using the finite element
technique. Comput. Fluids, 1. 73-100, 1973.

[6] M. Crouzeix , P. A. Raviart. Conforming and nonconforming finite element methods for solving
the stationary Stokes equations. RAIRO, Ser. Rouge Anal. Num. 3, 33-76, 1973.

[7] K. Arrow, L. Hurwicz. Studies in non-linear programming. Stanford university press, Stanford,
CA, 1958.

[8] C. Cuvelier, A. Segal, A.A. van Steenhoven. Finite Element Methods and Navier Stokes Equa-
tions. Reidel Publishing Company, Dordrecht, Holland, 1986.

[9] Y. Saad, M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. STAM J. Sci. Stat. Comput. 7, 856-869, 1986

[10] H. A. Van Der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631-644, 1992.

[11] H. A. Van Der Vorst, C. Vuik. The superlinear convergence behavior of GMRES. J. Comput.
Appl. Math. 48, 327-341, 1993.

[12] H. C. Elman, D. Silvester. Fast nonsymmetric iterations and preconditioning for Navier Stokes
equations. SIAM J. Sci. Comput. 17, 33-46, 1996.

[13] S. W. Sloan. An algorithm for profile and wave front reduction of sparse matrices. Int. J. for
Num. Meth. in Engng. 23, 239-251, 1986.

[14] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J.
Comput. Appl. Math. 86 , 387-414 ,1997.

[15] H. C. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro. Block preconditioner
based on approximate Commutators. STAM J. Sci. Comput., 27. 1651-1667, 2006.

22

[16] S. C. Eisenstat, H. C. Elman, M. H. Schultz. Variational Iterative Methods for Nonsymmetric
Systems of Linear Equations.
SIAM Journal on Numerical Analysis, Vol. 20, No. 2, 345-357, 1983.

[17] M. ur Rehman, C. Vuik, G. Segal. A comparison of preconditioners for incompressible Navier-
Stokes solvers. To appear in Int. J. for Num. Meth. in fluids, 2007.

[18] M. Bollhofer, Y. Saad. Multilevel preconditioners constructed from inverse-based ILUs. SIAM
J. Sci. Comput. 27, 1627-1650, 2006.

[19] M. Benzi, G. H. Golub, J. Liesen. Numerical solution of saddle point problems. Acta Numerica,
1-137, 2005.

[20] SV. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, New York, 1980.

[21] P. Wesseling. Principles of Computational fluid dynamics . Springer Series in Computational
Mathematics, vol.29. Springer, Heidelberg, 2001.

[22] C. Vuik, A. Saghir, GP. Boerstoel. The Krylov accelerated SIMPLE(R) method for flow
problems in industrial furnaces. Int. J. Numer. Methods in fluids. 33, 1027-1040, 2000.

[23] C. Vuik, A. Saghir . The Krylov accelerated SIMPLE(R) method for incompressible flow.
Technical Report TUDelft, 02-01, 2002.

[24] C. Li, C. Vuik. Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow.
Numer. Linear Algebra Appl. 11, 511-523, 2004.

[25] M. Benzi. Preconditioning techniques for large linear systems. J. Comp. Physics, 182, 418-477,
2002.

[26] H. C. Elman. Preconditioning for the steady-state Navier Stokes equations with low viscosity.
SIAM J. Sci. Comput. 20, 1299-1316, 1999.

[27] M. Benzi, M. A. Olshanskii, An Augmented Lagrangian-Based Approach to the Oseen Prob-
lem. SIAM J. Sci. Comput. 28, 2095-2113, 2006.

[28] M. F. Murphy, G. H. Golub and A. J. Wathen. A note on preconditioning for indefinite linear
systems, SIAM J. Sci. Comput. 21, 1969-1972, 2000.

[29] H. C. Elman, D. Silvester, A. J. Wathen. Finite Elements and Fast iterative solvers with
applications in incompressible fluids dynamics. Oxford University Press, Oxford, 2005.

[30] A. C. Niet and F. W. Wubs. Two preconditioners for saddle point problems in fluids flow,
Int. J. Numer. Methods in fluids. 54(4) 355-377, 2007

23

