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Abstract—In this paper we discuss some re-
cently published preconditioners for the incompress-
ible Navier-Stokes equations. In combination with
Krylov subspace methods, they give a fast conver-
gence for the solution of the Navier -Stokes equa-
tions. With the help of numerical experiments, we
report some new findings regarding the convergence
of these preconditioners. Besides that, a renumber-
ing scheme for direct solvers and ILU preconditioner
is introduced that improves the convergence of the
solvers. Both 2D and 3D experiments are used to
measure the performance of the preconditioners.
Keywords: block preconditioners, ILU preconditioners,
Navier-Stokes, renumbering

1 Introduction

The incompressible Navier -Stokes equations, given as
(1)
2

are used to simulate fluid flow in a medium with the fol-
lowing properties: the fluid is incompressible and has a
Newtonian character. Equation (1) represents the mo-
mentum equation and (2) is the continuity equation or
mass conservation equation. v is the viscosity (inversely
proportional to the Reynolds number), u is the veloc-
ity vector and p is the pressure. For v — oo , the sys-
tem of equations in (1) and (2) tends to a linear system
of equations known as Stokes problem. The boundary
value problem we consider, is system (1) and (2) posed
on a two dimensional domain 2, together with boundary
conditions on 92 = 8Qp U NN given by

—vVu+uVu+Vp=f in 0O

Vaua=0 in 9,

ou
V%—np—O on 00y,

u=w on 90p,

where w is a given function.
The system given in (1) and (2) is discretized by the
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finite element method. Due to the presence of the con-
vective term (u.Vu) in the momentum equation, the dis-
cretization of the Navier -Stokes equation leads to a non-
linear system of equations. The Navier -Stokes system
is linearized by Picard’s method. In the Picard iter-
ation method, the velocity from the previous iteration
is substituted into the convective term. Starting with
an initial guess u(® for the velocity field, Picard’s it-
eration constructs a sequence of approximate solutions
(u*+1) p(k+1)) by solving a linear Oseen problem

—vAu®) 4 ® v)yutk+) 4 gpk+) — 4 in Q, (3)

vVukt) =9 in O, (4)
in matrix notation

F BT [u 3

5 516 =[] ©

F = A+ N, where A is the viscous part, N is the contri-
bution of convective term linearized by Picard’s method,
BT is the gradient operator, and B is the divergence op-
erator. The linearization of the Navier -Stokes problem
gives rise to a saddle point problem, which means that
there is a large block of zeros at the main diagonal.
Several techniques have been introduced to solve this sys-
tem efficiently. Recently various preconditioners have
been published, that can be used to accelerate the so-
lution of system (5) by Krylov subspace methods [1-3].
We will discuss SIMPLE-type preconditioners as formu-
lated by Vuik [3] in Section 2.

In Section 3, we discuss numerical solutions based on LU
factorization (direct solver) and incomplete LU precon-
ditioner. In the Navier-Stoke problem, LU/ILU factor-
ization may fail due to zeros on the main diagonal un-
less partial pivoting is applied. We define a reordering
of unknowns that leads to an almost optimal profile or
bandwidth for a direct solver. Applied to an ILU precon-
ditioner, this reordering usually improves the convergence
behavior of Krylov subspace methods. Various other or-
derings have been proposed in the literature [4], [5], [6],
but our ordering scheme outperforms all of them.

In Section 4, numerical experiments are performed in 2D
and 3D domains. We end with some conclusions in Sec-
tion 5.
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2 Preconditioners for the Navier-Stokes
Equations

Preconditioning is a technique used to enhance the con-
vergence of an iterative method to solve a large linear
systems iteratively. Instead of solving a system Ax = b,
one solves a system P~! Az = P~!b, where P is the pre-
conditioner. A good preconditioner should lead to fast
convergence of the Krylov method. Furthermore, system
of the form Pz = r should be easy to solve.

In the Navier -Stokes equations, the objective is to de-
sign a preconditioner, that increases the convergence of
an iterative method independent of the Reynolds number
and number of gridpoints. Secondly, the application of a
preconditioner should be cheap. For more details, see [7].
We discuss here preconditioners for the incompressible
Navier-Stokes equations.

2.1 SIMPLE(R) Preconditioner

SIMPLE (Semi Implicit Method for Pressure Linked
Equations) (8], [9] is a classical algorithm for solving the
Navier-Stokes equations, discretized by a finite volume
technique. In this algorithm, to solve the momentum
equations, the pressure is assumed to be known from the
previous iteration. The newly obtained velocities do not
satisfy the continuity equation since the pressure field is
only a guess. Corrections to velocities and pressure are
proposed to satisfy the discrete continuity equation. The
SIMPLE algorithm is derived from the block LU decom-
position of the coefficient matrix (5)

IR
L B e

The approximation F~! = D™! = diag(F)™! in (2,2)
and (1,2) in L and U block matrices, respectively, leads
to the SIMPLE algorithm. Define
u
: 7
I

[3)-[4 7
13)-12)

First we solve
and then v and p from (7). In the SIMPLE algorithm,

F 0
B -BD'BT
the above two steps are performed recursively leading to:

SIMPLE algorithm:

1. Solve Fu* =r, — BTp*.
2. Solve Sop = rp— Bu®.

3. update u = u* — D~1BTép.
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4. update p=p*+dp. ,

where pressure p* is estimated from the prior iterations.
D is the diagonal of the convection diffusion matrix and
S = —BD~'BT, an approximation of the Schur comple-
ment.

Vuik et al [3], used SIMPLE and its variants as a precon-
ditioner to solve the incompressible Navier-Stokes prob-
lem. One iteration of the SIMPLE algorithm is used as
a preconditioner with assumption p* = 0. The precondi-
tioner gives nice convergence if used in combination with
the GCR method. However, the convergence decreases
if the number of grid elements or Reynolds number in-
creases. A variant of SIMPLE, SIMPLER gives conver-
gence independent of Reynolds number. Instead of esti-
mating the pressure p*in the SIMPLE algorithm, p* is
obtained from solving a subsystem:

8p* = r, — BD™Y(D — F)u* +r,), 9)

where u* is obtained from the prior iteration. In case
SIMPLER is used as preconditioner, u* is taken equal
to zero. The classical SIMPLER algorithm proposed by
Patanker consists of two pressure solves and one veloc-
ity solve. However, in the literature the SIMPLER algo-
rithm is formulated such that the steps of the algorithm
are closely related to the Symmetric Block Gauss-Seidal
method [3]. This form of the SIMPLER preconditioner
can be written as:

(1) = () + e () -4 (31)) - o
(z:i:) = (Z) + BrMz" ((:;) _a (Z)) an

where A represents the coefficient matrix given in (5), u*
and p* in (10) are obtained from the previous step (both
zero in our case) and

I —-p g7 F 0
Bg = (0 I ), Mg = (B S) and (12)

I o\ . (F BT
BL:(—BD-1 I)’MLz(O S)

The steps given in (10) and (11) contain two Poisson
solves, two velocity subproblems solves- posed to one ve-
locity solve in the classical algorithm- and matrix vector
updates. However, the extra velocity solve in formulation
(10) and (11) has no significant effect on the convergence
with the SIMPLER preconditioner. In the remainder of
this paper, we will use SIMPLER with one velocity solve.
SIMPLER is more expensive than SIMPLE. One iter-
ation of the SIMPLER algorithm is approximately 1.3
times more expensive than the SIMPLE iteration [3].
SIMPLER convergence is also faster than the SIMPLE
preconditioner. However, convergence with both precon-
ditioners is decreased with an increase in the number of
grid elements.

(13)
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3 Reordering Scheme for LU/ILU Fac-
torization

In this section we will discuss an a priori renumbering
scheme to use both in the ILU preconditioner and a direct
solver to solve the Navier-Stokes problem. From a practi-
cal point of view, it would be attractive, if standard classi-
cal iterative solution schemes, like preconditioned Krylov
solvers, could be applied, without any changes. However,
in the case of non-stabilized elements, the zero pressure
block in the continuity equation, prevents straightforward
application of LU and ILU factorization. If the common
ordering of unknowns is used, i.e. placing first all un-
knowns of node 1, then those of node 2 and so on, one
might get a zero pivot, especially if velocities at some
boundaries are prescribed and therefore both factoriza-
tions may fail. Pivoting, on the other hand, will result in
a large increase of memory usage and, as a consequence,
computation time. Besides that, it is hard, to predict,
a priori, the amount of memory required, which from an
implementation point of view is, not very practical. To
avoid this problem, it is better to use a suitable a priori
reordering of unknowns. We propose a new ordering that
avoids breakdown of LU factorization. Our reordering
schemes consist of two steps.

1. Renumbering of grid points, that can be accom-
plished by any renumbering method that gives an
optimal profile. We use Cuthill McKee (CMK) [10]
and Sloan [11] renumbering schemes for grid points.

2. The second step consisits of reordering of unknowns.
Unknowns can be reordered as first all the veloc-
ity unknowns, followed by pressure unknowns in the
grid. This is know as p-last ordering.

A new type of reordering is introduced, in which the
grid is divided into levels. Each level consists of a
connected set of nodes. Thereafter, the unknowns
are ordered per level. At each level, first velocity
unknowns are placed and then followed by the pres-
sure unknowns. We call it p-last per level reordering.

Let us define the notion of levels for Cuthill McKee. Sup-
pose we have created levels 1 to i-1. Then level i is de-
fined as the set of nodes that are connected directly to
level i-1, and are not in one of the prior levels. Nodes are
connected if they belong to the same element.

The first level may be defined as a point, or even a line in
R? or a surface in R®. In the p-last per level reordering,
one has to be careful at the start of this process. If, for
example, the velocities in the first node, are prescribed,
we start with a pressure unknown that gives rise to a zero
pivot. Therefore, we always combine the first few levels,
into a new level. If the number of free velocity unknowns
in this new level, is less than the number of pressure un-
knowns, we also add the next level to level 1, and if nec-
essary this process is repeated. In practice combinations
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of 2 or 3 levels is sufficient. Note that the starting level
has always a small contribution to the global profile [12].

3.1 Direct Solver

If, for a direct solver, we use the p-last ordering, we end
up with a very large profile of the matrix. This is true
even if we use an optimal node renumbering. The main
advantage of ordering is that no pivoting is necessary,
since during factorization, the zeros on the main diagonal
in the zero pressure block disappear, see for example [5].
On the other hand, p-last per level, in combination with
a suitable node renumbering strategy, produces a nearly
optimal profile shown in Figure (1) and avoids the need
for pivoting in case of direct solvers. It has been applied
to many practical problems, without ever producing small
pivots.

60 0 100 200 300 400 500
Profile =31222, Bandwidth = 212
p-last per level ordering with Sloan renumbering

W @0 a0 40 &0
Profile = 52195, Bandwidth = 570
p-last ordering with lexicographic numbering

Figure 1: Effect of Sloan renumbering of grid points and
p-last per level reordering of unknowns on the profile and
bandwidth of the matrix

3.2 ILU Preconditioner

Since an optimal ordering of unknowns for a direct solver,
usually improves the behavior of an ILU preconditioner,
we investigate p-last per level ordering, as well as p-last
ordering, in combination with ILU. The sparseness
structure is defined as follows:

(LD™'U);,j # 0 for (i,5) € S,
(14)

We define the set, S, of fill-in positions as the set of un-
knowns, that are directly connected. This implies that,
zeros in the pressure block, are also part of the set S, pro-
vided that there is a connectivity with velocity unknowns.
In our experiments, p-last per level in combination with
a suitable renumbering for grid points is used. We have
observed that p-last per level improves the convergence
of the preconditioned iterative method and avoids the
breakdown of ILU.
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3.3 Breakdown of LU or ILU Factorization

Our strategy of p-last per level does not break down.
The breakdown of the ILU and LU due to p-last per level
is only based on the choice of the first level. In many
cases the first level contains prescribed boundary points.
It might happen that our selected level gives rise to the
pressure as a first row in the matrix, that in turn gives
rise to a zero on the main diagonal. Therefore we kept
our first level larger than the other levels. The question
is, what should be the minimum number of points or
nodes(unprescribed) in the first level so that our scheme
encounter a danger of breakdown?

To explain how the minimum size of the first level must
be chosen we consider a 2 x 2 Q2-Q1, Taylor-Hood ele-
ment subdivision of a square shown in Figure (2). If all
the velocities at the boundary are prescribed, restricting
the initial set to the (oblique) dashed region, i.e. nodes
1 to 7, implies that in set 1 we have only 2 unknown ve-
locities and 4 unknown pressures. Even if we start with
the velocities, Gaussian elimination in these rows will not
remove all zeros on the diagonal. This is the same reason
why we have to satisfy the LBB condition. Adding node
8 to the dashed region makes the number of velocity un-
knowns in the first level equal to the number of pressure
unknowns and the problem no longer exists.

So on the first level we need at least the same number
of unprescribed velocity degrees of freedom as there are
pressure degree of freedom. Furthermore, the velocity un-
knowns should have a nonzero connection with the pres-
sure unknowns.

2

—
(
&

Velocity is prescribed at each boundary

Figure 2: 2x2 Q2-Q1 grid

4 Numerical Experiments

Numerical experiments are performed for the following
benchmark problems:

1. Driven cavity problem; flow in a square cavity with
enclosed boundary conditions and a lid moving from
left to right given as:

y=1; —1<z<lju,=1-124,

known as regularized cavity problem.
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2. The L-shaped domain (—1,L) x (—1,1), known as
the backward facing step. A Poisseuille flow profile is
imposed on the inflow (z = —1; 0 < y < 1) and zero
velocity conditions are imposed on the walls. Neu-
mann conditions are applied at the outflow which au-
tomatically sets the mean outflow pressure to zero.
Results are also performed in a 3D backward facing
step.

The GCR method, [13] PCG [14], and Bi-CGSTAB [15]
are used in our experiments. Both direct solvers and
ILU preconditioners are used to solve subsystems in
the SIMPLE-type preconditioners. =~ We divide the
experiments into two sections; Section 4.1 which deals
only with SIMPLE-type preconditioners and Section 4.2
which consists of a comparison of SIMPLE-type precon-
ditioners with our ILU preconditioner. The iteration is

k
stopped if the linear systems satisfy ||rb| 2’ < tol, where

¥ is the residual at the kth step of the Krylov subspace
method, b is the right hand side, and tol is the desired
tolerance value. Some abbreviations used are: It.(s) are
used for number of iterations (time in seconds) and NC
for no convergence and the accuracy of the inner solvers
in the SIMPLER preconditioner is represented in the
form 107“P (exponent for the pressure solve, velocity
solve and pressure solve), while in SIMPLE, pressure is
computed with accuracy 10~2 and the velocity 10~! in
the preconditioning steps. The grid size in the tables
and figures refer to the number of Q2-Q1 elements.
Numerical experiments are performed on the system
Intel 2.66 GHz processor with 8GB RAM.

4.1 SIMPLE-type Preconditioners

The Stokes problem is solved with the SIMPLE and SIM-
PLER preconditioners using exact and inexact solvers for
the subsystems shown in Table (1). For the inexact so-
lution, we used preconditioned CG. If we use exact in-
ner solves, SIMPLER converges faster than SIMPLE al-
though SIMPLER requires an extra pressure solve. Both
preconditioners seem efficient in CPU time if exact in-
ner solves are used instead of inexact solves. However,
for a large problems in 2D and problems in 3D, exact
inner solvers are not the cheap option to use. . The con-
vergence of the SIMPLE preconditioner is more effected
by the increase in the grid size than the SIMPLER pre-
conditioner. However, a positive aspect of the SIMPLE
preconditioner that we have observed is that the conver-
gence of the SIMPLE preconditioner is independent of
the accuracies used to solve the subsystems, while the
SIMPLER preconditioner strongly depends on the inner
accuracies. The larger the number of grid elements, the
larger the accuracy requirement for the inner solver in the
SIMPLER preconditioner. Iterations in the SIMPLER
preconditioner can be reduced with the increase in the
inner accuracies. On the other hand, increasing inner ac-
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curacies will have no large effect on the convergence of
the SIMPLE preconditioner.

The Navier-Stokes problem solved with varying Reynolds
numbers is shown in Table (2) . We report here the num-
ber of iterations taken by preconditioned solver after one
Picard step. We see that SIMPLER is converging faster
than SIMPLE. However, SIMPLER requires some suit-
able inner accuracy for convergence. From the table, it
is clear that the inner accuracy problem arises only due
to the increase in the number of grid elements. As the
viscosity decreases, the number of iterations of the both
preconditioners increases. This increase is large in the
SIMPLE preconditioner and mild in SIMPLER. Viscos-
ity independent convergence with the SIMPLER precon-
ditioner can be achieved only if subsystems are solved
with a high accuracy.

Grid SIMPLE SIMPLER
- Exact Inexact Exact Inexact  accuracy
It. (s) It. (s) It. (s) It. (s) 107> ¥, P
8x8 20(0.13) | 25(0.19) | 10(0.07) | 14(0.14) -2,-1,-2
16 x 16 | 37(1.84) | 45(1.75) | 15(0.89) 19(0.2) -2,-1,-3
32 x 32 | T1(14.5) | 89(24.8) 24(5.3) | 40(12.6) -2,-1,-3
64 x 64 | 121(132) | 165(362) | 40(47.5) | 49(183) -3, -2, -4

Table 1: Solution of the Stokes cavity flow problem with
preconditioned GCR(20) method with accuracy 10~

v SIMPLE SIMPLER
It. (5) Tt. (s) 107 & P
0.02 | 129(42) | 37(27) -3,-2,-3
0.01 | 179(68) | 38(31) -3,-2,-3
0.002 | 677(245) | 70(66) -3,-2,-3
0.001 | 1086(431) | 118(96) -3,-2,-3

Table 2: The Navier-Stokes cavity flow problem with pre-
conditioned GCR(20) method with accuracy 10~°, sub-
system in the preconditioners are solved inexactly with
ILU preconditioned Bi-CGSTAB.

4.2 Comparison: ILU Preconditioner and
SIMPLE-type Preconditioner

In this section, we report our findings with our renum-
bering scheme. Our renumbering scheme effectively re-
duces the profile and bandwidth of the matrix. In Table
3, we see the reduction with Sloan and Cuthill McKee
renumbering method with p-last per level reordering of
unknowns. Profile and bandwidth reduction is computed
by dividing profile and bandwith with p-last by p-last per
level. Profile reduction with the Sloan method is bet-
ter than Cuthill McKee, while in bandwidth reduction
Cuthill McKee performs better than Sloan. Thus, our
reordering method reduces the memory and work and
computation time if system is solved with a direct solver.
The renumbering of grid points and reordering of un-
knowns is used in the ILU preconditioner to solve the
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Stokes and Navier-Stokes problem. In Figure (3), we see
that

e in p-last per level with Sloan and CMK give conver-
gence faster than p-last for 2D backward facing step
Stokes problem,

e p-last per level with Sloan renumbering is faster than
p-last per level with CMK renumbering,

e the number of iterations increases with the increase
in the number of grid elements.

In the onward experiments, p-last per level reordering of
unknowns will be used in combination with the Sloan and
CMK renumbering schemes.

The 3D Stokes and the Navier-Stokes backward facing
step problem is solved with the preconditioners discussed
in this paper. Results given in Table (4) and (5) re-
veal that our renumbering method performs better than
the block preconditioners. In 2D the ILU preconditioner
with the Sloan renumbering is performing faster than ILU
computed with CMK, however in 3D, this is the other way
around. ILU with CMK renumbering gives better con-
vergence than the Sloan renumbering. The SIMPLER
preconditioner seems to be not applicable without accu-
rate inner solvers which makes SIMPLER an expensive
option to use as preconditioner. For the last two problems
in Table (4) and (5), convergence is achieved with the ac-
curacy higher than 10~ for the subsystem solves in the
SIMPLER preconditioner. On the other hand SIMPLE
shows robust convergence behavior with approximate in-
ner solves. A common aspect of all these preconditioners
is that convergence with these preconditioner is depen-
dent on grid size.

Grid Profile reduction | Bandwidth reduction
- Sloan CMK Sloan CMK
4x 12 0.37 0.61 0.18 0.17
8 x 24 0.28 0.54 0.13 0.08
16 x 48 0.26 0.5 0.11 0.04
32 x 96 0.25 0.48 0.06 0.02

Table 3: Profile and bandwidth reduction in the back-
ward facing step with Q2-Q1 discretization

Grid SIMPLE | SIMPLER CMK Sloan
1t.(s) It.(s) It.(s) Tt.(s)
Sx8x24 | 44(6.4) | 30(6) 43(1.1) | 65(1.59)
16x 16 x 48 | 75(155) | 60(460) | 118(28) | 228(54)
24 x 24 x 72 | 108(892) NC 224(197) | 479(414)

Table 4: Solution of the 3D Stokes backward facing step
with preconditioned GCR(20) with accuracy 1076,
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[=» plast (CMK) b

| =o plast per level (CMK) -
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No. of iterations
3

8ax192

Grid size

Figure 3: The 2D Stokes backward facing step prob-
lem solved with ILU preconditioned Bi-CGSTAB method
with accuracy 1076.

v SIMPLE | SIMPLER CMK Sloan Picard
It.(s) It.(s) It.(s) 1t.(s) It.
0.02 | 300(789) | 92(869) | 225(120) | 271(159)
0.01 | 464(1150) | 115(925) | 311(159) | 368(200) 9
0.004 | 773(1448) | 155(919) | 856(317) | 649(203) | 12

Table 5: Solution of the 3D Navier-Stokes backward fac-
ing step (16 x 16 x 48) with preconditioned GCR(20) with
accuracy 1072 and 10~* in the Picard linearization. The
accumulated number of iterations are reported here.

5 Conclusions

In this paper, various preconditioners for the discretized
Navier-Stokes equations have been compared. A SIM-
PLE -type and ILU preconditioner with special renum-
bering scheme is discussed in this paper.

In the SIMPLE-type preconditioner, in 2D experiments
it is observed that SIMPLER performs better than SIM-
PLE. However convergence with the SIMPLER precon-
ditioner strongly depends on accuracies of the subsystem
solvers. Increase in the problem size, hardens the de-
mand to use accurate inner solver. This limits the use of
the SIMPLER preconditioner in 3D. On the other hand,
though SIMPLE converges in more outer iterations than
SIMPLER, it does not require an increase of the accu-
racy of the inner subsystem. This makes the SIMPLE
preconditioner usable for a wide range of problems. The
viscosity independent convergence of SIMPLER can only
be achieved with exact solves for the subsystem in the
preconditioner.

In our ILU preconditioner, p-last per level reordering
scheme gives better convergence than p-last . p-last per
level reordering reduces the profile and bandwith of the
matrix and avoids breakdown of LU/ILU. In 2D, with
p-last per level reordering, Sloan performs better than
CMK. In 3D, CMK gives faster convergence than Sloan.
The convergence of all these preconditioners strongly de-
pends on the grid size. Compared to the other precondi-
tioner discussed, SIMPLE convergence is more effected by
the decrease in the viscosity. Besides simple and cheaper
implementation, our ILU preconditioner performs better
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than SIMPLE-type preconditioners.

References

(1

(2]

3]

[4]

(7]
(8]

(10]

11]

(12]

(13]

(14]

[15]

M. Benzi and M. A. Olshanskii. An Augmented
Lagrangian-Based Approach to the Oseen Problem.
SIAM J. Sci. Comput., 28(6):2095-2113, 2006.

H. Elman, V. E. Howle, J. Shadid, R . Shuttleworth, and
R. Tuminaro. Block Preconditioners Based on Approxi-
mate Commutators. SIAM J. Sci. Comput., 27(5):1651—
1668, 2006.

C. Vuik, A. Saghir, and G. P. Boerstoel. The Krylov ac-
celerated SIMPLE(R) method for flow problems in indus-
trial furnaces. Int. J. Numer. Meth. Fluids, 33(7):1027—
1040, 2000.

O. Dahl and S. @. Wille. An ILU preconditioner with
coupled node fill-in for iterative solution of the mixed fi-
nite element formulation of the 2D and 3D Navier-Stokes
equations. Int. J. Numer. Meth. Fluids, 15(5):525-544,
1992.

S. @. Wille and A. F. D. Loula. A priori pivoting in
solving the Navier-Stokes equations. Commun. Numer.
Meth. Engng., 18(10):691-698, 2002.

S. @. Wille, O. Staff, and A. F. D. Loula. Efficient
a priori pivoting schemes for a sparse direct Gaussian
equation solver for the mixed finite element formulation
of the Navier-Stokes equations. Appl. Math. Modelling,
28(7):607-616, July 2004.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution
of saddle point problems. Acta Numerica, 14:1-137, 2005.

P. Wesseling. Principles of computational fluid dynamics,
volume 29. Springer Series in Computational Mathemat-
ics, Springer, Heidelberg, 2001.

S. V. Patankar. Numerical heat transfer and fluid flow.
McGraw-Hill, New York, 1980.

E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th national conference, pages 157-172. ACM Press,
1969.

S. W. Sloan. An algorithm for profile and wavefront re-
duction of sparse matrices. Int. J. Numer. Meth. Engng.,
23(2):239-251, 1986.

M. ur Rehman, C. Vuik, and G. Segal. A comparison of
preconditioners for incompressible Navier-Stokes solvers.
International Journal for Numerical Methods in Fluids,
Electronic print available (Early view), 2007.

C. Eisenstat, H. C. Elman, , and M. H. Schultz. Vari-
ational iterative methods for nonsymmetric systems of
linear equations. SIAM J. Numer. Anal., 20(2):345-357,
April 1983.

M. R. Hestenes and E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of Research
of the National Bureau of Standards, 49:409-435, 1952.
H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly
Converging Variant of Bi-CG for the Solution of Non-

symmetric Linear Systems. SIAM J. Sci. Stat. Comput.,
13(2):631-644, 1992.

849



