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Abstract

Motivated by the goal of removing small water droplets from semiconductor
wafers, the ambition of this investigation is to analyze the behaviour of droplets
adhered to a flat surface when exposed to different types of air flows. A sequence
of models, increasing in both complexity and fidelity, is proposed to capture the
setup. Capabilities and limitations of each modeling approach are demonstrated
for representative example cases. Under mild assumptions, we propose a model
order reduction that restricts omits the computation of the air flow, and restricts
the computational domain to the interior of the droplet itself, drastically accel-
erating computations. We finally highlight remaining difficulties and suggest
concrete actions for future investigation.
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1 Introduction

The company that suggested the herein considered problem is VDL Enabling Tech-
nologies Group (VDL ETGQG), which is part of the internationally operating VDL
Groep. This is a subcontracting company specializing in metalworking, mechatronic
systems and system supply, plastics processing and surface treatment. Their equip-
ment is used in various processes such as vacuum process chambers, wafer stages and

wafer handlers. The current treatment of the latter is cause for the collaboration with
SWI2020.
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Figure 1: A pure water droplet is attached to the downward side of a semiconductor
wafer. Typical dimensions and air-driven removal strategy are shown.

During wafer handling, the wafer is attached at its center, leaving a space between
the bottom wafer surface and an underlying plate of up to 10 mm. In practice,
small water droplets with volumes up to 10 mm? are often found attached on this
bottom surface, as shown in Figure 1. This contamination impairs the processing of
the current wafer, and could further contaminate subsequently processed ones. Due
to technical constraints, wafer cleaning should be completed within a period of 10
seconds. However, the whole procedure takes place in a highly controlled environment
which disallows many removal strategies such as thermal treatment, application of
electric fields, or addition of volatile solvents. This renders most standard cleaning
methods infeasible.

The state-of-the-art method of tackling this issue is spinning the wafer. Due to the
centrifugal force the water droplets are pushed outwards to the edge where they are
aspirated and removed. VDL ETG currently considers a different approach: pushing
the droplet along the surface to the edge by an imposed air flow. The investigation
and optimization of this airflow-driven droplet removal is the subject of the current
study.

The physics of flow-driven movement of droplets on flat surfaces has been the subject
of various prior research efforts (see, e.g. Fan et al., 2011; Seevaratnam et al., 2010;
Grinats et al., 2019), illustrating different modes of movements including sliding, os-
cillations, and droplet breakup for different combinations of droplet size and imposed
airflow. An example of the former simple sliding regime is shown in Figure 2, which
illustrates the position of a set of airblown droplets with different size as a function
of time. It can be seen that droplet movement is highly dependent on size, as smaller
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Figure 2: Experimental setup and results for droplets of varying size on flat surface
blown by airflow of us = 20 m/s. Left: Topview setup photograph. Right: Droplet
coordinates as a function of time. Figure adapted from Grinats et al. (2019).

droplets tend to move much slower and are hence harder to remove within a given
time window. Given that strong airflows could cause the break-up of droplets, this
observation illustrates the difficulty of the task at hand: the reduced volume and
surface of broken droplets leads to a reduced force exerted by the flow, rendering
these resulting droplets even harder to remove. Furthermore, the bottom plate could
be contaminated by water resulting, eventually into a propagation onto subsequent
wafers and worsening the situation. It is hence expected that there exists an optimal
driving air velocity to remove droplets in minimal time without breakup. Moreover,
given the frequent observation of droplet shape oscillations, not only the amplitude
but also possible oscillations in the air flow might have effect on the droplet removal
time. Indeed, oscillations could incite resonance modes in droplet shapes, thereby
magnifying the drag force which is exerted by the air flow.

In this work, we investigate the droplet removal problem using mathematical models
to increase the overall understanding of the problem and provide pathways to opti-
mize the removal process. The manuscript is structured as follows. Firstly, Section 2
discusses the need for a modeling chain as opposed to a single model, and details the
methodology and results of the mathematical models used in the current work. Next,
Section 3 summarizes and compares the main findings from the different models. In
closing, Section 4 formulates overall conclusions and provides concrete recommenda-
tions for further steps.

2 Modeling

We consider the simplified situation in which a single water droplet is placed on
the bottom of a flat surface (see Figure 3). The droplet is exposed to an airflow
with freestream inlet speed us, and the bottom wafer handler surface is neglected.
Despite these simplifications, the physics of the resulting problem remain complex,
i.e. it involves a wall-bounded multiphase free-surface flow which is inherently three-
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Figure 3: Basic setup of a single droplet attached to a flat surface, blown by an
imposed free-stream airflow uq.

dimensional and unsteady. As a result, analytical solutions to detailed mathematical
models can not be found. Furthermore, numerical solutions to such models, e.g. based
on the three-dimensional unsteady Navier—Stokes equations, are intractable given the
available time and computational resources in the current project. Instead, we con-
sider different models with varying tractability, complexity and computational cost
which also complement each other. Rather than making precise numerical compar-
isons between models or predictions for a specific set of conditions, we choose to
qualitatively assess and compare capabilities and limitations of each model. This al-
lows us to identify most promising methods and provides ways to move forward in
modeling and optimizing the droplet removal. Material properties used in each of the
models detailed below are consistent with the problem description and summarized
in Table 1.

The models considered in this manuscript are described below. In Section 2.1, a
force-balance model is introduced. Next, Section 2.2, discussed a model based on
a lubrication approximation of the Navier—Stokes equations. Finally, Section 2.3
elaborates on two models based on a computational fluid dynamics approach to the
Navier—Stokes equations. The models can be ranked in terms of tractability and
complexity as shown below:

Force balance model
Navier-Stokes & lubrication approximation
Navier-Stokes computational fluid dynamics (CFD)

Tractability
Ayxordwio))

Table 1: Physical parameters and material properties used throughout this work.

Reference temperature T, = 20°C
Water density p,, = 1000 kg/m3
Water kinematic viscosity v, = 1.004 x 1076 m? /s
Water dynamic viscosity = 1.002 x 1073kg/(m - s)
Gas density  p, = 1.204 kg/m3
Gas kinematic viscosity v, = 1.82 x 1075 m?/s
Water-Gas surface tension coefficient o = 72.86 x 1073 N/m
Water-wafer equilibrium contact angle 6 = 45°
Gravitational acceleration g = 9.81 N/kg
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Figure 4: Geometrical representation of the droplet as part of a sphere above the
plate. Left: Spherical droplet (§ = 7), Middle: Truncated droplet (8 < w), Right:
Deformed truncated droplet (fr < 04 < =), blown by air flow with velocity .
Figure adapted from Grinats et al. (2019).

2.1 Force balance model

In this section we describe an ordinary differential equation (ODE) model for the
droplet velocity. This model was originally proposed in Grinats et al. (2019), where
the droplet is assumed to be on the upper part of a smooth plate. In our report, we
investigate the motion of a droplet with a volume V = 7 mm? (corresponding to a
spherical radius a = 1.44 mm) attached to the bottom of the wafer (see Figure 4).

2.1.1 Model description

The droplet is assumed to behave like a single particle with mass m and velocity
at time ¢ denoted by u(t). At rest, the droplet assumes the shape of a truncated
sphere with contact angle § = 45°. In response to the imposed airflow, the droplet
will attain a deformed shape with different contact angles on the windward (6r) and
leeward (64) sides of the droplet. We consider the one-dimensional case where the
velocity changes along the horizontal direction. Writing out a force balance for the
droplet, Newton’s second law of motion dictates that

du(t)
"

where F,, F, and F), denote the aerodynamic drag force, the surface tension force
and the dissipative force, respectively. The aerodynamic force represents the push by
the jet of air on the droplet and is given by

=F,+F,+F,, (1)

Fu= 5 C g S oo = u®)] (o — u(t)) )

where Cp = 0.5 is the drag coefficient (Grinats et al., 2019), p, is the density of the
gas, S is the frontal area of the droplet, and wu, is the speed of the gas at the droplet
boundary. The surface tension force F), resists the droplet motion and is given by

FU=—2bU(COSOR—COSGA) (3)
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Figure 5: (Top) Computed velocity u(t) vs Time (seconds). (Bottom) Computed
displacement or Position (m) vs Time (seconds).

where 2b is the length of the contact line between the droplet and the wafer, and o
is the surface tension coefficient. Windward and leeward contact angles fp = 5° and
04 = 45° are derived from ad-hoc tabulated experimental data for § = 45° (Grinats
et al., 2019). The friction force models loss of kinetic energy due to internal viscous
dissipation and is assumed to be proportional to the droplet velocity u(t), given by

Fy =~z ult). (1)

where p is the viscosity of water. The gravitational force has no component in the
direction of motion and can therefore be neglected. In the above equations, parameters
R, h,b, and S are geometric features of the droplet shape (see Figure 4), which are
computed as

a

= 1 — (tcos0)?(2—cos 0)1/3” (5)
[ - ]
h = R(1 — cosf), (©)
b= Rsin0, )
sin 260
= R0 -5 ®)

2.1.2 Numerical results

The force balance model in Equation (1) is supplied with the droplet initial condition
u(0) = 0 m/s, the air flow velocity with us = 10 m/s (boundary-layer effects are
neglected) and integrated numerically using forward Euler.

In Figure 5, we see that under the influence of air flow, the droplet accelerates fast
within the first 0.5 seconds, reaching a steady speed of 6.3 m/s. The model indicates
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Figure 6: Computed force components Fy(blue), F,;(orange) and F},(yellow).

that after 4 seconds, the droplet has travelled a distance over 20 meters. In Figure
6, the forces acting on the droplet as it moves with the air flow are shown. From the
graph, we can see that the aerodynamic force is big when the droplet is steady due to
the large velocity difference uo, —u(t). The surface tension force F,, remains constant
and, for the current setup, the friction force F), is significantly smaller than F, and
F,.

Comparing the current results to the indicative experimental data from Figure 2, we
find that the force model overestimates droplet velocities by an order of magnitude.
The main culprit behind this overestimation is the uncertainty on the tabulated data
for the contact angle hysteresis cos(6r) —cos(f4). Figure 7 shows the values that this
hysteresis attains for angles between m/4 and 37 /4, indicating that this parameter
directly scales the main resistive force, i.e. the surface tension F,, by several orders of
magnitude. By neglecting the dissipative friction force, which is justified for small u(t),
we can approximate the steady-state velocity U by expressing du/dt = 0, resulting in

4bo (cosOr — cosba)
U= Uy — , 9
\/ Cppg St ©)

which shows the direct dependence of U on uncertain parameters 0 and 64. Note
also that Cp is highly dependent on the droplet shape.

In summary, the current model, despite being computationally inexpensive, is not
suitable for quantitative predictions of droplet velocities. However, there is much
room for improvement. For instance, an essential parameter that is not adequately
modeled in the current approach is the shape of the moving droplet, as evidenced
by the argumentation above. This motivates the development and application of
more advanced models as shown in the following paragraph. The inclusion of shape
parametrizations from more detailed models into the force balance model could lead
to a very computationally efficient model with increased accuracy over the current
one. This is however out of scope of the current investigation and left for future work.
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Figure 7: The function cos(fr) — cos(64) on the domain /4 < 0r,04 < 3 x7/4.

2.2 Navier—Stokes model with lubrication approximation

In this section we present a second model for the motion of the water droplet due
to an air flow. This model is based on the Navier-Stokes equations for the fluid flow
within the water droplet, which we reduce using the lubrication approximation.

2.2.1 Model description

In this section we work in 2D for simplicity, but the same methods extend easily
to 3D. The droplet of water occupies the region between z = h(z,t) (the air-water
interface) and z = 0 (the wafer) in Figure 9. The region z < h(z,t) is occupied by the
air. The droplet shape h is a free boundary to be solved for as part of the solution of
our model. The dimensionless incompressible Navier-Stokes equations for the water
velocity, u, and pressure, p, in h(z,t) < z < 0 are

V-u=0, (10)
Re%—’l: = —Vp+ V?u, (11)

where Re= U,,d/v,, is the Reynolds number of the flow, with d the droplet diameter
and U, a typical water velocity. The overall pressure is P = p — Ca™ 'Boe., so that
the hydrostatic term is absorbed into p in (11). On the z = 0 boundary we have no
slip so that w = 0. On z = h(x,t) we have the boundary conditions
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a(z —h)=0, (12)
[n-on]t = Ca~! (k+ Boh), (13)
it o)t =0, (14)

which are the kinematic condition, and the normal and tangential stress balances
across the interface. Here, x is the dimensionless surface curvature, n and t are unit
normal and tangent vectors to the interface,

Ou;  Ou,
ij = —Pdi; : 2, 1
Oij j+(8xj+8xi> (15)
and
2
Ca= Mwa, Bo = Pugd , (16)
0 0

are the capillary and Bond numbers respectively. In particular, assuming d ~ 10~3m
and U, ~ 10ms~! we expect

Ca =~ 0.1, Bo ~ 0.1. (17)

We assume the air in z < h(z,t) also satisfies the Navier-Stokes equations, although
with much higher Reynolds number, and negligible gravitational force. The water
and air flows are coupled through the force balance boundary conditions (13)-(14) at
z = h. The thesis Fry (2011) is a thorough asymptotic examination of the shearing
interaction between an air flow over a (stationary) droplet on a substrate. In Fry
(2011), the shear effect of the air on the water droplet (sitting n top of the substrate
rather than below) causes its shape to deform, while the droplet in turn causes a
perturbation to the Blasius boundary layer air flow. The two flows are therefore fully
coupled, and the asymptotic approach therefore requires full Triple-Deck theory, with
extensions. Fry (2011) do not consider the movement of droplets across the substrate
due to the air flow, only the deformation of stationary drops.

While the full coupled problem should be considered for more accurate results, for
simplicity in this study group, we assume that the droplet shape has negligible effect
on the air flow, and so only consider the shearing effect of a prescribed air flow on
the droplet. The air flow in the boundary layer is assumed to be linear shear flow
U, = —az, for z < 0, so that the shear stress f = —a is constant, which we assume is
known. Greater values of a > 0 indicate greater velocity air flows.

Lubrication approximation We assume we have a small aspect ratio 6 = [h]/[],
and so make the lubrication approximation:

§<1 Red? < 1 (18)
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to simplify the system (10)-(14). With this assumption we can reduce the problem to
a single equation for the droplet boundary h in terms of the prescribed shear stress

f, namely:
h3 h z A
he = <30& (hoe +Bohx))x - /0 /0 fdsdz | (19)

or, with constant shear f = —a,

h3 ah?
hy = <3Ca (hzaa + BOhx))gC + <2>I (20)

Travelling wave assumption As we have seen in the experimental indicative re-
sults ( Figure 2), and the force balance model (Figure 5), the droplet reaches a
constant velocity almost instantaneously. Hence, we make the assumption that the
droplet has a steady shape and constant velocity U to be determined. That is, we
make the travelling wave Ansatz, changing variables to

E=a—Ut, H(&) = h(x,t).
Thus Equation 20 reduces to the fourth order ODE
H3 aH?
—-UH; = — (H, BoH, — . 21
¢ (303( cee + 05))§+( 5 >£ (21)

Integrating with respect to £, and assuming that the droplet has a finite length, so
that there is a € such that H(£) = 0, we have the third order ODE

o3 aH?
—~UH = — (H, BoH, _ 22
U 3Ca( see + Bollg) + — (22)

Boundary conditions To close the problem (22) for H, we require the four bound-
ary conditions

H(0)=0=H(L), He(0) = — tan(6,) He(L) = tan(fy), (23)

where £ = 0 and L (TBD) are the endpoints of the droplet, and 6; and 65 are the
contact angles at these endpoints respectively. The length L of the droplet is fixed
by prescribing the total droplet volume

L
V= 7/0 H(€)de. (24)

We choose to use the Cox-Voinov model Cox (1986) for the movement of the contact
lines in terms of the contact angles, setting

U=K (65— 6%, U=K 63 —6%), (25)
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where 6 and 64 are the receding and advancing contact angles, respectively, which are
experimentally determined constants for the substrate/fluid/gas combination. Here
K is an order 1 constant. Equations (22)-(25) form a closed system for H(¢),U, L, 64
and 0.

z = h(x,t)

Figure 8: A schematic diagram of the set up in Fry (2011).
z

z = h(z,t)

Figure 9: A schematic diagram of the set up in our problem.

2.2.2 Numerical results

We numerically solve the boundary value problem (22)-(25), in MATLAB, using in-
built solver ‘bvp4c’. We change variables £ = LX in order to solve on the fixed domain
X € [0,1], and write the integral constraint (24) in differential form by introducing
the new variable Y (X), the solution of

Y'(X)=-LH(X), Y (0) =0, Y1) =V, (26)

which we solve simultaneously with (22). We investigate the influence of increasing
the inlet air velocity, which is equivalent in our model to increasing the shear a on
the droplet.

As can be observed in Figure 10, the droplet speed U ~ 0.1, indicating (by our choice
of nondimensionalisation) that the fluid circulation within the droplet is around an
order of magnitude below the droplet speed. Initially the droplet speed varies linearly
with the inlet air velocity, whereas the length of the droplet is largely unaffected.
However, at an air shear stress of more than aqt ~ 4, the droplet length increases
rapidly, while the increase of the droplet speed decreases. At this critical value we
see a dramatic change in the droplet profile: for a,ac.it the droplet shape is slightly
deformed by the air shear, but for a > ac¢ the shape is altered drastically, with a
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Figure 10: The dimensionless droplet speed U (top left), length L (top right), and
profile H(¢) (bottom) of the droplet as shear due to air flow a varies. Here we have
used V=1,Bo=0.1, Ca=0.1, 04 = 0r = w/4, and K = 0.44.

Figure 11: The dimensionless droplet speed U (left), length L (right), as the droplet
volume V varies. Here we have used a« = 2, Bo=0.1, Ca= 0.1, 84 = 0 = w/4, and
K =0.44.
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single drop trailing a long tail. We might expect that such long, thin tails might in
reality break up into smaller droplets, a phenomenon not possible within this model.

We also investigate the effect of droplet volume on velocity. In Figure 11, we show
the droplet lengths and velocities as the droplet volume - or in fact, area, in this 2D
model - for fixed air shear a. We observe a fractional power law relating both U
and V, and L with V, so that droplets with smaller volume travel at much smaller
velocities. This is as expected from the experimental observations in Figure 2.

2.2.3 Summary

The model used in this section includes variations in the droplet shape at a com-
putational cost which is only marginally higher than the force balance model from
Section 2.1. The model may easily be extended to 3D, where a similar equation to
(19) for h may be derived. This model also has the benefit of a systematic derivation
from first principles, and so is expected to be accurate within the correct parameter
regime. However, whether the situation of interest fits within the scope of this model
is another question: in order that (18) hold we may only be able to model relatively
slow air flows; and in particular, it is likely that the droplet shape impacts the air
flow, so that the two flows should be fully coupled as in Fry (2011).

The observations from this model suggest that there exists an optimal inlet air flow
with shear a = act to remove the droplets, maximizing droplet velocities without
causing droplet breakup. It reiterates the requirement of avoiding droplet break-up
at all costs. However, the current model does not allow us to accurately determine
when or how droplet breakup occurs.

The limitations of the current model hence motivate the application of models that
attempt to directly solve the Navier—Stokes governing equations with minimal a priori
approximations. Such models are the subject of the following section.

2.3 Full Navier—Stokes models

In the current section, we use computational fluid dynamics (CFD) models to di-
rectly solve the droplet movement problem with minimal a priori approximations.
The resulting governing equations are the full Navier—Stokes partial differential equa-
tions (PDEs), which are discretized in space and time. Although this PDE approach
increases the overall model fidelity, it does render the current simulations orders of
magnitude more costly than the previous ones based on low-dimensional ODEs. To
reduce the computational cost, the dimensionality of the models will still be reduced
as detailed below. Furthermore, due to the complexity of building Navier—Stokes
solvers from scratch, we resort to using open-source software packages.
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2.3.1 Model description

There is a large body of literature that suggests different approaches to simulate
problems similar to the one considered here, see e.g., Seevaratnam et al. (2010),
Reusken et al. (2015), and Ding and Spelt (2007). First and foremost, the resolution
of the interface between the liquid water phase and the gaseous air phase turns out
to be one of the most challenging aspects.

There are two different approaches how to address this problem, interface-capturing
and interface-tracking simulations. Interface-capturing models incorporate an addi-
tional equation that describes the behaviour of the interface in time. A widely used
interface-capturing model is the volume of fluid method (VOF) (Hirt and Nichols,
1981). The method is based on an indicator function which tracks the fraction of
each respective phase throughout the domain. The interface is understood as dif-
fusive transition between fluid and gas. This manipulation allows approximation of
the discontinuity across the interface with continuous functions. The resolution of
the layer between the two media, however, becomes computationally expensive as its
width decreases. In contrast, interface-tracking simulations refrain from posing an
additional equation to describe the transition between gas and fluid. Instead, they
treat the behaviour of the interface implicitly, see e.g., Reusken et al. (2015). In the
current work, we consider both an interface-capturing approach, for which we use the
OpenFOAM software! in two-dimensional cases, and an interface-tracking approach,
for which we use the NGSolve software? in two- and three-dimensional cases.

Interface-capturing approach using OpenFOAM

In the interface-capturing approach we use a VOF method for free-surface flows (Hirt
and Nichols, 1981). The governing equations are as follows:

0
—gtu + V- (puu) = —Vp+ V- (usym(Vu)) + okVa + pg, (27)
Oa

V-u=0. (29)

In these equations u(x,t) and p(x,t) are the velocity and pressure fields respectively,
and g = —ges is the gravitational acceleration. In the VOF approach, two inmiscible
fluids (i.e. air in the gas phase and water in the liquid phase) are considered as
one effective fluid throughout the simulation domain, the properties of which are
calculated as a weighted average of both phases through the use of an indicator
function a(x,t). This function represents the volume fraction of the liquid water
phase throughout the domain, and hence attains values 0 < o < 1. The density of
the multiphase fluid can hence be expressed as p = apy + (1 — @)pq, with p,, and

Thttps://www.openfoam.com/
2www.ngsolve.org
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pq the density of the liquid water and gaseous air phase respectively. The viscosity
throughout the domain is defined in an analogous way. The surface tension is modeled
as okVa, where o is the surface tension constant, and Kk = —V - % is the curvature
of the water-air interface. Material parameters are summarized above in Table 1.

The system of equations is numerically simulated using the interFoam solver of the
open source OpenFOAM package. The equations are discretized using a second-order
finite volume method. Time integration is performed using a standard explicit Euler
integrator, and pressure-velocity coupling is attained using the PIMPLE algorithm.
Further details on the numerics of interFoam can be found, for instance, in Deshpande
et al. (2012).

Interface-tracking approach: NGSolve

In the interface-tracking approach, we consider a sharp interface model that has been
introduced in Reusken et al. (2015). We recap the most important results in the
three-dimensional setting. The equations shall be understood in two dimensions re-
spectively.

Throughout what follows, we consider a two-phase flow in a prismatic domain Q C R?,
d = 2,3, with liquid and gas medium Q4 (¢), Qa2(t) C Q, respectively (see Figure 12).
The evolving sharp interface between these two components is denoted by I'(t) :=
Q1 (t) N Qa(t). We assume that both Q;(t) and Qa(t) are in contact with a part of
the border, which we refer to as “sliding wall” 9Qs C 9Q. The contact line L(t)
refers to that line where gas, fluid, and 02 intersect. The normals on I' and 02 are
referred to as np and mng, respectively. The propagation of this system in terms of
the unknown velocity u(x,t) and the pressure p(x,t) are specified by the following
system of partial differential equations.

Pi (%—’;—i—u-Vu) =V-o; + pig,

V-u=0, in Q;(t), i=1,2, (30a)
o; = psym(Vu) +p; I,
[enr]=V-or, Vr=wu-nr, [u=0 onT(t), (30b)
{,(fIs :1;‘:):71; 0 on 0€, (30c)
fr = Psortr, inL(t),i=1,2, (30d)
u=0, on dQp. (30e)

Equations (30a) refer to the Navier-Stokes equations and models the flow of Q; (liquid
phase) and Qs (gaseous phase) in the channel. Interface conditions are posed in
Equation 30b, ensuring balancing of the forces on the interface, immiscibility of the
mediums and its no-slip constraint. Here, o = 7(I — npnif) =: 7 Pr refers to the
interface stress tensor, with 7 and V- denoting the surface tension coefficient and the
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Figure 12: Initial configuration of the droplet in the two-dimensional setting.

normal velocity of the interface, respectively. (30c) describes the usual Navier slip
boundary condition on 994 by means of the orthogonal projection Py := I — nsn!
and a prescribed so-called effective wall force fs = —BsPsu. The force balance on
the contact line is enforced by Equation 30d with 7 := ”113;722”, denoting the normal
to L that is tangential to I'. Here, f, = —f.(u - np)ny + 7 cosf.ny, is the effective

contact line force. Homogeneous Dirichlet boundary conditions are prescribed on Qp.

The Navier-Stokes equations are given in Eulerian form, where the fluid particles are
not associated with a finite element grid. The interface particles, however, must be
resolved by the grid and thus, a Lagrangian description form is better suited. This
would lead to mesh distortions as the interface might move in time. One could use
XFEM or CutFem techniques or the Arbitrary Lagrangian Eulerian (ALE) description
form Donea et al. (2004). Therefore, the current configuration €}(¢) is transformed to
a fixed reference configuration, the initial configuration Q := ©(0). With the function

®: O x [0,T] — Q(t) x [0,T], (&, t) = O(z,t) = (d(@),t) = (x, 1), (31)

where d is called the deformation function and its time derivative d := 8;d the mesh
velocity. A function f : Q(t) x [0,7] — R on the current configuration is coupled
with a function f : Q x [0,7] — R by the relation f o ® = f and there hold the
following identities for the derivatives

Vufo®Ved=V;f, (32a)
O oa=0f-vifrd (32b)

where F' := V;d denotes the deformation gradient of d. The deformation d is related
to Equation 30 by d = V1 on the interface I', i.e., we have to extend the deformation
to the domains with an auxiliary Poisson-like problem.

In order to make the above system of equations amenable to finite element discretiza-
tion, we multiply each equation with test functions, integrate over the domain, fol-
lowed by integration by parts and incorporate interface- and boundary conditions to
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arrive at the following weak formulation, see Reusken et al. (2015) for further details:
Findu € V, p € Q, d,d € D such that (for almost all) t € [0,T]

m(d; dyu, v) + c(u — d; u, v) + a(d;u,v) + b(d; v, p) =

fext(d;v) + fr(d;u,v) + fr(d;v), Vv eV, (33)
b(d;u,q) =0, VqeQ,
K(d,w) =0, YweD, (34)

under the constraints that d = Vp on I and d(t) = id+ fot d(s) ds. The corresponding
function spaces are defined by

Vi={ve[HY(Q)]?:v=00n 8, (I - P)v=0o0nd},

Q = L2(Q)7
D :={de[H'(Q)]%:d=0on dQ}.

The bilinear forms read as
m(d;u,v) = / Jpu - vdz,
Q
a(d;u,v) == / Jusym(VuF 1) : sym(VoF 1) + / JBsPyu - Pyvds
Q a9,

+/JBLu~nLodv~nLodd7,
)3

b(v,q) = — /Q J(tr(VoF~1)qdr, c(w,u,v) = /ij(w V)uF~ ! wvdz,

Jext(v) = / Jpg - vdz, fr(u,v) = —/ JrProd: vaFT ds,
a r

fr(v) = cos&c/ Jrv-ngoddy,
i
K(d,w) := / sym(Vd) : sym(Vw) dz.
Q

Here, J denotes, depending on the type of integral, the transformation determinant,
J =detF, J = |cof(F)||, J = |F#||, and F' the Moore-Penrose pseudo inverse.
There holds

cof(F)nr
P I T BT —
- od nrodnrod’, nrod [|cof(F)nr|’
Psod(nrod)

HPS [¢) d(’nr‘ o d)” '

TLLOd:

The solving algorithm for one time step reads: For given d", ci”7 u"
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1. Solve (30) with the old deformation and obtain u"*!

2. Set d"*! = u™*! on I' and extend d™*! to the whole domain by solving a
Poisson problem.

3. Compute d"t! = d" + ("1 — ¢")d"t!

It should be mentioned that this approach cannot handle topological changes to the
computational domain such as would be induced by droplet breakup. When approach-
ing a state where droplet breakup should occur, the simulation becomes more and
more unstable and eventually explodes. As we are explicitly interested in preventing
droplet breakup in the first place, this is not a major concern.

Having this model at hand, we emphasize that discretization of the channel, even in
the two-dimensional case, is computationally expensive, regarding the fact that only
the behaviour of the droplet itself is of interest. To address this difficulty, we omit
discretizing the air flow and instead prescribe the force of the air stream directly
to the droplet in terms of suitable boundary conditions. This elimination of the
exterior domain yields a drastic reduction in degrees of freedoms. An additional
benefit of neglecting the air domain is a significantly higher mesh-quality, since the
moving droplet mesh droplet no longer interacts with the static air domain mesh.
This approach is described more precisely in the following.

Assuming air as a perfect gas, only pressure forces are induced on the interface I' by
the momentum p = p(u - nr)nr and thus, 0., = pI and the right-hand side reads

fext(v)=/Jpg-vdw+/ Jpaintioo - My 0o dv - nr o dds, (35)
Q T

in

where fin denotes the part of the interface where u, - nr < 0, i.e., where the outer
air hits the droplet. The assumption of neglecting all shear forces between the droplet
and the air might be too unrealistic. Thus, via boundary layer theory it is possible
to additionally add a shear force as boundary condition with a term like

1
fshear(v):/JgPFoduw'UdS, (36)
r

where § refers to the boundary layer thickness, which might be defined by § =
(Rejoc) 2, the local Reynolds number between the fluid and the air.

Evidence that this approach is indeed justified, will be given below based on numerical
simulations of the full air and droplet simulations using the interface capturing ap-
proach. In a sense, this is also in line with the literature, where it has been numerically
affirmed that vortices in the airflow appear to have little impact as they primarily
form long time after the air stream impacts the droplet, see e.g., Seevaratnam et al.
(2010).

The governing equations are discretized using the open source finite element packages
NETGEN and NGSolve, see Schéberl (1997) and Schoberl (2014). In all following
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Figure 13: Case setup for 2D droplet simulations.

examples, a Taylor-Hood type pair of ansatz spaces V, C V, Qn C Q is used,
where the pressure is discretized with one polynomial order less than the velocity.
For the deformation space D, C D the same polynomial order as for the velocity
is considered. A first order time-stepping method is used, which treats all arising
terms - except the convection and surface tension term - implicitly. The additional
ALE terms, however, are all treated explicitly in order to avoid the computational
expenses of a non-linear system. We point out, however, that consecutive experiments
shall be understood as guidelines how to simulate problems of this kind. Adaptions
concerning parameters, physical quantities etc. might be reasonable and shall be
adapted for each problem individually. As before, material parameters are described
in Table 1 are used and the friction values in the effective wall and contact line forces
are set as B, = fBs = 0.1.

2.3.2 Numerical Results

We start with some two-dimensional examples in the interface-capturing approach,
modeling the flow in both the air and the droplet. Results are compared with the
observed droplet behaviour previous sections and the idea of unsteady oscillating
airflow is explored. Afterwards, we omit the airflow and focus solely on the droplet
behavior in two and three dimensions using the interface-tracking approach.

Interface-capturing simulations

The two-dimensional case setup for interface-capturing simulations is visualized in
Figure 13. The top wall (i.e. the wafer) is treated with a no-slip condition, whereas
the bottom boundary applies an impermeable free-slip condition. At the inlet, a
uniform (but potentially time-varying) inlet velocity un, () is prescribed, and a zero-
gradient Neumann condition is used as an outflow condition. The shape of the steady
resting water droplet is obtained by initializing a half-circle of radius r = 2 mm at
the top wall, and allowing it to relax by solving Equations (27)—(29) without any
background airflow (i.e. us =0 m/s).
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Figure 14: Snapshots at ¢ = 0.06 s of water fraction « (left) and streamwise velocity
u, (right) for various inlet velocities uqo.

Steady inlet airflow u..(t) Firstly, we discuss the movement of the droplet as it
is exposed to a uniform and steady inlet velocity. We define a total of six cases, i.e.
with us, = 1,5,10,15,20, and 25 m/s.

Figure 14 illustrates snapshots of the water fraction and streamwise velocity for each
value of uy, 60 milliseconds after blowing is initiated. From the figure, it shows
that the shape of and distance traveled by the droplets is highly dependent on .
Furthermore, the developing boundary layer has not yet transitioned to turbulence,
even in the presence of the droplet obstacle.

A quantitative look at droplet movement is provided in Figure 15, where the position
and speed of the droplets leftmost point of attachment to the wafer is plotted. The
figure shows a number of observations. Firstly, it is observed that, for u., = 1 m/s,
there is no net movement of the droplet. Hence, there is a minimum threshold value
for the driving airflow to initiate droplet movement. Second, droplets quickly attain
a more-or-less steady terminal velocity, which increases as u., increases. However,
this increase is not linear, as can for instance be seen from the similar behavior in
the red and purple line at u,, = 15 and 20 m/s respectively. Finally, we see that
for us = 20 and 25 m/s, the leftmost point of the droplet moves backwards first
(negative velocity) before moving forward, which is not observed for any of the other
moving droplet cases. This warrants further investigations into the dynamics of these
cases.
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Figure 15: Position (top) and speed (bottom) of droplets for various inlet velocities
Uso-
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The dynamics of the droplet shape can be further investigated from Figure 16. In this
figure, the droplet shapes are visualized in a moving reference frame at ¢ = 0.03, 0.06,
and 0.09 seconds after the initiation of blowing. Apart from the trivial, non-moving
case at uo, = 1 m/s, three different regimes can be identified. Firstly, for us, = 5 and
10 m/s, we see that the droplet shape does not vary much over time, and resembles
the non-moving droplet shape, albeit with a significant asymmetry in the advancing
and receding contact angles for the 10 m/s case. Secondly, at us, = 15 m/s, damped
oscillatory behavior of the droplet shape occurs at a frequency of f = 10...20 Hz:
initially part of the droplet is lifted from the wafer, then surface tension forces collapse
it back to a flattened and segmented shape, after which part of the droplet is lifted
anew to a lesser extent. This behavior is interesting, as the increase frontal area of
the droplet could be an explanation for its somewhat higher than expected speed
observed in previous paragraph. Third, for u,, = 20 and 25 m/s, the snapshots
indicate a pancake-like squashed structure, similar to the shapes observed for high
Uso 1N Section 2.2, which is subsequently driven by the shear stress with the airflow
at its free surface. It is worth noting that this third regime is characterized by a
fast transient related to the aforementioned negative initial velocity, not observed in
Figure 16. Therefore, Figure 17 illustrates snapshots during the initial shape change
of the droplet for u,, = 25 m/s shortly after the onset of blowing. It can be seen that
the shape dynamics are akin to an aggravated version of the second regime described
above, resulting in the ejection of small water droplets which are barely resolved by
the grid. Shedding of such small droplets is highly undesirable. Similar ejection was
observed in the case of us, = 20 m/s, but not for any of the other cases. The current
observations are consistent with the hypotheses of droplet breakup at higher velocities
in Section 2.2.

Unsteady inlet airflow u..(t) Inspired by the high droplet speeds of the oscillating
droplet shape at u, = 15 m/s (i.e. the second regime discussed above), we attempt
to improve droplet movement by applying an oscillating airflow u(t) at the inlet.
The inlet velocity is varied sinusoidally as us(t) = U+ Asin(27 ft). As we aim to tap
into similar dynamics as observed in the oscillating shape above, we use frequencies
of 10 and 20 Hz. We use amplitudes A of 1 and 5 m/s, as well as an ‘amplitude’ of -5
to assess whether the phase of the sine wave is important. Finally, we limit ourselves
to U = 10 and 15 m/s, as higher mean inlet velocities already break up the droplet
as described above. This results in 12 additional simulations, in addition to the 4
simulations performed in the previous example.

The results of all simulations are summarized in Figure 18 and Table 2, which shows
the droplet position after 100 ms, as well as its average velocity V between 50 and
100 ms. A first observation is that unsteadiness in the inlet can significantly increase
both the droplet velocity, and hence its position after 10 ms, in comparison to the
steady case with the same mean inlet. This can be observed, for instance, for case
(U, f,A) = (10 m/s, 10 Hz, 5 m/s) vs steady U = 10 m/s. However, in these cases,
the droplet still moves slower than in the steady case at the peak inlet value (i.e.
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Figure 16: Droplet shapes in a moving reference frame at t = 0.03,0.06, and 0.09
seconds for each of the steady amplitude cases. Every box has the same width of 2
cm and height of 1 cm.

t=0.011s t=0.012s t=10.013s
0.0100 1.00 — 1.00 1.00
= 0.0075 \ 0.75 0.75 0.75
£
— 0.0050 0.50 0.50 / 0.50
>
0.0025 0.25 0.25 0.25
0.0000
0.00 0.01 0.02 090 400 0.01 0.02 000 500 0.01 0.02 0.00
x [m] x [m] x [m]

Figure 17: Droplet shapes for u., = 25 m/s at ¢ = 0.011 (left), 0.012 (middle), and
0.013 (right) seconds. The arrow in the latter panel indicates the shedding of an small
under-resolved part from the main droplet.
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Figure 18: Droplet position after 100 ms (left) and time-averaged droplet velocity
between 50 ms and 100 ms V (right) for steady and unsteady inlet airflow cases.
Colors depict the amplitudes of the sine waves, and * indicates cases where droplet
breakup is observed.

U = 15 m/s): unsteady blowing does not outperform simply increasing the baseline
inlet airspeed. A second observation is that, for the unsteady cases with U = 15
m/s and A > 0 m/s, instabilities cause the droplet to break up, which is highly
undesirable. This can be omitted by phase-shifting the sine to initially reduce the
airflow, but unfortunately this nullifies the observed increase in droplet movement, as
seen for cases with A < 0 m/s. In summary, for the current set of simulations, droplet
movement cannot be enhanced by unsteady inlet airflow more than by just increasing
the steady inlet airflow. From these results, we can conclude that the superior case,
i.e. with highest droplet velocities without breakup, is at a steady uo, = 15 m/s.

In summary, the 2D interface-capturing simulations seem to show sensible physical
behavior: increasing the background airflow increases the droplet velocity but leads
to breakup above 15 m/s. Unsteady droplet dynamics were observed in response to
the initial onset of blowing. Unsteady blowing to tap into these dynamics however
was unsuccessful based on the current cases. From the current results, blowing with a
steady airflow of 15 m/s yields the maximal droplet velocity without breaking it into
smaller pieces.

Given that current simulations still hold some simplifications, i.e. they are two-
dimensional and spatial resolution is relatively coarse, we further consider the interface-
tracking simulations at higher spatial resolutions in both two and three dimensions
below.

Interface-tracking simulations

In the current simulations, we use the interface-tracking methodology detailed above
to simulate the droplet behavior. As discussed earlier, in contrast to the interface-
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Case Observations

Ulm/s|] f[Hz] A|m/s| | Position [mm] V [mm/s|]  Droplet breakup
10 - 39.8 456 No
10 10 1 42.8 488 No
10 10 5 56.2 616 No
10 10 -5 31.8 448 No
10 20 1 40.6 468 No
10 20 5 46.6 488 No
10 20 -5 41.0 548 No
15 — — 68.6 804 No
15 10 1 66.2 764 Yes, big droplets
15 10 5 74.6 840 Yes, big droplets
15 10 -5 53.8 684 No
15 20 1 65.8 760 Yes, big droplets
15 20 ) 69.4 776 Yes, big droplets
15 20 -5 61.6 752 No
20 - 73.2 892 Yes, small droplets
25 - 90.6 1096 Yes, small droplets

Table 2: Numerical summary of steady and unsteady example cases, with inlet airflow
Uoo(t) = U + Asin(2w ft). Case with highest intact droplet velocities shown in bold.

capturing simulations, we omit the explicit simulation of the airflow and impose the
influence of the air on the droplet as a stress boundary condition. This omission is
justified by earlier observations, see e.g. Figure 14, where flow conditions upstream
of the droplet where found to be laminar and homogeneous.

Two-dimensional droplet without air.  Similar to the first simulations for the
interface-capturing method, here we first consider two dimensional computations for
different inflow velocities. Results can be found in Figure 19. The initial area of the
droplet at t = 0 s is 16 mm?. We observe that the droplet’s velocity is lower than
the one obtained by the interface-tracking OpenFOAM simulations. The reason for
this might be related to 81, as the solution behaves very sensitive to variations in this
friction parameter. Further downstream, the wall would induce a thin boundary layer
for the air, which is not considered here. The shape of the droplet is very stable, also
for high velocities, see Figure 20. An explanation might be the neglected shear forces
between the droplet and the air.

Three-dimensional droplet without air While computations of the full two-
dimensional model (without elimination of the air) are challenging, but still reason-
able, on standard machines, three-dimensional experiments exceed the capacity of
most computers in terms of memory and processing power. Considerations from
above however indicate how the computational expense of the model might be re-
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Figure 19: Positaion and velocity with respect to time for NGSolve example without
air in 2D.

Figure 20: Shape of 2D droplet at t = 0.1 s for us, = 25 m/s.
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Figure 21: Position and velocity with respect to time for NGSolve example without
air in 3D.

duced significantly, while at the same time the accuracy of a three-dimensional model
is preserved. To this end, we consider the three-dimensional droplet model without
the air domain in the same manner as we have done this in the two-dimensional case.

We consider the three-dimensional case, where the initial volume of the droplet at
t = 0 s is given by 3.8 mm>. As shown in Figure 21, its shape deforms less than
in the 2D case, see Figure 19, due to the discrepancy of the volumes. Its position
and velocity with respect to time for different air speeds are illustrated in Figure 21.
We observe lower peak velocities than in the 2D simulation, which we believe to be
mostly caused by the different volumes.

Based on the discrepancy between the interface-capturing and the interface-tracking
simulations, it is evident that the proposed model itself might not be accurate enough
to draw reliable conclusions for real word phenomena. There are several aspects that
need to be taken into account to increase the credibility of the model to a reasonable
level. As indicated by our results, shear forces might have essential impact on the
droplet’s behaviour and should therefore be incorporated. Moreover, the absence of
boundary layers in our simulations might not be realistic enough to match reality.
Together with more sophisticated time-stepping methods, these remarks should be
embraced at the very first to improve the fidelity of consecutive simulations.

3 Discussion

A total of four modeling approaches were introduced in Section 2: a force-balance
model (further denoted as FB), a Navier—Stokes model with the lubrication approxi-
mation (LUB), and two full Navier-Stokes models based on interface-capturing (NS-
IC) and interface-tracking (NS-IT) respectively. In the current section we reiterate
and compare the main findings, capabilities and limitations of these models.
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Figure 22: Shape of 3D droplet at ¢ = 0.05 s for us = 25 m/s.

In terms of computational cost there is a clear distinction between the ODE-based
models FB and LUB on the one hand, and the PDE-based CFD models NS-IC and
NS-IT on the other. Indeed, the former models can easily be run within a timeframe
of seconds, whereas the latter require a timeframe in the order of an hour to run on
a standard workstation. Although full three-dimensional CFD simulations would be
feasible given additional time and parallel resources, within the current work the CFD
models were rendered tractable by limiting the scope to two dimensions (NS-IC) or
omitting the airflow (NS-IT).

A first observation from the flow field obtained from the NS-IC CFD model is that
the air flow field is laminar and homogeneous at the point of interaction between
the air and the droplet. This gives an initial justification for omitting the explicit
detailed modeling of the airflow in LUB and NS-IT. It remains to be mentioned
that further work is necessary to affirm the reliability of this model reduction in a
credible way. Comparisons with high-fidelity three-dimensional CFD computations
that incorporate the air domain as such are required to judge whether the impact of
the elimination process is indeed as neglectable with respect to turbulence as expected
by the heuristics.

A qualitative comparison of the numerical results to indicative outcomes of experi-
mental measurements in Figure 2 clearly showed that the FB model is inaccurate in
the current formulation. This was attributed to the high sensitivity of droplet ve-
locity to the effective shape of the droplet, which is not accurately accounted for in
the FB model. This led to the investigation of models that are closer to the physical
principles based on the Navier—Stokes equations. The LUB, NS-IC, and NS-IT mod-
els each yield droplet velocities within the same order of magnitude for similar input
parameters, and are qualitatively consistent with experimental observations.

An interesting observation found in FB, NS-IC, and NS-IT is that the initial transient
of the steady droplet when first impacted by a steady airflow are very fast: the
terminal droplet velocity is reached soon, and in most cases, the shape of the droplet
remains more or less constant once the droplet is moving. This justifies the traveling-
wave assumption made in the LUB model. Another observation is that, above a
threshold velocity us, = 20 m/s, LUB and NS-IC predict a change in the droplet
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dynamics: part of the droplet is squashed into a very thin layer, which seems related
to the highly undesirable breakup in to smaller droplets. This gives numerical evidence
that simply blowing harder will not yield minimal droplet removal times.

The observation of an oscillating droplet shape in the NS-IC results at us, = 15
m/s motivated the investigation of droplet blowing using sinusoidally varying airflows
with a frequency of 10 and 20 Hz. Although this increased the droplet velocity in
comparison to the steady case, there was no statistically significant improvement over
the steady case with us, = 15 m/s.

Even though qualitative comparison shows similarities between models, Quantitative
comparison of the droplet velocities for the LUB, NS-IC and NS-IT models results
in a significant difference. The LUB and NS-IT model which, in contrast to the
NS-IC model, do not explicitly model the air flow, lead to significantly lower droplet
velocities for similar setups. This indicates that current results and observations are
indicative, and further work is necessary to assess the validity of the models, using
both additional high-fidelity simulations and a dedicated experimental measurement
setup.

4 Conclusion & Recommendation

In response to a problem statement of wafer contamination by VDL ETG, the current
work investigates the modeling of airflow-driven water droplet removal from a flat
wafer surface. Based on the complex flow physics of the problem at hand, a set of
four models was developed, ranging in computational cost, fidelity and complexity.

A qualitative comparison between models yields similar observations. The flow physics
are characterized by fast transients and, above a threshold velocity, droplet shapes
are highly altered and breakup occurs. Based on the current simulations of one of
the CFD models based on an interface-capturing approach, unsteady blowing signifi-
cantly impacts the droplet dynamics, yet for the current parametric study, the highest
droplet velocities are observed for a steady airflow. This is however a first indication
that unsteady blowing could prove favorable.

An important conclusion is that, although the models show qualitative similarities,
attaining quantitative agreement between models is not attempted in this work. This
is partly due to the lack of dedicated experimental data, and various assumptions
and parameters included in the models. In the future, high-fidelity three-dimensional
simulations and detailed controlled experiments should be used to tune the current
models to provide the most reliable predictions possible. This work should be seen
as conceptual guideline how prospective simulations can be performed at reasonable
costs.

In summary, we formulate the main findings of the current work into a set of three
recommendations for future work:
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Firstly, based on observations of the interface-capturing simulations, unsteady dy-
namics at specific frequencies excite specific response modes in the droplet shape that
affect the droplet movement. It would be interesting to investigate droplet behavior
experimentally under similar conditions.

Second, there is a lack of high-fidelity data for the specific task at hand. In that
regard, we recommend a detailed and controlled experimental measurement setup,
complemented with a high-fidelity three-dimensional CFD simulation including the
background airflow for a specific condition, i.e. a specific droplet size with specific
airflow. This will facilitate the validation and tuning of the models presented in this
work.

Finally, we show that accurately modeling the physical behavior of the system is chal-
lenging and high-fidelity simulations of the unsimplified problem is computationally
expensive. In response, we show here a chain of relatively inexpensive models that,
after proper validation, can be used to explore removal strategies at a modest com-
putational cost, e.g. for a variety of droplet sizes, airflow frequencies and amplitudes.
The outcome of this could further guide the design of experimental measurements or
high-fidelity simulations.
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