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A B S T R A C T

Infiltration models are crucial components of rainfall-runoff models based on shallow water equations, combined 
with direct-rainfall for flooding simulations. While the original Horton’s model is frequently used, various 
modifications have been proposed to deal with its limitations for intermittent rainfall patterns. We evaluate two 
modifications, from well-known Storm Water Management Model or SWMM and from Diskin and Nazimov, 
against the original Horton’s model both theoretically and with numerical experiments. We find the formulation 
from Diskin and Nazimov as most suitable for real-world applications. In this paper, we describe an adaptation of 
the Diskin and Nazimov infiltration model through a Surface Detention Box model to integrate it into a shallow 
water equation solver, that accounts for detailed topographic information using a sub-grid approach. The Surface 
Detention Box model in this paper is generalized to account for sources and sinks other than infiltration. We 
verify the efficiency of our implementation for a catchment in Australia with intermittent and extreme rain-
storms. We also demonstrate the accuracy, efficiency and the precise volume conservation of our method for 
high-resolution grids and large computational time steps, enabled by the predictor–corrector solver. In conclu-
sion, we present a robust and efficient scheme for practical flood simulations, including various sources and sinks 
such as rainfall and infiltration. Our approach is a strong foundation for operational flood forecasting with high 
resolution Digital Terrain Models.

1. Introduction

Infiltration is a critical component of rainfall-runoff. Accurate rep-
resentation of infiltration within rainfall-runoff models is paramount for 
reliable surface flood simulations (Gabellani et al., 2008). Urbanization, 
known to reduce infiltration capacity, leads to increased runoff and 
subsequent flooding during rainfall events. This phenomenon has 
prompted the development of concepts like the “sponge city” (Jiang, 
2018; Shun, 2018) and numerous mitigation measures (Pearlmutter, 
2021). Rainfall, land-use, soil texture and soil moisture conditions are 
factors affecting infiltration that vary spatiotemporally. While infiltra-
tion can be simulated by the Richards’ equation (Richards, 1931), it is 
computationally expensive and requires detailed data of soil properties 
that are not readily available for practical modelling activities (Aron, 
1992). Consequently, researchers have developed simplified infiltration 
models for various conditions (Assouline, 2013; Morbidelli et al., 2018).

Large-scale rainfall-runoff models for flood prediction require 

computational efficiency, particularly when implementing direct- 
rainfall or rain-on-grid methods in conjunction with two-dimensional 
shallow water equations (SWE) or their simplified variants (Godara 
et al., 2024) on high resolution digital terrain models (DTM). SCS-CN 
(Soil Conservation Service Curve Number) model, developed by the 
United States Department of Agriculture (Mishra and Singh, 2003), 
Green-Ampt (GA) model (Green and Ampt, 1911) and Horton’s model 
(Horton, 1941), are used quite often by model developers (Aureli et al.,. 
2020; Fernández-Pato et al., 2016; García-Feal et al.,. 2018; Gülbaz 
et al.,. 2020; Parnas et al.,. 2021; Peng et al.,. 2023) and practitioners 
due to their simplicity and established empirical parameters (Gabellani 
et al., 2008; Rawls et al., 1983). The SCS-CN method and Horton’s 
method are widely used for computational efficiency since they do not 
require iterative computations to estimate infiltration rates. The full GA 
model requires iterations that may be avoided by using explicit ap-
proximations (Ni et al., 2020).

In order to estimate infiltration accurately for large scale rainfall- 
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runoff/flooding simulations, the infiltration model should consider a 
couple of conditions: (i) rainfall with multiple peaks and intermittent 
low or dry periods (Bauer, 1974) and (ii) run-on or re-infiltration (Li, 
2022), where infiltration is not only dependent on rainfall but also on 
runoff from adjacent areas. SCS-CN method has limitations to simulate 
these conditions (Michel et al., 2005). Modified Green-Ampt models 
(Chu and Mariño, 2005; Corradini et al.,. 1994) and Fractional Order GA 
model (Fernández-Pato et al., 2018) have been derived to allow simu-
lation of rainstorms with multiple peaks over a longer duration. GA 
model has also been combined with SCS-CN model to estimate runoff (Li 
et al., 2015).

This study starts with Horton’s model (Horton, 1941). It is regularly 
integrated with SWE (Fernández-Pato et al., 2016; Vallés, 2024) but 
suffers from drawbacks related to rainfall with intermittent dry-wet 
periods. Multiple modified Horton models (Aron, 1992; Bauer, 1974; 
Green, 1986; Shao and Baumgartl, 2016; Van Der Molen, 1986; Verma, 
1982; Wang and Chu,. 2020; Yang et al., 2020) have been proposed that 
are more accurate than the classical Horton’s model since the infiltration 
capacity depends on the infiltrated amount of water rather than time 
only. Some versions, such as in SWMM (Rossman, 2015), contain an 
option for the recovery of the infiltration capacity, and have proven to 
be effective in simulating flooding (Fernández-Pato et al., 2016) and 
flood mitigation strategies such as permeable pavement (Song, 2023), 
bioretention basins (Wang et al., 2021) and sponge city characteristics 
(Yang et al., 2023). However, the modified Horton model in SWMM 
requires iterative solutions.

Diskin and Nazimov’s model (Diskin and Nazimov, 1995; Diskin and 
Nazimov, 1996), referred to as DNm here, is based on the principles of 
Horton’s model, as demonstrated in (Diskin and Nazimov, 1995). It has 
been applied in mountainous catchments under various climatic con-
ditions for runoff predictions with hydrological models (Fujimura et al., 
2014; Fujimura et al., 2015) and semi-distributed flash flood models 
(Gabellani et al., 2008). DNm can be considered equivalent to the 
modified Horton model in SWMM since it includes recovery of infiltra-
tion capacity. For rainfall less than the minimum infiltration capacity, 
DNm produces more realistic restoration of infiltration capacity. 
Although modified Horton’s models have been applied to SWE solvers 
(Parnas et al.,. 2021), the DNm formulation has not been integrated to 
2D SWE solvers in current literature, to the best of our knowledge.

To achieve large gains in simulation speed for high resolution 
flooding simulations, sub-grid SWE models have been developed (Bates, 
2000; Casulli, 2009). Sub-grid representation of topography at coarse 
computational grids allows accurate computation of volumes and water 
depths at significantly less computational costs (Stelling, 2012). For 
runoff calculations, we integrate DNm with a highly efficient sub-grid 
SWE-solver with a special approach for thin-layered overland flow on 
slopes (Stelling,. 2022). The integrated formulation with DNm and SWE 
presented here, referred to as DNm-SWE, can be used for watershed 
scale high-resolution simulations with arbitrary rainfall conditions, 
spatial heterogeneity of infiltration including run-on, in a computa-
tionally efficient manner.

The paper is structured as follows:
Section 2 introduces the surface detention box model (SDB) for 

ponding or drying, depending on its sources and sinks. Rain is a source 
term while infiltration acts as a sink term but also evapotranspiration 
(Viessman and Lewis, 2003) can be a sink. SDB is our alternative for the 
“regulating element” of DNm (Diskin and Nazimov, 1995). SDB not only 

improves DNm but also enables smooth integration of infiltration with 
SWE-solvers.

Section 3 compares three Horton parameter-based infiltration 
models (Horton’s model, SWMM, and DNm). We find that from the three 
models, DNm integrated with SDB is the most versatile and efficient 
option for ponding and infiltration simulations.

Section 4 describes DNm integration with a SWE-solver for rainfall- 
runoff. A volume corrector is used with intrinsic flooding and drying 
due to guaranteed positive water depths, regardless the time step size. 
We present rainfall-runoff examples with infiltration, including a real- 
world flooding case.

Section 5 concludes this paper.
Finally, in two brief appendices some aspects of our proposed DNm- 

SWE are mathematically analysed. A third appendix presents an over-
view of the complete method with pseudo code and simple equations for 
a 3 grid-point example.

2. Surface Detention Box Model

In textbooks on hydrology (Viessman and Lewis, 2003), infiltration 

fi(t) is given by fi(t) = min
[
fp(t),R(t)

]
. Where fp(t) denotes infiltration 

capacity [Length/Time] and R(t) the rainfall intensity [Length/Time]. 
For this formulation the infiltration stops as soon as the rain stops. But 
the available amount of water at the surface is the actual source of 
infiltration. Therefore, we have replaced this formulation with a simple 
box model, named: Surface Detention Box model, or SDB shown in 
Fig. 1.

We can derive the following equation: 

dV
dt

= AhR(t) − Ahfi(t),
dV
dt

=
dV
dh

dh
dt

= Ah
dh
dt

⟹
dh
dt

= R(t) − fi(t)
(1) 

where:
V(t) = Ahh(t) is the is the volume of the box (Length3).
h(t) = water depth (Length).
Ah = surface size of box (Length2).

The infiltration fi(t) becomes a function fi
(

fp(t),R(t), h(t)
)

as follows: 

Fig. 1. Schematic of the Surface Detention Box (SDB) to connect infiltration 
models to the dynamic shallow water equation solver.

fi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

fp(t)→R(t) ≥ fp(t)

fp(t)h(t)
max(η, h(t) )→R(t) < fp(t)

⎫
⎪⎪⎬

⎪⎪⎭

= Λ
(

fp(t),Rk
) h(t)fp(t)

max
(

η, hk
)+ Λ

(
R(t), fp(t)

)
fp(t) (2) 
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here η [Length] is a threshold defining an arbitrary small transition layer 

and Λ(x, y) =

{
1, x > y
0, x ≤ y . After substituting Eq. (2) into Eq. (1) we get 

dh
dt

= R(t) − Λ
(

fp(t),R(t)
) h(t)fp(t)

max(η, h(t) ) − Λ
(

R(t), fp(t)
)

fp(t) (3) 

Eq. (3) ensures h(t) > 0, ∀t if and only if h(0) > 0, regardless of infil-
tration or ponding, see in Appendix I.

For small values of η, Eq. (3) is a stiff problem (Lambert, 1999), 
requiring implicit Euler backward time integration: 

hk+1 − hk

Δt
= Rk − fk+1

i

f k+1
i =

(

Λ
(

fk
p ,R

k
) hk+1

max(η, hα)
+ Λ

(
Rk, fk

p

)
)

fk
p hk+1

→hk+1
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hk + Δt
(

Rk − fk
p

)
,Rk ≥ fk

p

hk + ΔtRk

1 + Δtfk
p

/
max(η, hα)

,Rk < fk
p

(4) 

where hk ≈ h(kΔt), Δt is the time step and 
hα = (α+1)hk − αhk− 1,0 ≤ α ≤ 1 . Eq. (4) is consistent with Eq. (3). It 
guarantees positive water depths ∀Δt > 0 and is inspired by (Patankar, 
2018) pp. 145–148 for “always-positive variables”.

Fig. 2 shows a numerical experiment withfp = 40 mm/hr and η =

10− 5 mm, a value used throughout this paper. After 20 min of intense 
rain of 100 mm/hr, it drops to 20 mm/hr, Δt=60 s. Here α = 1, for large 
scale computations we apply α = 0.

Fig. 2 shows that the water in the volume box is rising linearly until 
the rain drops below fp. During rising and falling of the water depth fi =

fp, until the water depth is below η, then we have fi = R as can be 
verified in Fig. 2. Stiff stability of Eq. (4) allows large time steps, while 
positive values for h(t) and hk are an intrinsic quality of both Eq. (3) and 
Eq. (4) without checking hk. In Section 4, we will implement Eq. (4) in 
the “Volume Correction Equation” (VCE) of an SWE-solver.

The formulation described here enables all other sinks, e.g. evapo-
ration, where physical quantities, like volume of water, are required to 

be always positive. The implicit numerical implementation keeps this 
important characteristic ∀Δt > 0. Later in this paper we show that this 
approach is also used for flooding and drying as a built-in characteristic 
of the VCE without checking water depths for positivity.

3. Comparison of Horton based models for time dependent 
infiltration capacity

In Section 2, we introduced SDB with a constant infiltration rate fp. In 
this section, we evaluate three Horton type infiltration models with fp(t)
as a function of time. These models include (a) Horton’s model (Horton, 
1941), (b) SWMM’s modification of Horton (Rossman, 2015), and (c) 
Diskin and Nazimov’s model or DNm (Diskin and Nazimov, 1995).

3.1. Horton’s infiltration model

This model is given by: 

fp(t) = fc +
(
f0 − fc

)
e− κt (5) 

where:
fp = the actual infiltration capacity [Length/Time].
fc = the final infiltration capacity [Length/Time].
f0 = the initial infiltration capacity [Length/Time].
κ = the constant rate of decrease of the infiltration capacity or decay 

coefficient [1/Time].
These parameters depend on the soil type and are derived from 

empirical measurements and calibration. Such values are extensively 
documented in the literature, e.g. (Rossman, 2015).

3.2. SWMM’s modified Horton’s infiltration model

This model is given by: 

fp(t) = fc +
(
f0 − fc

)
e− κtp (6) 

tp is defined by Eq. (7). Horton’s infiltration formula is valid only where 
the actual infiltration is always

equal to the infiltration capacity. In case of thin water layers at the 
surface and rain less than fp, Eq. (5) is not valid. To adjust this, a pseudo 

Fig. 2. Computations of infiltration capacity fp, infiltration fi and ponding water depth h as response to rainfall R for SDB in the Volume Box Experiment; time step 
used is 1 min.
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time tp is introduced as follows: 

∫tp

0

fp(t)dt = fctp +
f0 − fc

κ
(1 − e− κtp ) =

∫t

0fi(t)dt (7) 

where 
∫ tp

0fp(t)dt equals the cumulative infiltration calculated as 
∫t

0fi(t)dt
For explicit values of tp a solution is obtained by iterations (Viessman 

and Lewis, 2003). In SWMM (Rossman, 2015) this model also contains a 
function for recovery of the infiltration capacity once infiltration has 
stopped. The equation used is: 

fr(t) = f0 +
(
fc − f0

)
e− κd(t− tw) (8) 

with
κd = recovery rate,.κd≪ κ
fr = infiltration capacity during recovery.
tw = time factor to ensure continuity of fp and fr at the transition from 

fp to fr.

3.3. Diskin and Nazimov’s infiltration model

DNm consists of 2 components: A regulating element and a storage 
box. We have replaced the regulating element by our SDB, getting the 
boxes B1 and B2, see Fig. 3.

B1 is the SDB described in Section 2. For B2 the following equation 
are applied: 

dz
dt

= fi(t) − fg(t) (9) 

fg(t) = fcz(t)
/

zmax (10) 

fp(t) = fc + (1 − z(t)/zmax )
(
f0 − fc

)
(11) 

where:

zmax = maximum height of B2.
z(t) = water depth in B2, also viewed as moisture content .z(t)/zmax
fg(t) = outflow from B2.
DNm is equivalent to Horton’s model if R(t) > fp(t)∀t and zmax =

f0/κ. DNm can be viewed as a mathematically robust formulation of the 
concepts to improve Horton’s model with respect to recovery of infil-
tration capacity. Our SDB formulation generalises the DNm further to 
incorporate seamlessly change in infiltration capacity due to spatio-
temporally varying rainfall intensity and ponding water depths. For 
detailed analysis see the Appendix II and (Diskin and Nazimov, 1996).

3.4. Numerical implementation of the double box model

The overall numerical scheme consists of two consecutive implicit 
integration steps for B1. The first step is given by Eq. (4). The second 
step, with fk+1

i taken from Eq. (4), reads: 

zk+1 − zk

Δt
+

fc

zmax
zk+1 = fk+1

i (12) 

Eq. (11) can be written as: 

fk+1
p = fc +

(
1 − zk+1/zmax

)(
f0 − fc

)
(13) 

3.5. Comparison of Horton, SWMM and DNm

To illustrate the difference between the three models we conduct 3 
numerical experiments: Experiment 3.I is a simplified experiment, 
without any rain, resembling an infiltrometer (Karahan and Pachepsky, 
2022; Viessman and Lewis, 2003). The water depth is maintained at a 
constant level h > η such that the infiltration is always equal to the 
infiltration capacity. Experiment 3.II explores the difference in decay of 
infiltration capacity for a precipitation curve that is both below and 
above the infiltration capacity. 3.III has two rain peaks within 3 days. 
Both ponding and the development of infiltration capacity is compared.

3.5.1. Experiment 3.I
All the models are equivalent in computing infiltration capacities 

when water level is kept constant without rainfall. See Fig. 4.

3.5.2. Experiment 3.II
This experiment evaluates computed decay and recovery of infil-

tration capacity including ponding for the following parameters f0 =

25cm/hr, fc = 2.5cm/hr, 1/κ = 2hrs. Results are shown in Fig. 5. The 
rain is: 

t ≤ 6Th,R(t) = .5f0exp((t − 3Th)/Th )
2
, Th = 3600 s, t > 6Th,R(t) = 0 

Fig. 5 shows considerable difference between Horton’s model and 
SWMM. Infiltration based on the original Horton model only depends on 
time, a well-known drawback. The differences between SWMM and 
DNm are minor, except DNm does not require non-linear iterations and 
transition checks from decay to recovery or vice versa.

3.5.3. Experiment 3.III
For this experiment we only compare SWMM and DNm. The differ-

ences concern fp(t) during low rainfall, R(t) < fc, where the SWMM re-
covery of fp is conceptually different from DNm.

For SWMM, fp will switch from Eq. (6) to Eq. (8) in case of zero 
infiltration. For Eq. (8) we get lim

t→∞
fr(t) = f0. For DNm a switch is not 

required. Recovery is a built-in characteristic. The recovery limit is 
given by: 

lim
t→∞

fp(t) = (1 − R/fc)f0 + R (14) 

See Appendix II for more details.
Fig. 3. Extension of SDB with a storage box for Diskin and Nazimov 
model (DNm).
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To illustrate the differences, Experiment 3.III has intermittent rain 
peaks, based on Gaussian functions shifted in time but equal to Experi-
ment 3.II, see Fig. 6. We have two rain peaks as follows: 

R1(t) = .5f0exp((t − 15Th)/Th )
2

R2(t) = .5f0exp((t − 39Th)/Th )
2

Th = 3600 s 

For the following intervals: 

0 ≤ t < 15Th,R(t) = max(.5fc,R1(t) )
15Th < t < 18Th,R(t) = R1(t)

18Th ≤ t ≤ 36Th,R(t) = 0 

36Th < t ≤ 39Th,R(t) = R2(t)
39Th < t ≤ 72Th,R(t) = max(.5fc,R2(t) )

Fig. 4. Experiment 3.I, Infiltrometer simulation, all Horton models show the same decay of infiltration capacity.

Fig. 5. Experiment 3.II, Infiltration capacity and ponding compared for 3 different Horton models, basic Horton has no recovery.
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We have chosen a recovery rate κd =
fc
f0 κ. In the first section both models 

tend to their limiting values. For 0 < R < fc SWMM has the same limit fc, 
but takes longer to get there. For R = 0, fp = f0. This is an unrealistic 
discontinuity in contrast to DNm. During the peak rainfall both models 
show ponding. The largest ponding is by SWMM, since it starts at almost 
its minimum infiltration capacity. During the dry interval both models 
recover to almost the same infiltration capacity. SWMM starts recov-
ering a little later, since more ponded water must be infiltrated before 
recovery starts. During the second peak the models behave almost 
equally, like in Fig. 5. Since the infiltration capacities are equal, ponding 
is also equal, see Fig. 6. After the second peak, there is no recovery for 
SWMM and partial recovery for DNM. However, infiltration capacity 
depends on the soil moisture content of soils surface layer. If fi < fc then 
the soil moisture content, z(t)/zmax, will decrease and fp(t) will increase. 
Conceptually, this is more realistic than recovery only during zero 
infiltration.

For implementation in SWE, DNm is the best option among the 
compared methods, due to its simplicity without non-linear equations 
and switches between decay and recovery or vice versa, and its 
conceptually better recovery of fp(t). Moreover, with additional pa-
rameters, Eq. (10) can be modified to change its outcome. For example, 
(Shao and Baumgartl, 2016) presents an algorithm for a modified Hor-
ton model that is essentially a numerical approximation of this paper’s 
Eq. (9) and Eq. (10). The difference is the time integration. We use 
implicit Euler (Lambert, 1999), for robustness in large scale 2D appli-
cations, while (Shao and Baumgartl, 2016) employs explicit Euler. In 
(Shao and Baumgartl, 2016), there is also an algorithm for an “improved 
modified Horton model” that is in essence an adjustment of the Eq. (10). 
Essentially, Eqs. (9)–(11) can be interpreted as a generalised form of 
modified Horton’s infiltration, where other modified Horton’s formu-
lations can be considered special cases of this formulation. This means 
that we consider DNm a versatile starting point for implementation in 
sub-grid 2D SWE solvers, with options for future adjustments.

4. SWE for rainfall-runoff with DNm

We use SWE in this section since for real-world runoff problems in 
domains which have areas where simplifications of SWE, such as kine-
matic wave equations or diffusive wave equations (Chanson, 2004), 

cannot be applied. Examples are: ponds of deep water, rivers or inter-
tidal zones surrounding the area of interest.

4.1. Numerical approximations

The 2D SWE are given by momentum equations in x- and y directions 
and the continuity equation: 

ut + uux + vuy + gζx +
cf

h
u‖u‖ = 0

vt + uvx + vvy + gζy +
cf

h
v‖u‖ = 0

(15) 

ht + (uh)x + (vh)y = R(x, y, t) − fi

(
R, fp, h, η

)
(16) 

where:
u,v(x, y, t) = depth-averaged velocities in x and y direction
g = gravity.
ζ(x, y, t) = water level above the reference plane.
cf = dimensionless bed friction coefficient e.g. cf = g/(Cz)

2,
Cz= Chezy coefficient, Cz is constant or .Cz = h1/6/n
n = Manning coefficient.
e(x, y) = bed level above plane of reference .
h(x, y, t) = water depth,.h(x, y, t) = ζ(x, y, t) − e(x, y)

fi
(

R, fp, h, η
)
= infiltration based on DNm and Eq. (2), parameters 

varying with .x,y, t
R(x, y, t) = spatiotemporal rainfall.
The numerical approximation is based on clustering high resolution 

sub-grids (Stelling, 2012), see Fig. 7. The sub-grid method is highly 
efficient for large scale flooding simulations based on DTMs, as 
described in (Kennedy et al., 2019; Ruheili et al., 2019; Wang et al., 
2014; Hsu et al., 2016). Like any method it has drawbacks requiring 
improvement (Casulli, 2019; Hodges, 2015; Stelling,. 2022). Optimal 
bed friction treatment for sub-grids is described in (Van Ormondt et al., 
2025; Volp et al., 2013). Well-known flood simulators such as HEC-RAS 
(Army Corps, 2025) and TUFLOW (WBM Pty Ltd, 2025) based on SWE 
solutions have incorporated the sub-grid technique (Artiglieri et al., 
2025).

The SWE are discretized by a conservative Finite Volume Method 

Fig. 6. Experiment 3.III, Infiltration capacity and ponding compared for 2 different modified Horton models with an intermittent rain curve.
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(FVM). The grid is a quadtree (Stelling, 2012), with clustered DTM 
pixels as sub-grid, see Fig. 7. The variable grid size Δxl is always an even 
multiple of the pixel size δ of the DTM. The continuity equation is mildly 
non-linear, or piecewise linear (Casulli, 2009). Conservation requires 
Newton iteration (Brugnano and Casulli,. 2008), but we compute only 
the first step of this procedure as a predictor, without iteration. Con-
servation, flooding and drying are an intrinsic part of the corrector 
(Stelling,. 2022). For the semi-implicit time integration, the θ-method is 
applied with explicit wet cross sections as predictor. Momentum 
advection may be locally implicit, utilizing Carlson’s method (Kramer 
and Stelling, 2008; Stelling, 2012). The resulting numerical approxi-
mations are: 

uk+1 − uʹ

Δt
+ gDxζ* + ck

f
uk+1

⃦
⃦uk
⃦
⃦

hk = 0

vk+1 − v́
Δt

+ gDyζ* + ck
f
vk+1

⃦
⃦uk
⃦
⃦

hk = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17) 

Predictor step, for the non-conservative continuity equation for volume 
V, not integrated with SDB: 

Conservative Volume Correction Equation, VCE, integrated with SDB: 

Q*
iV = SmaxV fk

pV

if Qk
RV

≥ Q*
iV then :

Vk+1 − Vk

Δt
+

Vk+1

Vk

∑

∀Q*
O∈V

Q*
O =

∑

∀Q*
+∈V

Vk+1
I

Vk
I

Q*
I + Qk

RV
− Q*

iV

else if Qk
RV

< Q*
iV then :

Vk+1 − Vk

Δt
+

Vk+1

Vk

⎛

⎝
∑

∀Q*
O∈V

Q*
O + Q*

iV

⎞

⎠ =
∑

∀Q*
+
∈V

Vk+1
I

Vk
I

Q*
I + Qk

RV

(19) 

V
(
ζk+1

V
)
= Vk+1 (20) 

The final step of DNm for every volume V we have: 

zk+1
V − zk

V
Δt

+ fcV

zk+1
V

zmaxV

= fk+1
iV

fk+1
iV =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fk
pV
,Rk

V ≥ fk
pV

Vk+1

max
(
ηSmaxV ,Vk

)fk
pV
,Rk

V < fk
pV

(21) 

fk+1
pV

= fcV +

(

1 −
zk+1

V

zmaxV

)(
f0V − fcV

)
(22) 

where:
Dx,yζ = numerical surface gradients.
ck

f = dimensionless bed friction
A = wet cross section facing volume V.
uI = input velocity to volume V that is normal to its face .AI
uO = output velocity of volume V that is normal to its face .AO

Q*
I =Ak

I uk+θ
I

Q*
O=Ak

Ouk+θ
O

θ = weighting factor for implicitness.
uk+θ=(1 − θ)uk + θuk+1

adv(u, v) = advection approximations.

uʹ= uk + Δt
(
βadv

(
uk)+(1 − β)adv(uʹ)

)
,β = min

(

1, 1
Cu

)

, see (Kramer 

and Stelling, 2008; Stelling and Duinmeijer, 2003; Stelling, 2012).
v́  = vk + Δt

(
βadv

(
vk)+ (1 − β

)
adv(v’

))
see u’

Cu = velocity Courant number.
ζk+1

V = water level in volume V
(
ζk+1

V
)

V
(

ζk,k+1
V

)
= piecewise linear volume function (for V at V we omit the 

index V).
VI = volume taken from the up-winded/input direction of uI at cross 

section AI
VO= V, volume taken from the out direction of uO at cross section AO 

is always equal to V
QRV=SmaxV RV

QiV=SmaxV fiV
fik+1

V = actual infiltration  
(

fk+1
iV = Λ

(
fk
pV
,Rk

V

)
Vk+1

max(ηSmaxV Vk)
fk
pV

+ Λ
(

Rk
V , fk

pV

)
fk
pV

)

eV,min = the lowest pixel of V.

Fig. 7. Top view and side view of a staggered quadtree grid with DTM as sub-grid.

Sk
V

(
ζ*

V − ζk
V
)

Δt
−
∑

∀uk
I ∈V

Ak
I u

k+θ
I +

∑

∀uk
o∈V

Ak
ou

k+θ
o = SmaxV

(

Rk
V − min

(
Vk

ΔtSmaxV

+ Rk
V , f

k
PV

))

(18) 
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Fig. 8. Flowchart describing the time integration of the 2D DNm-SWE solver.
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Rk
V = precipitation

SV
(
ζk

V
)
= surface of all wet pixels of volume V with water level ζk

V.
SmaxV = maximum surface of a grid cell with all pixels 

wet
(
SmaxV =

∑
∀δ∈Vδ2)

fcV = the minimum infiltration capacity of volume V.
fk
pV 

= infiltration capacity of volume V.
f0V = the maximum infiltration capacity of volume V.
zV = water depth/moisture content (zV/zmaxV ) of box connected with 

V.
zmaxV = maximum height of storage box connected with volume V.
?* = all symbols marked with an asterisk are predicted values that 

will be corrected.
After elimination of uk+1 from Eq. (18), by substitution of Eq. (17)

into Eq. (18), Eq. (18) is solved by a preconditioned Conjugate Gradient 
method (Golub and Van Loan, 2013). Eq. (19) is strictly conservative 
and is linear, solved very efficiently by Gauss Seidel’s method (Stelling, 
2022; Varga, 2000). Eq. (19) yields implicit correction factors Vk+1/Vk 

for the cross sections Ak
I,O, ensuring Vk+1 > 0 and hk+1

V =

ζk+1
V − eV,min > 0, ∀Δt > 0. Eq. (20) defines the value of ζk+1

V . V is a table 
function (Stelling, 2012), that determines ζk+1

V by a local linear equation. 
Smooth flooding and drying are guaranteed ∀Δt > 0 without checking 
cells for drying. The method is robust and suitable for different flow 
conditions, including rapidly varied flows (Kramer and Stelling, 2008; 
Stelling and Duinmeijer, 2003). The time integration with DNm-SWE 
sub-grid solver is summarised in Fig. 8. Appendix III shows, step-by- 
step, an implementation of the Eqs. (17)–(22) for 3 volumes.

4.2. 2D Real-World example

The DNm-SWE model is applied to a catchment in New South Wales, 
Australia to assess its computational ability with different rainfall forc-
ing on heterogenous surface conditions to validate its applicability for 
real-world use. The Upper Parramatta River catchment (Fig. 9) is 

approximately 110 square kilometres and located upstream of Sydney 
between 150◦ 54.25′ E and 151◦ 3.41′ E longitudes and 33◦ 50.70′ S and 
33◦ 43.71′ S. It contains the watershed for the river Parramatta that 
flows into Sydney Harbor. The city of Parramatta lies within the 
catchment. The catchment faces flood risk due to rainfall, since rainfall 
often exceeds 200 mm in 72 h (Parramatta and Sydney, 2024) and 
therefore has an operational flood warning system in this catchment 
maintained by the City of Parramatta Council (Flood Warning Service | 
City of Parramatta, 2024). The area is densely urbanized near the river 
but also contains vegetated areas.

4.2.1. Model data and setup
The DTM for the Upper Parramatta River Catchment is from the 

Geoscience Australia (Geoscience Australia Portal, 2024) at a resolution 
of 1× 1m2. The altitudes vary between 191 m and − 9 m Australian 
Height Datum (AHD), see Fig. 9. The terrain profile near the riverbanks 
is flat with a slope less than 1 % but is surrounded by hilly terrain and 
creeks where some slopes are steeper with 3 % in some areas. The 
catchment outlet point in this model is just south of the Charles Street 
Weir, outside the intertidal zone. This makes the model convenient for 
rainfall-runoff simulation as the flooding is purely driven by rainfall- 
runoff.

Rainfall intensities every 5 min are obtained from the Bureau of 
Meteorology Australia (Water Data Online: Water Information: Bureau 
of Meteorology, 2024) from six stations in and around the Upper Par-
ramatta River catchment (Fig. 9). Water level observations at three 
stations along the Parramatta River are available from the WaterNSW 
portal (WaterInsights - WaterNSW, 2024). The gauge locations are 
shown in Fig. 8.

Land use data is available on the Geoscience Australia portal (Portal, 
2024) from a couple of sources– (a) the Digital Earth Australia Land-
cover layer which is derived from the Landsat satellite observations at 
30 m resolution and (b) Catchment Scale Land Use 2020. Based on these 
datasets, the primary land use categories in the catchment are dense 
urban (~17 %), mixed urban including urban bushlands and parks (~58 

Fig. 9. Digital Terrain Model (DTM), Water Level Gauges and Rainfall Gauges for the Upper Parramatta River Catchment model domain and the location of Par-
ramatta River in New South Wales Australia overlaid on OpenStreetMap©.
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%), forest, reserved parks and wetlands (~19 %), natural water courses 
(~2%), transportation network (~1%) and bare ground (~1%). These 
land cover categories are used to define the Manning’s friction co-
efficients between 0.02 and 0.2 across the domain (Fig. 10a).

Soil type data is obtained from the NSW Soil and Land Information 

Portal (Australian Soil Classification, 2024) which contains the different 
soil type contours according to the Australian Soil Classes (ASC). 
Another source of information about the soil groups is from the Global 
Hydrologic Soil Group dataset at 250 m resolution (Ross et al., 2018). 
According to these datasets, some areas have Calcerous sand and Allu-
vial Light sand (~4%) and Heavy Alluvial Soil (~15 %). Majority of the 
area has Brown Podzolic Soils (~60 %) and the remaining areas have 
Alpine Humus Soil, Solodic Soil, Soloth soils. In terms of Hydrologic Soil 
Groups (HSG) classes the catchment mainly has HSG-C/D and HSG-D/D 
soil types, and some HSG-C and HSG-D type of soil – which indicates less 
than 50 % sand everywhere. These soil types are overlaid with the land 
use information to create 5 classes of Horton’s parameters in the model 
(see Table 1). They are categorized as sandy with forest and other 
vegetation (class ‘a’), alluvial soil with mixed land use (class ‘b’), clayey 
or loamy soil with mixed land use (class ‘c’), clayey soil with high runoff 
potential (class ‘d’) and impervious zones (class ‘e’). The spatial distri-
bution of these classes is shown in Fig. 10b. The parameters used for this 
model represent realistic heterogeneity of the surface to demonstrate, 

Fig. 10. Spatial Distribution of (a) Manning’s Roughness Coefficients [top] and (b) Horton’s infiltration model parameters [bottom] across the model domain used in 
the computational model setup.

Table 1 
Infiltration parameters for DNm applied in the computational model setup for 
Upper Parramatta.

Class Maximum 
Infiltration 
Capacity (mm/ 
hr)

Minimum 
Infiltration 
Capacity 
(mm/hr)

Decay 
coefficient 
(1/hr)

Percentage 
area of model 
domain

a 120.0 6.5 3 4.05 %
b 50.0 2.5 3 15.70 %
c 20.0 1.0 3 58.70 %
d 5.0 1.0 3 4.96 %
e 0 0 0 18 %
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without calibration, the capability of our DNm-SWE.

4.2.2. Synthetic event
Here we apply synthetic intermittent rainfall during 24 h over the 

entire catchment. The rainfall curve has 3 peaks of 50 mm/hr, each peak 
sustained for 2 h. For each rain event the rainfall intensity increases from 
0 mm/hr to 50 mm/hr in 30 min and decrease from 50 mm/hr to 0 mm/ 
hr in 30 min.

To demonstrate the recovery of infiltration capacity during periods 
of no rainfall, the first dry period between the first and second rainfall 
peaks is 2 h and the second dry period between second and third rainfall 
peak is 9 h. To test the effect of computational grid sizes on runoff and 
infiltration and find appropriate balance between accuracy and 
computational speed, quadtree grids with two levels are applied, where 
a refinement is used in the flood plain zone of the Parramatta River.

The DNm-SWE model has been implemented in Fortran incorpo-
rating OpenMP directives to enable multi-core shared memory parallel 
execution and was compiled with the Intel Fortran Compiler v2020.9. 
The simulations for Upper Parramatta River Catchment case were 

performed on an AMD Ryzen Threadripper PRO 5995WX CPU with 64 
cores.

Simulations of different models, varying by grid size and timestep 
were conducted to evaluate the sensitivity of runoff and infiltration rate. 
Infiltration calculations are stable for different computational grids 
(Fig. 11a) and for timesteps ranging from 10 s to 300 s (Fig. 11b). The 
total infiltration 

∑
fi is also stable for each timestep across the model 

domain, indicating the robustness of the SDB formulation for DNm.
The hydrographs show slight variations in terms of the phase and the 

peaks, see Fig. 12a. This is particularly the case for the rising limbs of the 
hydrographs, especially visible when the 4 m uniform grid results are 
compared to the other quadtree grid configuration results. The finest 
grid results in delays of ± 30 min in the runoff peaks compared to the 
quadtree grids. Hence, it is recommended to determine a suitable 
computational grid resolution that offers a balance between accuracy 
and computational efficiency based on a convergence test. In this case, it 
seems that the quadtree, with an 8 m fine grid and 16 m coarse grid, 
offers that optimum, see Table 2. The computational time can vary be-
tween 2 h and 15 min to 13 s without affecting volume conservation. 

Fig. 11. Sensitivity of computed infiltration to (a) computational grid size [top] and (b) computational time step [bottom].
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This is owed to the sub-grid method combined with the volume 
correction equation in Eq. (19). The computational speeds demonstrate 
the efficiency of the predictor–corrector approach over Newton type 
iterations for non-linear solutions resulting from sub-grid methods for 
SWE (Stelling,. 2022; Brugnano and Casulli,. 2008; Casulli, 2019). The 

volumes are conserved due to the volume correction equation, but there 
can be runoff inaccuracies, due to a large time step of 300 s, see Fig. 12b. 
Therefore, a timestep of 60 s has been chosen for the remaining 
simulations.

Fig. 12. Sensitivity of runoff computations to (a) computational grid size [top] and (b) computational time step [bottom].

Table 2 
Summary of simulations with different computational grids and timesteps in terms of volume error and computational time.

Grid Type Grid Size Time step Total number of timesteps Computational Grid Points Computational Time Volume Balance Error (m3)

Uniform 4 m x 4 m 60 s 1440 7,155,445 2 h and 15 min 1.4 x 10-5

Quadtree 4 m x 4 m and 8 m x 8 m 60 s 1440 2,413,036 20 min and 31 s 5.6 x 10-5

Quadtree 16 m x 16 m and 32 m x 32 m 60 s 1440 152,637 46 s 6.9 x 10-7

Quadtree 32 m x 32 m and 64 m x 64 m 60 s 1440 38,773 13 s 1.1 x 10-6

Quadtree 8 m x 8 m and 16 m x 16 m 60 s 1440 606,102 3 min and 42 s 2.1 x 10-5

Quadtree 8 m x 8 m and 16 m x 16 m 10 s 8640 606,102 12 min and 31 s 2.1 x 10-5

Quadtree 8 m x 8 m and 16 m x 16 m 30 s 2880 606,102 5 min and 24 s 2.0 x 10-5

Quadtree 8 m x 8 m and 16 m x 16 m 100 s 864 606,102 2 min and 35 s 2.1 x 10-5

Quadtree 8 m x 8 m and 16 m x 16 m 300 s 288 606,102 2 min and 29 s 2.2 x 10-5
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Fig. 13. Simulated Water levels with or without infiltration compared with measurements during February 8 and 9, 2020 at (a) Oakes Road [top], (b) Redbank Road 
[middle] and (c) Riverside Theatre [bottom] stations.
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4.2.3. Historical event
To evaluate the effect of infiltration using DNm-SWE, we simulated a 

historical rainfall event from February 2020 when about 281 mm rain 
fell into the catchment within 48 h. The rainfall data from the rain 
gauges (Fig. 8), were interpolated using Ordinary Kriging method with 
Gaussian variogram (Kumar Adhikary et al., 2016) using the PyKrige 
python package (PyKrige — PyKrige 1.7.2 documentation, 2024) across 
the entire catchment and directly applied as inflow into every compu-
tational grid. The model was applied in two modes: (i) assuming an 
entire impervious domain and (ii) applying Hortons parameters with 
DNm. The 48-hour simulation takes around 8 min to complete in both 
modes. Notably, inclusion of infiltration does not result in increased 
computational times. The simulated water levels are compared with 
observed water levels and shown in Fig. 13. With infiltration the simu-
lated water levels upstream at Oakes Road (Fig. 13a), show a better fit to 
the observations than results without infiltration. Infiltration is more 
dominant in the less urbanized areas upstream. Riverside Theatre 
(Fig. 13c), which is located at the catchment outlet near Charles Street 
Weir, is the least sensitive to infiltration. In terms of goodness of fit 
measures, such as Peak Error (PE), Root Mean Square Error (RMSE), 
Nash Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta 
Efficiency (KGE) (Gupta and Kling, 2011), there are mixed results 
(Table 3). The improvement with infiltration is more noticeable during 
the first rainfall interval during February 8 event when the infiltration 
capacity is higher because of antecedent dry conditions, the low rain 
period between the events and the rising limb due to the February 9 
rainfall event.

Despite achieving reasonable fit with observations (with NSE > 0.86 
and KGE > 0.83 across the 3 stations) we emphasize that the model 
parameters are not calibrated. This is visible in the upstream station at 
Oakes Road (Fig. 13a) where the peak error is more than 0.46 m and in 
Redbank Road (Fig. 13b) where inclusion of infiltration increases RMSE 
from 0.23 m to 0.36 m and NSE and KGE are reduced. Water levels are 
locally affected by nearby control structures. There are 190 hydraulic 
structures, including weirs and bridges, along the Parramatta River and 
in the surrounding urban drainage system (Stantec Australia Pty Ltd, 
2024) that influence both water levels in the river and discharges into 
the river. Although the structures have an impact on the water levels at 
Oakes Road and Redbank Road, we have not included them in the 
current model setup in the absence of detailed data. The intention of this 
paper is to demonstrate the effectiveness of the DNm-SWE scheme and 
the impact of spatiotemporal infiltration rather than the development of 
a fully calibrated and validated model ready for operational use. It can 
be a topic of future study. A high-resolution flood map with water depths 
is greater than 4 cm at 1 m x 1 m, that was generated by the present 
model configuration is shown in Fig. 14 to illustrate its capability. The 
runoff from the slopes transfers the water into the river streams, where 
the maximum water depths occur. The elevated areas become dry 
shortly after the rain stops, and recovery of infiltration capacity begins 
immediately after the precipitation ends.

4.2.4. Extreme event
Usually when conducting simulations with extreme rainfall scenarios 

for flood risk assessment, the surfaces are often considered impervious. 
However, recent studies (Li, 2022) indicate that the inclusion of dy-
namic infiltration in hydrodynamic models is important even in flood 
simulations with extreme events. Here, we consider a 1 in 100 return 
period 9-hour rainstorm applied across the catchment with 371 mm of 
rain in 9 h, see Fig. 15. We simulate for 16 h using the same model 
configuration as described in Section 4.2.2.

Simulated outflow hydrographs show that there is a delay of 40 min 
in peak runoff when infiltration is considered in comparison to the sit-
uation where infiltration is ignored with a 15.5 % decrease in the peak 
runoff (Fig. 15). Ignoring infiltration reduces the flood extent and there 
are significant differences for simulated water depths (Fig. 16). The 

Table 3 
Summary of goodness of fit metrics in different locations with and without 
infiltration.

Location Peak Error RMSE NSE KGE

With infiltration Riverside Theatre 0.07 m 0.26 m 0.93 0.92
Redbank Road 0.05 m 0.36 m 0.86 0.84
Oakes Road 0.42 m 0.46 m 0.93 0.85

Without infiltration Riverside Theatre 0.12 m 0.25 m 0.93 0.96
Redbank Road 0.10 m 0.23 m 0.94 0.86
Oakes Road 0.30 m 0.78 m 0.82 0.78

Fig. 14. Simulated flood map with maximum water depths during the February 9, 2020 event.
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Fig. 15. Simulated runoff from the catchment with and without DNm for infiltration for 1 in 100 year event.

Fig. 16. Comparison of maximum flood water depths with and without infiltration for the 1 in 100 rainfall event.
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maximum flood maps show significant differences in the distribution of 
water depths in the flooded areas, particularly surfaces where infiltra-
tion is present in the low-lying urban park areas, also along the river and 
the waterways, where water depths simulated without infiltration can 
be higher by 1 m (Fig. 16). In many urban street areas and other de-
pressions in the terrain where water depths are less than 0.25 m without 
infiltration, inclusion of infiltration reduces flooding. Since the SDB 
based approach accounts for both rainfall intensity and water depth on 
the surface – which depends on run-on, it implicitly considers re- 
infiltration.

The DNm-SWE model can simulate spatiotemporal infiltration and 
re-infiltration quite efficiently for this extreme event; within 3 min with 
a single hydrodynamic model framework, unlike other approaches 
which require coupling between hydrologic and hydrodynamic models 
(Li, 2022). The SDB implementation of DNm can be easily extended to 
include other processes such as evapotranspiration avoiding restrictions 
faced by other implementations (Parnas et al., 2021).

5. Conclusions

In this paper, we started with a novel approach for infiltration that 
we called Surface Detention Box or SDB. This approach considers not 
only rain and the infiltration capacity, but also the level of the ponded 
water. In essence, infiltration depends primarily on the water depth at 
the surface, while this water depth depends on rain input, infiltration 
capacity and runoff.

Next three infiltration models, all based on Horton’s parameters, 
were compared. If rain is always larger than the infiltration capacity, 
then they are all equal. The original Horton’s model is insensitive to the 
actual amount of infiltration. This deficiency is adjusted for by the 
“modified Horton method”. However, there is a deficiency that remains 
in this model, during rain less than fc, the infiltration capacity will 
converge to fc regardless how small the rainfall is, except for zero rain. 
This gives an unrealistic discontinuity. For R< fc, DNm converges to a 
weighted value between f0 and fc and depends continuously on R. 
Therefore, this is more realistic. Recovery of infiltration capacity is an 
intrinsic property of DNm which follows a time scale according to κd =

κfc/f0, which can easily be adjusted to a different time scale. Moreover, 
time integration in DNm is simple and fully linear without the need for 
iterations. Therefore, this method is our preferred method of Horton 
parameter-based methods. We have provided both a theoretical analysis 
and some numerical examples to demonstrate the advantage of DNm for 
practical infiltration modelling. As noted in literature (Parnas et al.,. 
2021), Horton-based methods do not incorporate the effects of evapo-
transpiration in the regeneration of soil moisture, limiting their appli-
cability for long-term simulations. In contrast, our double-box model 
approach enables the straightforward integration of additional pro-
cesses, such as evapotranspiration, providing greater flexibility for 

extended simulations.
We have implemented DNm as part of a sub-grid algorithm to solve 

SWE. The algorithm has a corrector that ensures strictly positive water 
depths ∀Δt > 0. This enables flooding and drying automatically, which 
is very valuable for modelling runoff on slopes with infiltration.

We apply the DNm-SWE sub-grid model to the Upper Parramatta 
River catchment for different rainfall scenarios – synthetic intermittent, 
historical and extreme events. The numerical simulation results show 
that the model remains computationally efficient and robust under 
diverse rainfall conditions with spatially varying Horton’s infiltration 
parameters. Simulations of infiltration have an impact on flood extents, 
runoff and water depths distributions. Quantitatively, the model could 
be improved by incorporating hydraulic structures and drainage systems 
of the urban catchments combined with calibration. However, the pri-
mary objective of this paper is to demonstrate a fast and robust approach 
for 2D rainfall-runoff simulations with detailed DTMs including infil-
tration. The approach provides a solid foundation for real-time flood 
predictions, flood risk assessment and evaluation of flood mitigation 
measures at catchment scale in high-resolution.
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Appendix A 

We illustrate the behaviour of water depths in SDB with analytical solutions for constant values of R(t) and fp(t), R and fp. With t0 = 0, we get the 
following solutions for 3 cases: 

CaseI : R ≥ fp,
dh
dt

= R − fp→h(t) = h(0) +
(

R − fp

)
t (A.1) 
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CaseII : R < fp ; h(0) ≥ η

→h(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h(0) +
(

R − fp

)
t, t ≤ t’, h(t’) = η

(

η −
R
fp

η
)

e−
fp
η (t− t’)

+
R
fp

η, t > t’

(A.2) 

CaseIII : R < fp, h(0) < η→h(t) =

(

h(0) −
R
fp

η
)

e−
fp
η t

+
R
fp

η (A.3) 

Case I will give a constant water depth if R = fp, or a linearly rising water level if R > fp, while fi(t) = fp , for Case II, the water level will drop at a speed 
ht = R − fp, while as soon as h(t) < η then this depth will converge rapidly to R

fp η, due to the very short time scale of fp/η. In Case II, this rapid 

convergence starts immediately. Substitution into (2) gives convergence of the infiltration rate: fi(t) = R
fp η fp

η = R.
In summary, for Case I, the infiltration is given by the infiltration capacity, fi = fp, while in Case II, the infiltration is given by fi = fp, if h(t) ≥ η, and 

converges almost immediately to fi = R, if h(t) < η.

To estimate the time scale of fp/η, we take fp = 100
[

mm
hr

]
, R = 50

[
mm
hr

]
and η = 10− 2[mm]. So fp/η = 10− 4

[
1
hr

]

= 1/Tscale or .Tscale = 0.36 [s]

Appendix B 

Here we show the equivalence of DNm with Horton for R(t) > fp(t)∀t, i.e. fi = fp. Then Eqs. (9)–(11) becomes: 

dz
dt

=

(

1 −
z

zmax

)

f0 (B.1) 

z(0) = 0→z(t) = zmax

⎛

⎜
⎝1 − e−

f0
zmax

t

⎞

⎟
⎠ =

f0

κ
(1 − e− κt), κ =

f0

zmax
(B.2) 

Substituting Eq. (10) and Eq. (B.2) into fp(t) = dz
dt + fg(t), we get Eq. (5) again.

This means DNm is equivalent to Horton’s model if R(t) > fp(t)∀t and zmax = f0/κ. See also (Li et al., 2015) .
Next, we analyse the recovery of infiltration capacity. We assume that recovery starts if the infiltration into the sub-surface box is less than fc, often 

defined as the hydraulic conductivity of saturated soil. For this purpose, we choose R = αfc,0 ≤ α ≤ 1. This implies that fi = αfc. Eq. (9) and Eq. (10)
become 

dz
dt

+
fc

zmax
z = αfc, z(tr) = zmax (B.3) 

Where we have assumed that at a moment in time, given by tr, that recovery of infiltration capacity starts, we have fp = fc. The solution of (B.3) reads: 

z(t) = αzmax + (1 − α)zmaxe
−

fc
zmax

(t− tr) (B.4) 

Substitution of Eq. (B.4) into Eq. (11) yields: 

fr(t) = αfc + (1 − α)f0 +
(
fc − f0

)

⎛

⎜
⎝(1 − α)e−

fc
zmax

(t− tr)

⎞

⎟
⎠ (B.5) 

For α = 0 we get Eq. (8) with κd =
fc

zmax
=

fc
f0 κ. Since fc≪f0; this seems to be a reasonable assumption. This is an inherent characteristic of DNm. If 

required, we can explicitly define other recovery time scales with the specification of an additional parameter and an adjustment of Eq. (10), based on 
the criterium fi < fc. Another aspect of Eq. (B.5) is that for low steady precipitation with, R ≤ fc→0 ≤ α ≤ 1, the infiltration capacity for t→∞ will be a 
weighted average between fc and f0 given by: 

Lim
t→∞

fp(t) = (1 − R/fc)f0 + R (B.6) 

Hence, for DNm recovery of infiltration capacity depends continuously on R < fc.
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Appendix C

Fig. 3.1. 1D example of 3 volumes with sub-grid

Consider a simple 1D sub-grid, see Fig. 3.1. For this grid we describe the solution procedure based on Eqs. (17)–(22) via the steps A to H. First 
initialize all the variables at t = 0. Then compute the time steps from k = 1 until k = T/Δtas follows:

A: Compute wet cross sections (Stelling,. 2022), bottom friction coefficients, and advection terms (Kramer and Stelling, 2008) then, based on Eq. 
(17) assemble the coefficients of the momentum equations: 

A :

{
uk+1
− = ck

−

(
ζ*

V− 1 − ζ*
V
)
+ Dʹ

−

uk+1
+ = ck

+

(
ζ*

V − ζ*
V+1
)
+ Dʹ

+

where: 

ck
− ,+ = gΔt

/(
Δx
(

1 + Δtck
f− ,+

⃦
⃦
⃦uk

− ,+

⃦
⃦
⃦

/
hk
− ,+

))
,

D−́ ,+ = u−́ ,+/
(

1+Δtck
f− ,+

⃦
⃦
⃦uk

− ,+

⃦
⃦
⃦/hk

− ,+

)
, u−́ ,+ includes advection, (Kramer and Stelling, 2008).

B: Compute the coefficients of the prediction/continuity equation, Eq. (18): 

B :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ak
V− 1ζ*

V− 1 + Ak
− uk+1

− = Ck
V− 1

ak
Vζ*

V − Ak
− uk+1

− + Ak
+uk+1

+ = Ck
V

ak
V+1ζ*

V+1 − Ak
+uk+1

+ = Ck
V+1 

where: 

ak
V+n =

Sk
V+n

Δt
,

Ck
V+n = Sk

V+n
ζk

V+n

Δt
+ SV+n,max

(

Rk
V − min

(
Vk

ΔtSmaxV+n

+ Rk
V+n, f

k
PV+n

))

n = − 1,0, 1 

C: Substitute A into B to eliminate uk+1
− and uk+1

+ from B to get C: 

C :

⎡

⎢
⎢
⎢
⎣

ak
V− 1 + Ak

− ck
− − Ak

− ck
− 0

− Ak
− ck

− ak
V + Ak

− ck
− + Ak

+ck
+

− Ak
+ck

+

0 − Ak
+ck

+
ak

V+1 + Ak
+ck

+

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ζ*
V− 1

ζ*
V

ζ*
V+1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

Ck
V− 1 − bk

− Dʹ
−

Ck
V + bk

− Dʹ
− − bk

+Dʹ
+

Ck
V+1 + bk

+Dʹ
+

⎤

⎥
⎥
⎥
⎦

Solve C, a symmetric and positive definite system, with preconditioned CG (Golub and Van Loan, 2013), then substitute 
(
ζ*

V− 1, ζ*
V , ζ

*
V+1
)

into A to 
compute uk+1

− ,+, Q*
− ,+

D: Assemble the volume correction equation based on Eq. (19), while assuminguk+1
− ,+ > 0 (that implies that for Volume V: uk+1

− = uk+1
I(nput) and uk+1

+ =

uk+1
O(utput)) to obtain: 
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D :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Δt

+
Q*

− + Q
*

iV− 1

Vk
V− 1

00
Q*

−

Vk
V− 1

1
Δt

+
Q*

+ + Q
*

iV
Vk 00

Q*
−

Vk
1
Δt

+
Q

*

iV+1

Vk
V+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Vk+1
V− 1

Vk+1

Vk+1
V+1

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vk
V− 1
Δt

+ Qk
RV− 1

− Q*
iV− 1

Vk

Δt
+ Qk

RV
− Q*

iV

Vk
V+1

Δt
+ Qk

RV+1
− Q*

iV+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where: 

Q*
iV+n

=

⎧
⎪⎨

⎪⎩

SV+n,maxfk
pV+n

,Rk
V+n ≥ fk

pV+n

0,Rk
V+n < fk

pV+n

Q
*

iV =

⎧
⎪⎨

⎪⎩

0,Rk
V+n ≥ fk

pV+n

SV+n,maxfk
pV+n

,Rk
V+n < fk

pV+n 

Q*
iV+n 

and Q
*
iV 

are the actual implementation of the SDB in the Volume Correction Equation.
D implies a diagonally dominant matrix, to be solved efficiently by Gauss-Seidel’s method (Varga, 2000), with iterations in alternating sweep 

directions. For a strictly lower diagonal matrix this method gets the solution in one sweep. Due to our assumption of velocities all in the same direction, 
the solution of our example is as follows: 

Vk+1
V− 1 =

Vk
V− 1 + Δt

(
Qk

RV− 1
− Q*

iV− 1

)

1 + Δt
(

Q*
+ + Q

*

iV− 1

)/
Vk

V− 1

Vk+1 =
Vk + Δt

(
Q*

− Vk+1
V− 1

/
Vk

V− 1 + Qk
RV

− Q*
iV

)

1 + Δt
(

Q*
+ + Q

*

iV

)/
Vk

Vk+1
V+1 =

Vk
V+1 + Δt

(
Q*

+Vk+1
/

Vk + Qk
RV+1

− Q*
iV+1

)

1 + ΔtQ
*

iV− 1

/
Vk

V+1 

Note that all nominators and denominators are positive. That means that all volumes and water depths are positive as well. This observation holds also 
for Eq. (19) in general (Stelling,. 2022).

E: compute ζk+1
V+n, n = − 1, 0,1 from Eq. (20) via a look up table.

F: compute zk+1
V+n, n = − 1, 0,1 from Eq. (21)

F : zk+1
V+n =

zk
V+n + Δtfi

k+1
V+n

1 + ΔtfcV+nzk+1
V+n
/
zmaxV+n

, fi
k+1
V+n =

⎧
⎨

⎩

fk
pV+n

,Rk
V+n ≥ fk

pV+n

f k
pV+n

Vk+1
V+n

/
Vk

V+n,R
k
V+n < fk

pV+n

; n = − 1, 0,1 

G: compute fk
pV+n

, n = − 1, 0,1 from Eq. (22)

H : fp
k+1
V+n = fcV+n +

(

1 −
zk+1

V+n

zmaxV+n

)
(
f0V+n − fcV+n

)
, n = − 1,0, 1 

H: if k equals T/Δt then stop, else update all variables with index k and go to A

Data availability

The authors do not have permission to share data.
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