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The dissolution of a disk-likeAl2Cuparticle is considered. A characteristic prop-
erty is that initially the particle has a nonsmooth boundary. The mathematical model
of this dissolution process contains a description of the particle interface, of which
the position varies in time. Such a model is called a Stefan problem. It is impossi-
ble to obtain an analytical solution for a general two-dimensional Stefan problem,
so we use the finite element method to solve this problem numerically. First, we
apply a classical moving mesh method. Computations show that after some time
steps the predicted particle interface becomes very unrealistic. Therefore, we derive
a new method for the displacement of the free boundary based on the balance of
atoms. This method leads to good results, also, for nonsmooth boundaries. Some nu-
merical experiments are given for the dissolution of anAl2Cu particle in anAl–Cu
alloy. c© 1998 Academic Press
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1. INTRODUCTION

Heat treatment of metals is often necessary to optimise their mechanical properties both
for further processing and for final use. During the heat treatment, the metallurgical state of
the material changes. This change can either involve the phases being present or the mor-
phology of the various phases. Whereas the equilibrium phases often can be predicted quite
accurately from thermodynamic models, there are no general models for microstructural
changes nor general models for the kinetics of these changes. In the latter cases both the
initial morphology and the transformation mechanisms have to be specified explicitly. One
of these processes, which is both of large industrial and scientific interest and amenable to
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modelling, is the dissolution of second phase particles in a matrix with a uniform initial
composition.

To describe this particle dissolution in rigid media several physical models have been
developed, incorporating the effects of long-distance diffusion [3, 21, 28] and nonequilib-
rium conditions at the interface [1, 13]. The long-distance diffusion models imply that the
processes at the interface between particle and matrix proceed infinitely fast. Therefore,
these models provide an upper bound for the dissolution rate.

Whelan [28] considered particles dissolving in an infinite medium using the stationary
interface approximation. He derived an analytical solution of the diffusion equation in an
infinite medium for spherical co-ordinates by the use of the Laplace transformation in time.
The accuracy of the model increases with increasing interparticle distance.

All references discussed below transform the cell in which the particle dissolves into a cell
which is equally shaped as the particle, requiring the transformed cell volume to be equal to
the original cell volume. This allows a one-dimensional treatment of the moving boundary
problem which can be solved easily using a finite difference discretization method. This
method can be used for planar, cylindrical, and spherical geometry.

Baty, Tanzilli, and Heckel [3] were the first authors to apply a numerical method using a
finite difference method to evaluate the interface position as a function of dissolution time.
Their model is also applicable to situations in which the interparticle distance is small,
i.e. when soft impingement occurs. The model they proposed is based on the assumption
of local equilibrium at all stages of the dissolution process. They applied their numerical
analysis to dissolvingAl2Cu particles in aluminum. In their models theAl2Cu particles
were assumed to be spherical. The poor fit of their calculations with the experimental data
is probably due to the interface reactions or to the nonspherical shape of the regular particles
which were not incorporated into their numerical model.

Tundal and Ryum [21] considered the effects of a finite cell size for spherical particles as
well. They too applied a numerical method using a finite difference method to predict the
dissolution kinetics. Their model is based on the assumption of local equilibrium during the
entire dissolution process. They introduced a log-normal distribution for both the particle
and cell size (i.e., the logarithm of the size is distributed according to a normal distribution).
They showed that macroscopic dissolution rates depend strongly on the shape of the particle
size distribution curve and possible interactions between the neighbouring cells.

Nolfi’s model [13] did not include the interface migration, but as far as we know, it is
the first model which incorporated nonequilibrium conditions at the interface. In the Nolfi
model nonequilibrium conditions at the interface were incorporated by the introduction
of a Robbins condition which relates the concentration gradient with the concentration at
the interface. This semi-analytical solution consists of an infinite series solution for the
concentration profile. Their method, however, is only accurate in the early stages of the
dissolution process.

Aaron and Kotler [1] incorporated the nonequilibrium conditions at the interface too.
However, their approach is only applicable for those situations in which the interparticle
distance is sufficiently large, i.e. the diffusion fields do not impinge. They transformed the
Robbins problem of Nolfi into a Dirichlet problem, in which the concentration is fixed
at all stages of the dissolution process. Combining Whelan’s [28] analytical approach for
the interface velocity as a function of the annealing time, with a relation between the
interface concentration and the interface position, they evaluated the interface position
using a Picard-type iteration method. Aaron and Kotler also incorporated the effects of
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the particle curvature into their model using the Gibbs–Thomson equation [1]. In their
model both the interface position and the interface concentration were taken momentarily
stationary during the evaluation of the interface position as a function of time.

The effects of interfacial reactions on the rate of the dissolution of spherical particles in
both infinite and finite media was examined by Vermolen and Van der Zwaag numerically
[23]. Using a finite difference method it was shown that interfacial reactions can have a
significant effect on the dissolution rate and, hence, on the concentration profiles in the
matrix during particle dissolution.

Due to the difference in the crystal structures of the particle and its surroundings the
total surface energy may be minimal for a disk-like geometry. Hence, an algorithm capable
of solving two-dimensional moving boundary problems is desired. In the present work
we introduce a general algorithm that can be used to solve two-dimensional problems.
It is based on the application of the finite element method on two-dimensional moving
boundary problems. A reason to use finite elements is that it allows the use of unstructured
grids. Hence the finite element method is more flexible than other discretization methods
using structured grids only. Especially in moving boundary problems as the ones that will
be demonstrated in the remainder of this paper, unstructured grids are essential.

Before we derive our numerical algorithm, we present the mathematical model in Sec-
tion 2. Actually, it turns out that this is a standard Stefan problem [4, 19, 25, 26]. We repeat
the derivation of the Stefan condition at the free boundary, since this derivation is needed
to improve the numerical method. In Section 3 we specify a numerical scheme to solve the
Stefan problem. It will be shown that straightforward discretization of the equations and
boundary conditions may lead to unrealistic interfaces. These problems are investigated
and a new algorithm (Section 4) which produces nice results is presented. This improved
algorithm is based on the derivation of the Stefan boundary condition. Section 5 contains
some details of our remeshing techniques. In Section 6 results of the new algorithm ap-
plied to some practical problems will be demonstrated. The conclusions are formulated in
Section 7.

2. A MATHEMATICAL MODEL FOR A DISSOLUTION PROCESS

Consider anAl2Cuparticle in anAl–Cualloy at a given temperature. The initial concen-
tration of Al2Cu in the aluminum phase is equal toc0 (mol/m3), whereascpart denotes the
concentration ofAl2Cu in the particle. When the temperature is increased, dissolution of
theAl2Cuparticle sets in. At the interface theAl2Cuconcentration iscsol (cpart > csol > c0).

To describe the mathematical model we use the geometry as given in Fig. 1. The domain
filled with aluminum is denoted byÄ(t). The boundary of this domain consists of the
interfaceS(t) and the outer boundaries0i , i ∈ {1, 2, 3, 4}. The outer boundaries are fixed
in time, except the intersections of01 and04 with S(t). In the aluminum-rich phaseÄ(t),
theCuconcentrationc(x, y, t) satisfies the diffusion equation

∂c

∂t
= D1c, (x, y) ∈ Ä(t), t ∈ (0, T ]. (1)

The diffusion coefficientD (m2/s) is supposed to be independent of concentration. As the
initial condition we use

c(x, y, 0) = c0(x, y), (x, y) ∈ Ä(0), (2)
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FIG. 1. Geometry of anAl2Cuparticle in aluminum.

whereÄ(0) is prescribed. We assume no flux ofCu through the outer boundaries, so

∂c

∂n
(x, y, t) = 0, (x, y) ∈ 0i , i ∈ {1, 2, 3, 4}, t ∈ [0, T ]. (3)

At the interface the concentration satisfies the equation

c(x, y, t) = csol, (x, y) ∈ S(t), t ∈ (0, T ]. (4)

To determine the position of the interface one extra condition is necessary. To derive this
boundary condition for a spatially three-dimensional problem, we consider a small part
of the interface. Suppose that the interface is smooth, which means that it can locally
be described by differentiable functions. For a small time step1t the interface moves in
the direction perpendicular to the interface. Thex-axis is chosen along the normal. With
this choice the position of the interface is locally described by the relationx = S(t). We
consider a control volume of width1y and1z. The intersection of the control volume with
the surfacey = 0, z = 0 is shown in Fig. 2. The balance ofCuatoms leads to the following
equation:

(S(t + 1t) − S(t))1y1zcsol = (S(t + 1t) − S(t))1y1zcpart − D ∂c

∂x
1y1z1t. (5)

FIG. 2. The control volume.
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Dividing (5) by1y1z1t and taking the limit1t → 0, one obtains

(cpart − csol)
dS

dt
= D

∂c

∂x
.

So the extra boundary condition at the interface is

(cpart − csol)vn(x, y, t) = D
∂c

∂n
(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ], (6)

wheren is the unit normal vector on the interface pointing outward with respect toÄ(t)
andvn is the normal velocity of the interface. The moving boundary problem given by (1),
(2), (3), (4), and (6) is known as a Stefan problem [4].

The normalised concentration̂c = (c − c0)/(csol − c0), together with a characteristic
length scaleL and time scaleL2/D, is used to make the problem dimensionless. After
replacingĉ by c we obtain the following Stefan problem: find a concentrationc and an
interfaceSsuch that

∂c

∂t
= 1c, (x, y) ∈ Ä(t), t ∈ (0, T ], (7)

c(x, y, 0) = 0, (x, y) ∈ Ä(0), (8)

∂c

∂n
(x, y, t) = 0, (x, y) ∈ 0i , i ∈ {1, 2, 3, 4}, t ∈ [0, T ], (9)

c(x, y, t) = 1, (x, y) ∈ S(t), t ∈ (0, T ], (10)

vn(x, y, t) = λ
∂c

∂n
(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ], (11)

where the dimensionless numberλ is given by

λ = cpart − c0

cpart − csol
. (12)

An extensive review of literature on Stefan problems is given in [20]. This bibliography
contains 2500 titles on moving boundary problems. In [16] a recent overview is given of
numerical methods to simulate convection/diffusion phase change problems.

3. SOLUTION OF THE STEFAN PROBLEM

Various numerical methods are known to solve Stefan problems. In Crank [4] the fol-
lowing types of method are distinguished: front-tracking, front-fixing, and fixed-domain
methods. In a front-fixing method a transformation to body-fitted curvilinear coordinates
is used (a special case is the isotherm migration method (IMM)). A drawback is that such
a transformation can only be used for a relatively simple geometry. Fixed-domain methods
are the enthalpy method (EM) and the variational inequality method (VI). Various methods
are compared in [5, 27]. The latter methods (IMM, EM, VI) are only applicable when the
interface is an equi-concentration line. In the near future we want to simulate also disso-
lution processes with a varying concentration on the interface (e.g., first-order reaction at
the interface [23], or dissolution in ternary Al-alloys [22]). Therefore, we choose a front-
tracking method to solve our problem numerically, although the current problem can also
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be solved by other methods (IMM, EM, VI). The front-tracking method we apply is a two-
dimensional extension of the method of Murray and Landis [12] as described in [10, 11, 17,
27]. A detailed description of the adaptation of the interface in time is lacking in most of
the literature on front-tracking methods, except [10]. We present various methods for this
adaptation in this section and Section 4.

Our method to solve the Stefan problem runs as follows. In the first time-step the diffusion
equation (7), together with the initial (8) and boundary conditions (9) and (10), is solved.
On the free boundarySonly the Dirichlet condition (10) is used. In the next time steps first
the boundary is moved using the boundary condition (11). This means that the co-ordinates
of the free surface at timet + 1t are approximated by

x(t + 1t) = x(t) + vn1t n = x(t) + λ
∂c

∂n
1t n. (13)

Once the boundary is moved, the concentrationccan be computed in the new region using
Eq. (7). However, the computation of the concentration implies that we have to compute
(c(t+1t)−c(t))/1t . We do not knowc(t) in the nodal points since, due to the displacement
of the boundary also, all nodes have been moved [2]. So either we have to interpolate the
concentration to the new nodes, or we have to make a correction for the displacement.
Interpolation is of course possible, but relatively expensive. The correction is much more
simple. If we compute the time-derivative based on the old and the new points, then it is
clear that we actually use a material derivative,

Dc

Dt
= ∂c

∂t
+ umesh· ∇c, (14)

where the so-called mesh velocity is defined by

umesh= x(t + 1t) − x(t)

1t
, (15)

with x the co-ordinate vector in a point. Substituting Eq. (14) into Eq. (7) leads to

Dc

Dt
− 1c − umesh· ∇c = 0. (16)

This approach is common practice in fluid mechanics, where it is known as the arbitrary
Lagrangian Eulerian approach (ALE) (see, for example, [6, 7, 8, 9, 15]).

The discretization of Eq. (16) is performed by a standard Galerkin finite element method
using linear triangles. The time-discretization is performed by an implicit Euler method.

ALGORITHM 1. A straightforward method to compute the new position of the free bound-
ary: Compute the gradient of the concentration in the elements connected to the free bound-
ary. Compute the gradient of the concentration and the normal in the vertices at the free
boundary by averaging over neighbouring elements. Compute∂c/∂n in the vertices by the
inner product of the gradient and the normal vector. Apply formula (13) to compute the new
positions of the vertices.

Initially the normal of the interface is not defined in the middle point ofS (see Fig. 1),
where the boundary has a corner of 90◦. Note that in fact the normal is not defined in vertices
at the boundary unless the two surrounding line elements have the same direction. For that
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FIG. 3. Free boundary in the first 10 time steps.

reason the outward normal in a vertex point is defined as the normalized mean value of the
normals at the two line elements adjacent to that point. Using this definition of the normal
vector, the displacement of the vertices of the boundary can immediately be deducted from
Eq. (13).

A different way of computing the normal in the vertices is presented by Lynch [10].
He proposes to take a weighted average of the surrounding normals, where the weights
are defined by the length of the adjacent boundary elements. A clear disadvantage of this
approach is that the normal depends on the local grid size. For example, if at a 90◦ corner
the mesh size at one side is larger than at the other one, the normal will not be defined under
an angle of 45◦ as in our method.

Figure 3 shows the computed free boundary during the first 10 time steps. The corre-
sponding mesh is shown in Fig. 4. It is clear that in the middle point of the free boundary,
where we start with the 90◦ corner, the free boundary moves more slowly than in the other
points. However, from the physical point of view one would expect this point to move faster
than the surrounding points. To investigate this strange behaviour we consider the artificial
case where all the equi-concentration lines are parallel to the free boundary. Figure 5 shows

FIG. 4. The mesh used.
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FIG. 5. Assumed position of free boundary in case of parallel concentration lines.

the boundary (solid line) and one such a concentration line. The dashed line denotes the
new position of the free boundary, one would intuitively expect, after one time step1t = 1
with the parameterλ equal to 1. Let the difference in concentration between free boundary
and the plotted equi-concentration line be equal to1c. Let the distance between the points
x andx′ be equal to1x. Then the value of∂c/∂n is approximately1c/1x. However, the
distance between the pointsy andy′ is equal to

√
21x. Hence, along the linex′′, x′ the value

of ∂c/∂n is approximately1c/
√

21x. Since the average normal is equal ton = (
√

2/2)(
1
1)

this implies that the free boundary in the pointy does not move toy′′, but only to the point
precisely in the middle ofy andy′′. The reason for this inconsistency is, in fact, that the
Stefan boundary condition is derived under the assumption of a smooth boundary. In the
case of a nondifferentiable boundary, the limit does not exist and only the integral form (5)
of the Stefan boundary condition makes sense.

A natural solution of the problem mentioned above is not to use the gradient and the
normal in the vertices, but only those in the mid-side points of the elements. Since the
gradient of the concentration is constant per triangle, the value of both the normal and
the normal derivative in these mid-side points is unique. So one can compute the displace-
ment of the mid-side points by Eq. (13). The only remaining problem is to define how the
vertices must be moved. An obvious choice is to choose the new positions of the vertices
right in the middle of the new positions of the mid-side points. This method is denoted as
Algorithm 2 .

Computations show a very smooth progress of the free boundary. There is one serious
drawback in this method. Suppose that none of the mid-side points are moved, for example
becauseλ = 0. In that case one would expect that the vertices also will be kept at their
old positions. However, after the first time step the vertex corresponding to the 90◦ corner
has been moved inwardly. In the next step an extra smoothing is applied and if this process
is repeated we end up with a straight line. For an initial corner larger than 180◦, the boundary
even moves into the wrong direction. So we are looking for a method that keeps the vertices
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FIG. 6. Free boundary in the first 10 time steps computed by the “weak approach.”

fixed as long as the mid-side points do not move, but also lacks the behaviour shown in
Fig. 3. In the next section we will introduce such a method.

Before considering our new method we consider a variant of a method proposed by
Lynch [10]. Lynch suggests using a weighted average method to compute the position of
the new boundary. However, for an equidistant mesh size along the boundaries his method is
identical to our Algorithm 1 and for nonequidistant mesh sizes it is even worse. Nevertheless,
his derivation, based on a weak formulation of the Stefan condition (11), inspired us to use
a Galerkin approximation of Eq. (11). The idea is that this is more an integral approach than
a differential approach. The Galerkin formulation of Eq. (11) is given by∫

S
vnφ d0 =

∫
S
λ

∂c

∂n
φ d0, (17)

with φ an arbitrary test function. Exact integration of Eq. (17) leads to a tridiagonal system
of equations, where the matrix to be inverted is the standard mass matrix along the free
boundary. Lumping of this matrix reduced this method to Algorithm 1. Figure 6 shows the
free boundary during the first 10 time steps, using the consistent mass matrix. Indeed the
boundary is better than the one shown in Fig. 3, but still the corner problem is visible.

4. A NEW METHOD TO COMPUTE THE FREE BOUNDARY POSITION

Before deriving our new approach for the computation of the free boundary, we first
formulate two demands a good numerical method should satisfy:

• Let1x be a measure for the displacement of the boundary. It is necessary that1x → 0
when1t → 0.

• Suppose that the corner between two adjacent elements at the moving boundary, mea-
sured with respect to the dissolving material, is equal toα. If α < 180◦ then one expects
that this corner increases as soon as the material dissolves. The reason for such a behaviour
is that in the case of a straight boundary, diffusion can take place in one direction only,
whereas in a corner, diffusion is possible in various directions. So a numerical method
should satisfy this property too.
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FIG. 7. Area occupied by the region defined by the displacement of the vertex.

It is clear that the methods mentioned in Section 3 do not fulfil these two demands at the
same time. Algorithm 1 does not satisfy the second demand, whereas Algorithm 2 does not
fulfil the first demand. We propose the following method.

ALGORITHM 3. Improved scheme for the computation of the free boundary. Compute
the gradient of the concentration in the elements connected to the free boundary. Compute
∂c/∂n in the mid-side points of the elements at the free boundary, by the inner product of
the gradient and the normal vector. Apply formula (13) to compute the new positions of
the mid-side points. Define the new positions of the vertices along the normal, in such a
way that, the area occupied by the region defined by the displacement of the vertex and its
surrounding mid-side points (Fig. 7) is equal to the mean value of the areas defined by the
displacement of both mid-side points (Fig. 8).

This method combines the smoothing properties of Algorithm 2 with the nondisplacement
of the vertex in case the mid-side points remain unchanged. The motivation for this approach
is the following. From the derivation of the Stefan boundary condition it follows that the
area of the particle that has been dissolved is equal to the amount of diffused material. The
flux through the element (xi −1, xi ) is approximately equal to

D
∂c

∂n
(xi −1/2)l i 1t, (18)

FIG. 8. Area occupied by the region defined by the displacement of both mid-side points.
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with l i the length of the line element (xi −1, xi ). Hence, the amount of diffused material
through the boundary (xi −1/2, xi +1/2) is equal to

1t

2

(
D

∂c

∂n
(xi −1/2)l i + D ∂c

∂n
(xi +1/2)l i +1

)
. (19)

The amountM of material dissolved, is approximately equal to (cpart − csol)O, whereO
is the area defined in Fig. 7. Due to the balance of atomsM must be equal to the amount
of diffused material given in Eq. (19). Making this equation dimensionless this is equal to
(see (12))

O = λ1t

2

(
∂c

∂n
(xi −1/2)l i + ∂c

∂n
(xi +1/2)l i +1

)
. (20)

The right-hand side of (20) is the mean value of the areas defined in Fig. 8.
There is a drawback of Algorithm 3, which can be explained as follows. Once the dis-

placement of the vertices has been computed by means of Algorithm 3, the mid-side points
are moved to new positions, since they are always in the middle of two vertices. As a con-
sequence the amount of dissolved material is no longer equal toM . If we want to have a
displacement which gives an amount of dissolved material that is exactly equal toM , the
situation is more complex. Consider two adjacent line elements (xi −1, xi ), and (xi , xi +1),
with length l i and l i +1, respectively (Fig. 7). The mid-side points of these elements are
denoted byxi −1/2 andxi +1/2. Let the displacement in the mid-side points computed from
formula (13) be equal toδxi −1/2 andδxi +1/2. The new position of vertexxi is denoted by
x̂i . The length of the displacement is given as1xi = ‖x̂i − xi ‖. Once the displacement in
the vertices is computed, also the displacements in the mid-side points change. In order to
get both a local and global equilibrium in the amount of dissolved material, it is necessary
that the new area be equal to

1

2
l i δxi −1/2 + 1

2
l i +1δxi +1/2. (21)

The areaO depends on1xi , 1xi −1/2 and1xi +1/2, where1xi −1/2 is the adapted length
of the displacement inxi −1/2. Since1xi −1/2 and1xi +1/2 depend on1xi −1, 1xi , and1xi +1

the relation is nonlinear. In order to solve this system of nonlinear equations we propose
the following algorithm.

ALGORITHM 4. “Exact” satisfaction of balance between dissolution and diffusion.

for all i do
Compute1xi from δxi −1/2 andδxi +1/2 according toAlgorithm 3.
x̂i = xi + 1xi ni .

end for
while not convergeddo

for all i do
x̂i −1/2 = 1

2(x̂i −1 + x̂i ).

Compute1xi from Algorithm 3using the areas occupied by the known
quadrilaterals(xi −1/2, xi , x̂i , x̂i −1/2) and(xi +1/2, xi , x̂i , x̂i +1/2).

x̂i = x̂i + ω(xi + 1xi ni − x̂i ).

end for
end while
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FIG. 9. Free boundary during the first 10 time-steps using Algorithm 3.

Numerical experiments showed that, in the case of a relaxation parameterω = 1,
Algorithm 4 did not converge. The free surface switched between two states for successive
iterations. This behaviour is caused by an overestimation of the correction in each iteration.
To solve this problem an underrelaxation factorω < 1 has been tried. Practical computa-
tions show that the iteration process is rather insensitive for the value of theω. Forω = 0.5
we usually got convergence within five iterations. The process is stopped as soon as the
difference between the area due to the mid-side displacements, as defined in Eq. (19) and
the final area is less than 1%.

From Figs. 9 and 10 it appears that, especially during the first time-steps, the results from
Algorithm 3 and Algorithm 4 are quite different. In order to compare the accuracy of both
algorithms we halved the space-step (Figs. 11 and 12). It is clear from these figures, that the
boundary of Algorithm 3 is unacceptable, whereas that of Algorithm 4 seems reasonably
good. The reason for this strange behaviour is that the new positions of the two mid-side
points around the sharp corner are very close to the linex = y (Fig. 13). As a consequence
the first estimate is very inaccurate. Iteration as used in Algorithm 4, however, is able to
solve this problem nicely. If we enlarge the time-step, the displacement of the mid-side

FIG. 10. Free boundary during the first 10 time-steps using Algorithm 4.
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FIG. 11. Free boundary during the first time-step using Algorithm 3, mesh-size has been halved.

FIG. 12. Free boundary during the first 10 time-steps using Algorithm 4, mesh-size has been halved.

FIG. 13. Displacement of the mid-side points is too close to the linex = y.
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FIG. 14. Free boundary during the first 10 even time-steps using Algorithm 3; mesh-size and time-step have
been halved.

points may even cross the linex = y. In that case both algorithms fail, since they produce
a negative displacement for the vertex aty = x.

This implies that when the space-step is reduced, one also has to decrease the time-step.
Figures 14 and 15 show the free boundaries for the finer mesh with the halved time-step. The
boundaries are plotted at the same time-levels as the ones in Figs. 9 and 10. Further halving
of the space- and time-steps leads to nice pictures for Algorithm 4. However, Algorithm 3
again produces in the first time-step a free boundary like the one depicted in Fig. 11.

5. REMARKS CONCERNING THE MESH GENERATION DURING TIME-STEPPING

At the start of the computation a mesh is generated using the initial boundary. In each time-
step the boundary is updated according to one of the given algorithms. The free boundary
itself consists of a number of curves (in the previous example 2 curves) and each curve at
the free boundary is approximated by a spline. The number of nodes is not changed. The
nodes along the splines are distributed in such a way that local refinement in the initial
free boundary is kept. Hence, the relative distribution of nodes along the initial boundary is

FIG. 15. Free boundary during the first 10 even time-steps using Algorithm 4; mesh-size and time-step have
been halved.
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FIG. 16. Free boundary without re-meshing.

maintained during the whole process. Once the boundary is changed, the mesh is updated.
In the first instance all points in the mesh are repositioned by taking the mean value of the
coordinates of neighbouring nodes. This averaging process is performed in a number of
steps in a Gauss–Seidel-like procedure.

When the mesh is created, the quality of the mesh and the distances at the free boundary
are checked. If the angles of the triangles in the new mesh are too large, or if the distances
between nodes at the free boundary differ too much from the original distances, the mesh
is completely regenerated. In that case also the nodes at the free boundary are recomputed
and the number of nodes at this boundary may be changed. After that, the just computed
solution is interpolated to the new mesh.

If we do not re-mesh the elements in the neighbourhood of the free boundary become very
distorted. Figure 16 shows a part of the mesh att = 60 s, when no re-meshing is applied.
Due to the large distortions, the derivatives of the concentration along the free boundary are
very inaccurate and the free boundary has an unnatural shape. For that reason re-meshing
has been applied. Figure 17 shows the same part of the mesh att = 60 s as before, and it
is clear that the boundary is much more realistic.

In Fig. 18 the position and velocity of the free boundary versus time is given. The points
considered are the singular point and the intersection of the free boundary with a fixed

FIG. 17. Free boundary with re-meshing.



                

16 SEGAL, VUIK, AND VERMOLEN

FIG. 18. Position and velocity of the singular point (———) and the intersection of the free boundary with
a fixed boundary (. . .).

boundary. Re-meshing occurs at 22, 35.5, and 55.5 s. Note that at these times small bumps
appear in the velocity graphs.

The interpolation used is not conservative and mass may be created or lost. Indeed the mass
before and after interpolation (only used when re-meshing is applied) differs somewhat but
in our computations it is less than 0.2%. A more accurate approach would be, for example,
an L2-projection. However, even in 1D such a projection is quite complex due to the fact
that basis functions defined over elements in the new mesh are discontinuous in the old
mesh. See, for example, [14] for a discussion on this subject.

Although our interpolation technique is not the most sophisticated one, still the previous
results show that re-meshing is a necessary option once the mesh is largely deformed.

6. NUMERICAL EXPERIMENTS

An algorithm has been developed, suitable for use to investigate the dissolution kinetics
for a two-dimensional case. This algorithm has been implemented in our finite element code
SEPRAN [18]. One of the goals of the algorithm is to determine the dissolution kinetics
of disk-like particles. Before two-dimensional problems are considered, we compare the
outcomes of our algorithm to a one-dimensional axi-symmetric problem. Numerical experi-
ments show that the differences between the results obtained from the one-dimensional finite
difference method [23] and the two-dimensional finite element method are very small. Disk-
like particles are treated using axi-symmetry as well. In all our examples we have chosen
the following parameters:

diffusion coefficient D = 0.04858,
concentration in the particle cpart = 54,
concentration at the interface csol = 3.88,
initial concentration c0 = 0.0011,
Stefan factor D

cpart− csol
= 0.000969.

6.1. Disk-like Problems

The dissolution of disk-like particles is, in fact, a three-dimensional problem. Due to the
axi-symmetry it can be solved as a two-dimensional problem. We suppose that a disk with
radius 1 and disk lengthD dissolves into a cell with radius 4 and cell lengthL.
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FIG. 19. Radius of cross section of the dissolving cylinder with theOXY-plane.

First, we consider the special case ofD = L. The resulting problem is again one-
dimensional. In Fig. 19 Curve I corresponds to the 1D axi-symmetric finite difference
method (fdm). From a comparison of this method with an analytical method [24] the fdm
method appears to be reliable. The results from the finite element method are shown as
Curve II. Both results are nearly the same.

Second, we consider the position of the intersection of the free boundary and04 as a
function of time for various disk-heights. Curves III, IV, V, and VI correspond to disk-
lengths of 0.99L , 0.95L , 0.90L, and 0.75L, respectively. In the limit (Curves III and IV),
the position approaches that of the one-dimensional case with axial symmetry. Note that
for a small value ofD (D = 0.75L), the final position of the intersection is close to 0.65,
whereas the final position in the one-dimensional problem is approximately equal to 0.75.
So the behaviour of a disk-like particle is different from a cylindrical one, especially when
the time increases.

Figure 20 gives the concentrationc at r = 4, z = 0, as a function of the disk length for
different dissolution times. It can be seen in Fig. 20 that the influence of the disk length on
the concentration atr = 4 increases with increasing dissolution time. This is in accordance
with what one expects physically, because at early stages of the dissolution process the
diffusion fields are small, so the shape of the particle hardly influences the concentration at
the intersection of03 and04.

6.2. Dissolution in a Bar

In metallurgical literature only one-dimensional algorithms areused to investigate dis-
solution kinetics. This requires the use of an equally shaped cell in which the particle
dissolves such that the cell volume equals the real volume around the particle. Since the
two-dimensional algorithm has been developed, the error of the last mentioned approach
may be analysed.
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FIG. 20. Concentration atr = 4, z = 0 as function of the disk-length.

The dissolution kinetics of a cylinder, dissolving in a bar, has been compared to the
dissolution of a cylinder dissolving in a cylinder with an equal volume. As can be expected
for cases in which the cell size is large, the approach with an equally shaped cell is most
accurate. The average distance between the free boundary and the origin does not differ
much for both geometries of the cell. However, for the case of a bar-like cell, the movement
of the free boundary near the intersections with the co-ordinate axes will be smaller than the
movement of the free boundary near the intersection with the line y= x, causing a shape
change during dissolution. These effects will be more pronounced as dissolution proceeds.

Reducing the cell size with respect to the particle size would reveal a larger difference
between both approaches. However, such small cell sizes are not likely to occur in metal-
lurgy, so the approach made in literature can be considered as reasonable.

The free boundary of a square dissolving in a square has been sketched at different stages
of the dissolution process in Fig. 21. The edge of the particle has length 1; the edge of the
cell has length 4. One sees that the shape of the free boundary becomes more rounded as
dissolution proceeds. The shape of the free boundary even becomes almost circular at later

FIG. 21. Free boundary of a bar dissolving in a bar at various stages of the dissolution process.
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FIG. 22. Free boundary of a disk dissolving in a disk at various stages of the dissolution process.

stages of the dissolution process. The same has been done for the dissolution of a disk in
a disk in Fig. 22. In this axi-symmetric caseD = 1, L = 4, the particle radius is equal
to 1 and the cell radius equal to 4. The same shape transition is observed. Moreover, it is
observed that the displacement of the interface is larger at ther -axis (horizontal axis) than
at thez-axis (vertical axis) (see Fig. 22).

6.3. Two Particles Dissolving in One Cell

In metallic systems the particle size is nonuniform. Most authors in literature incorporate
a particle size distribution using the assumptions

• all particles dissolve in an equally shaped cell,
• the average concentration of alloying element is equal in each cell.

This implies a unique correspondence between the cell size and the particle size. Further-
more, most authors assume that there is no mass transfer between the cells. Tundal and
Ryum [21] consider the approach that when the smallest particle is dissolved completely,
the cells related to the residual particles are enlarged by them such that the volume of the
cells equal the sum of the volumes of the original cells.

In our two-dimensional numerical method, these assumptions can be released. There-
fore we compute the dissolution of two particles in one cell. In this problem the length
of the edge of the square is equal to 5, whereas the radii of the particles are equal to
2 and 0.5, respectively. The movement of the free boundaries is visualized in Fig. 23.

FIG. 23. The movement of two circular free boundaries in a cell in which two particles dissolve.
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FIG. 24. Iso-concentration lines in a cell in which two particles dissolve.

As soft-impingement occurs, i.e. the interaction of the diffusion fields around the parti-
cles, movement of the free boundary is influenced by the presence of different particles.
Iso-concentration lines for this case have been sketched in Fig. 24. It is a straightforward
exercise to extend these calculations to a system with more cells or particles.

7. CONCLUSIONS

Particle dissolution in binary alloys is investigated by numerical techniques. The math-
ematical model used is that of a free boundary problem of Stefan type. This problem is
solved by a two-dimensional finite element method. It has been shown that this approach
leads to an accurate solution of the problem.

With respect to the adaptation of the free boundary during time-stepping it has been
demonstrated that sharp corners require a special algorithm. Several algorithms have been
developed. From these algorithms, the nonlinear approach, based on the discretization of
the integral balance between dissolution and diffusion, has proven to be superior.

The finite element method applied is based upon a displacement of all nodes. The free
boundary is approximated by a spline and the nodes are redistributed in order to maintain
the original coarseness of the nodes. Re-meshing is applied if necessary.

It has been shown that for some types of particles two-dimensional effects cannot be
neglected. For those cases it is not sufficient to run a one-dimensional code and our 2D
finite element method gives a very attractive alternative.
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