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The dissolution of a disk-liké\l,Cu particle is considered. A characteristic prop-
erty is that initially the particle has a nonsmooth boundary. The mathematical model
of this dissolution process contains a description of the particle interface, of which
the position varies in time. Such a model is called a Stefan problem. It is impossi-
ble to obtain an analytical solution for a general two-dimensional Stefan problem,
so we use the finite element method to solve this problem numerically. First, we
apply a classical moving mesh method. Computations show that after some time
steps the predicted particle interface becomes very unrealistic. Therefore, we derive
a new method for the displacement of the free boundary based on the balance of
atoms. This method leads to good results, also, for nonsmooth boundaries. Some nu-
merical experiments are given for the dissolution offdsCu particle in anAl—Cu
alloy.  © 1998 Academic Press

Key Words:Stefan problem; moving finite elements; conserving discretization;
particle dissolution; alloy homogenization.

1. INTRODUCTION

Heat treatment of metals is often necessary to optimise their mechanical properties
for further processing and for final use. During the heat treatment, the metallurgical sta
the material changes. This change can either involve the phases being present or the
phology of the various phases. Whereas the equilibrium phases often can be predicted
accurately from thermodynamic models, there are no general models for microstruc
changes nor general models for the kinetics of these changes. In the latter cases ba
initial morphology and the transformation mechanisms have to be specified explicitly. ¢
of these processes, which is both of large industrial and scientific interest and amenal
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2 SEGAL, VUIK, AND VERMOLEN

modelling, is the dissolution of second phase particles in a matrix with a uniform ini
composition.

To describe this particle dissolution in rigid media several physical models have |
developed, incorporating the effects of long-distance diffusion [3, 21, 28] and noneqL
rium conditions at the interface [1, 13]. The long-distance diffusion models imply that
processes at the interface between particle and matrix proceed infinitely fast. Ther
these models provide an upper bound for the dissolution rate.

Whelan [28] considered particles dissolving in an infinite medium using the statior
interface approximation. He derived an analytical solution of the diffusion equation ir
infinite medium for spherical co-ordinates by the use of the Laplace transformation in t
The accuracy of the model increases with increasing interparticle distance.

Allreferences discussed below transform the cell in which the particle dissolvesinto ¢
which is equally shaped as the particle, requiring the transformed cell volume to be eq
the original cell volume. This allows a one-dimensional treatment of the moving boun
problem which can be solved easily using a finite difference discretization method.
method can be used for planar, cylindrical, and spherical geometry.

Baty, Tanzilli, and Heckel [3] were the first authors to apply a numerical method usi
finite difference method to evaluate the interface position as a function of dissolution t
Their model is also applicable to situations in which the interparticle distance is sr
i.e. when soft impingement occurs. The model they proposed is based on the assur
of local equilibrium at all stages of the dissolution process. They applied their nume
analysis to dissolvingAl,Cu particles in aluminum. In their models th&,Cu particles
were assumed to be spherical. The poor fit of their calculations with the experimental
is probably due to the interface reactions or to the nonspherical shape of the regular pa
which were not incorporated into their numerical model.

Tundal and Ryum [21] considered the effects of a finite cell size for spherical particle
well. They too applied a numerical method using a finite difference method to predic
dissolution kinetics. Their model is based on the assumption of local equilibrium during
entire dissolution process. They introduced a log-normal distribution for both the par
and cell size (i.e., the logarithm of the size is distributed according to a normal distribut
They showed that macroscopic dissolution rates depend strongly on the shape of the p
size distribution curve and possible interactions between the neighbouring cells.

Nolfi's model [13] did not include the interface migration, but as far as we know, i
the first model which incorporated nonequilibrium conditions at the interface. In the N
model nonequilibrium conditions at the interface were incorporated by the introduc
of a Robbins condition which relates the concentration gradient with the concentrati
the interface. This semi-analytical solution consists of an infinite series solution for
concentration profile. Their method, however, is only accurate in the early stages ¢
dissolution process.

Aaron and Kotler [1] incorporated the nonequilibrium conditions at the interface t
However, their approach is only applicable for those situations in which the interpar
distance is sufficiently large, i.e. the diffusion fields do not impinge. They transformed
Robbins problem of Nolfi into a Dirichlet problem, in which the concentration is fix
at all stages of the dissolution process. Combining Whelan’s [28] analytical approac
the interface velocity as a function of the annealing time, with a relation between
interface concentration and the interface position, they evaluated the interface po
using a Picard-type iteration method. Aaron and Kotler also incorporated the effec
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the particle curvature into their model using the Gibbs—Thomson equation [1]. In tl
model both the interface position and the interface concentration were taken moment
stationary during the evaluation of the interface position as a function of time.

The effects of interfacial reactions on the rate of the dissolution of spherical particle
both infinite and finite media was examined by Vermolen and Van der Zwaag numeric
[23]. Using a finite difference method it was shown that interfacial reactions can ha
significant effect on the dissolution rate and, hence, on the concentration profiles ir
matrix during particle dissolution.

Due to the difference in the crystal structures of the particle and its surroundings
total surface energy may be minimal for a disk-like geometry. Hence, an algorithm cap
of solving two-dimensional moving boundary problems is desired. In the present w
we introduce a general algorithm that can be used to solve two-dimensional probls
It is based on the application of the finite element method on two-dimensional mo
boundary problems. A reason to use finite elements is that it allows the use of unstruct
grids. Hence the finite element method is more flexible than other discretization mett
using structured grids only. Especially in moving boundary problems as the ones that
be demonstrated in the remainder of this paper, unstructured grids are essential.

Before we derive our numerical algorithm, we present the mathematical model in ¢
tion 2. Actually, it turns out that this is a standard Stefan problem [4, 19, 25, 26]. We rej
the derivation of the Stefan condition at the free boundary, since this derivation is ne
to improve the numerical method. In Section 3 we specify a numerical scheme to solve
Stefan problem. It will be shown that straightforward discretization of the equations
boundary conditions may lead to unrealistic interfaces. These problems are investic
and a new algorithm (Section 4) which produces nice results is presented. This impr
algorithm is based on the derivation of the Stefan boundary condition. Section 5 cont
some details of our remeshing techniques. In Section 6 results of the new algorithr
plied to some practical problems will be demonstrated. The conclusions are formulate
Section 7.

2. AMATHEMATICAL MODEL FOR A DISSOLUTION PROCESS

Consider arAl,Cuparticle in anAl-Cualloy at a given temperature. The initial concen
tration of Al,Cuin the aluminum phase is equal ¢g (mol/m?), whereas,a: denotes the
concentration ofAl,Cuin the particle. When the temperature is increased, dissolution
the Al,Cuparticle sets in. At the interface thfd,Cuconcentration iSsel (Cpart > Csol > Co).

To describe the mathematical model we use the geometry as given in Fig. 1. The do
filled with aluminum is denoted by2(t). The boundary of this domain consists of the
interfaceS(t) and the outer boundaridy, i € {1, 2, 3, 4}. The outer boundaries are fixed
in time, except the intersections Bf andI', with S(t). In the aluminum-rich phas@ (t),

the Cu concentratiore(x, vy, t) satisfies the diffusion equation
ac
i DAc, (X,y) € Q(t),teOT]. Q)

The diffusion coefficien) (m?/s) is supposed to be independent of concentration. As t
initial condition we use

c(x,y,0) = Co(x,y), (X,y) € 2(0), )
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FIG. 1. Geometry of amAl,Cu particle in aluminum.

where (0) is prescribed. We assume no flux@d through the outer boundaries, so
ac .
ap YD =0 (xy)eliie{l234tec[0T] 3)
At the interface the concentration satisfies the equation

C(X, ¥, 1) =Csol, (X, y) € S(t), t € (O, T]. (4)

To determine the position of the interface one extra condition is necessary. To derive
boundary condition for a spatially three-dimensional problem, we consider a small
of the interface. Suppose that the interface is smooth, which means that it can lo
be described by differentiable functions. For a small time gtephe interface moves in
the direction perpendicular to the interface. Thaxis is chosen along the normal. Witk
this choice the position of the interface is locally described by the relationS(t). We
consider a control volume of widthy andAz. The intersection of the control volume witt
the surfacey = 0, z = 0 is shown in Fig. 2. The balance 6f1atoms leads to the following
equation:

(S(t + At) — S(t)) AYAZGo = (S(t + At) — S(1)) AYAZGyart — D%AyAzAL (5)

Al-Cu ALCu

At [,

® Sit+At) x

FIG. 2. The control volume.
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Dividing (5) by AyAzAt and taking the limitAt — 0, one obtains

© )dS_Dac
part Csol dt_ 8X.

So the extra boundary condition at the interface is

a
(Cpart_ CSO|)UI’1(X’ yv t) = D%(Xv yv t)a (Xv Y) € S(t)’ t € (0$ T]v (6)

wheren is the unit normal vector on the interface pointing outward with respegx(ty
andvy, is the normal velocity of the interface. The moving boundary problem given by (
(2), (3), (4), and (6) is known as a Stefan problem [4].

The normalised concentratidn= (c — ¢g)/(Csol — Co), together with a characteristic
length scalel and time scald_2/D, is used to make the problem dimensionless. Afte
replacingC by ¢ we obtain the following Stefan problem: find a concentraticaind an
interfaceS such that

g—f = Ac, (X,y) e Q(t), te(OT], @)
cx,y,0 =0, (x,y) € Q(0), 8)
%(x, y,t) =0, (x,y)eTi,i €{1,23,4},t [0, T], 9
cx,y,t) =1, (X,y) € S(t),t € (0, T], (20)
un(X, Y, 1) = k%(X, y.: ), (X, y) € S(t),t € (0, T], (11)

where the dimensionless numbeis given by

_ Cpart— Co

- . (12)
Cpart — Csol

An extensive review of literature on Stefan problems is given in [20]. This bibliograp
contains 2500 titles on moving boundary problems. In [16] a recent overview is giver
numerical methods to simulate convection/diffusion phase change problems.

3. SOLUTION OF THE STEFAN PROBLEM

Various numerical methods are known to solve Stefan problems. In Crank [4] the
lowing types of method are distinguished: front-tracking, front-fixing, and fixed-dom:
methods. In a front-fixing method a transformation to body-fitted curvilinear coordina
is used (a special case is the isotherm migration method (IMM)). A drawback is that s
a transformation can only be used for a relatively simple geometry. Fixed-domain mett
are the enthalpy method (EM) and the variational inequality method (VI). Various meth
are compared in [5, 27]. The latter methods (IMM, EM, VI) are only applicable when t
interface is an equi-concentration line. In the near future we want to simulate also di
lution processes with a varying concentration on the interface (e.qg., first-order reactic
the interface [23], or dissolution in ternary Al-alloys [22]). Therefore, we choose a fro
tracking method to solve our problem numerically, although the current problem can
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be solved by other methods (IMM, EM, VI). The front-tracking method we apply is a tv
dimensional extension of the method of Murray and Landis [12] as described in [10, 11
27]. A detailed description of the adaptation of the interface in time is lacking in mos
the literature on front-tracking methods, except [10]. We present various methods fo
adaptation in this section and Section 4.

Our method to solve the Stefan problem runs as follows. In the first time-step the diffu
equation (7), together with the initial (8) and boundary conditions (9) and (10), is sol
On the free boundarg only the Dirichlet condition (10) is used. In the next time steps fir
the boundary is moved using the boundary condition (11). This means that the co-ordi
of the free surface at timee+ At are approximated by

ac
X(t + At) = X(t) + vp At n = X(t) + A%At n. (13)
Once the boundary is moved, the concentratioan be computed in the new region usin
Eq. (7). However, the computation of the concentration implies that we have to com
(c(t+At)—c(t))/At. We do not knove(t) in the nodal points since, due to the displaceme
of the boundary also, all nodes have been moved [2]. So either we have to interpola
concentration to the new nodes, or we have to make a correction for the displacel
Interpolation is of course possible, but relatively expensive. The correction is much r
simple. If we compute the time-derivative based on the old and the new points, ther
clear that we actually use a material derivative,
Dc dc
— = — + Umesh- VC, 14
Dt 9t + Umesh ( )
where the so-called mesh velocity is defined by

X(t 4+ At) — x(1)

At (15)

Umesh=

with x the co-ordinate vector in a point. Substituting Eq. (14) into Eq. (7) leads to

Dc
Ft — AC— Umesh' VC == 0 (16)
This approach is common practice in fluid mechanics, where it is known as the arbi
Lagrangian Eulerian approach (ALE) (see, for example, [6, 7, 8, 9, 15]).
The discretization of Eq. (16) is performed by a standard Galerkin finite element me
using linear triangles. The time-discretization is performed by an implicit Euler metho

ALGORITHM 1. Astraightforward method to compute the new position of the free bou
ary: Compute the gradient of the concentration in the elements connected to the free b
ary. Compute the gradient of the concentration and the normal in the vertices at the
boundary by averaging over neighbouring elements. Contl/tén in the vertices by the
inner product of the gradient and the normal vector. Apply formula (13) to compute the
positions of the vertices.

Initially the normal of the interface is not defined in the middle poinBdkee Fig. 1),
where the boundary has a corner of 9ote that in fact the normal is not defined in vertice
at the boundary unless the two surrounding line elements have the same direction. F
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FIG. 3. Free boundary in the first 10 time steps.

reason the outward normal in a vertex point is defined as the normalized mean value ¢
normals at the two line elements adjacent to that point. Using this definition of the nor
vector, the displacement of the vertices of the boundary can immediately be deducted
Eq. (13).

A different way of computing the normal in the vertices is presented by Lynch [1
He proposes to take a weighted average of the surrounding normals, where the we
are defined by the length of the adjacent boundary elements. A clear disadvantage ¢
approach is that the normal depends on the local grid size. For example, if atar@ier
the mesh size at one side is larger than at the other one, the normal will not be defined 1
an angle of 45as in our method.

Figure 3 shows the computed free boundary during the first 10 time steps. The c
sponding mesh is shown in Fig. 4. It is clear that in the middle point of the free bound
where we start with the 9Gorner, the free boundary moves more slowly than in the oth
points. However, from the physical point of view one would expect this point to move fas
than the surrounding points. To investigate this strange behaviour we consider the arti
case where all the equi-concentration lines are parallel to the free boundary. Figure 5 s

FIG. 4. The mesh used.
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FIG.5. Assumed position of free boundary in case of parallel concentration lines.

the boundary (solid line) and one such a concentration line. The dashed line denot:
new position of the free boundary, one would intuitively expect, after one timeAdtep 1
with the parametex equal to 1. Let the difference in concentration between free bounc
and the plotted equi-concentration line be equalto Let the distance between the point
x andx’ be equal toAx. Then the value ofc/dn is approximatelyAc/Ax. However, the
distance between the pointaindy’ is equal toy’2Ax. Hence, along the line’, X’ the value
of 3c/dn is approximatelyAc/+/2Ax. Since the average normal is equahte: («/5/2)(1)
this implies that the free boundary in the pojrdoes not move tg”, but only to the point
precisely in the middle of andy”. The reason for this inconsistency is, in fact, that tt
Stefan boundary condition is derived under the assumption of a smooth boundary. |
case of a nondifferentiable boundary, the limit does not exist and only the integral forn
of the Stefan boundary condition makes sense.

A natural solution of the problem mentioned above is not to use the gradient anc
normal in the vertices, but only those in the mid-side points of the elements. Since
gradient of the concentration is constant per triangle, the value of both the normal
the normal derivative in these mid-side points is unique. So one can compute the disj
ment of the mid-side points by Eq. (13). The only remaining problem is to define how
vertices must be moved. An obvious choice is to choose the new positions of the ve
right in the middle of the new positions of the mid-side points. This method is denote
Algorithm 2.

Computations show a very smooth progress of the free boundary. There is one s
drawback in this method. Suppose that none of the mid-side points are moved, for exe
because. = 0. In that case one would expect that the vertices also will be kept at t
old positions. However, after the first time step the vertex corresponding to treo@ter
has been moved inwardly. In the next step an extra smoothing is applied and if this pr
is repeated we end up with a straight line. For an initial corner larger thanth&boundary
even moves into the wrong direction. So we are looking for a method that keeps the ve
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FIG. 6. Free boundary in the first 10 time steps computed by the “weak approach.”

fixed as long as the mid-side points do not move, but also lacks the behaviour show
Fig. 3. In the next section we will introduce such a method.

Before considering our new method we consider a variant of a method propose
Lynch [10]. Lynch suggests using a weighted average method to compute the positic
the new boundary. However, for an equidistant mesh size along the boundaries his met|
identical to our Algorithm 1 and for nonequidistant mesh sizesitis even worse. Neverthe
his derivation, based on a weak formulation of the Stefan condition (11), inspired us to
a Galerkin approximation of Eq. (11). The idea is that this is more an integral approach
a differential approach. The Galerkin formulation of Eq. (11) is given by

ac
/Svn¢dF =/5)L%¢d1“, @7

with ¢ an arbitrary test function. Exact integration of Eq. (17) leads to a tridiagonal syst
of equations, where the matrix to be inverted is the standard mass matrix along the
boundary. Lumping of this matrix reduced this method to Algorithm 1. Figure 6 shows
free boundary during the first 10 time steps, using the consistent mass matrix. Indee
boundary is better than the one shown in Fig. 3, but still the corner problem is visible.

4. ANEW METHOD TO COMPUTE THE FREE BOUNDARY POSITION

Before deriving our new approach for the computation of the free boundary, we f
formulate two demands a good numerical method should satisfy:

e Let Ax be ameasure for the displacement of the boundary. Itis necessatyxthat 0
whenAt — 0.

e Suppose that the corner between two adjacent elements at the moving boundary,
sured with respect to the dissolving material, is equal.tdf « < 180 then one expects
that this corner increases as soon as the material dissolves. The reason for such a bet
is that in the case of a straight boundary, diffusion can take place in one direction c
whereas in a corner, diffusion is possible in various directions. So a humerical mei
should satisfy this property too.
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FIG. 7. Area occupied by the region defined by the displacement of the vertex.

Itis clear that the methods mentioned in Section 3 do not fulfil these two demands ¢
same time. Algorithm 1 does not satisfy the second demand, whereas Algorithm 2 doe
fulfil the first demand. We propose the following method.

ALGORITHM 3. Improved scheme for the computation of the free boundary. Comg
the gradient of the concentration in the elements connected to the free boundary. Col
ac/an in the mid-side points of the elements at the free boundary, by the inner produ
the gradient and the normal vector. Apply formula (13) to compute the new position
the mid-side points. Define the new positions of the vertices along the normal, in st
way that, the area occupied by the region defined by the displacement of the vertex &
surrounding mid-side points (Fig. 7) is equal to the mean value of the areas defined &
displacement of both mid-side points (Fig. 8).

This method combines the smoothing properties of Algorithm 2 with the nondisplacer
of the vertex in case the mid-side points remain unchanged. The motivation for this appi
is the following. From the derivation of the Stefan boundary condition it follows that
area of the particle that has been dissolved is equal to the amount of diffused materia
flux through the elemeni(_1, ;) is approximately equal to

ac
D%(Xi _12)li At (18)

FIG. 8. Area occupied by the region defined by the displacement of both mid-side points.
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with [; the length of the line elemenki( 1, X;). Hence, the amount of diffused materia
through the boundary(_1/2, X +1/2) is equal to

At ac
> ( —(X| 1)li +D— (X|+1/2)||+1> (19)
The amountM of material dissolved, is approximately equal &gaf — Cs0)) O, whereO

is the area defined in Fig. 7. Due to the balance of athmsust be equal to the amount

of diffused material given in Eq. (19). Making this equation dimensionless this is equa
(see (12))

ML /0 ac
O = < C(X, ]_/2)' + (X|+1/2)||+l) (20)

2
The right-hand side of (20) is the mean value of the areas defined in Fig. 8.

There is a drawback of Algorithm 3, which can be explained as follows. Once the
placement of the vertices has been computed by means of Algorithm 3, the mid-side p
are moved to new positions, since they are always in the middle of two vertices. As a
sequence the amount of dissolved material is no longer equdl 16 we want to have a
displacement which gives an amount of dissolved material that is exactly eqMalttee
situation is more complex. Consider two adjacent line elemeaqts,(x;), and i, X +1),
with lengthl; andl;.,, respectively (Fig. 7). The mid-side points of these elements &
denoted byx _1,» andx;;1/». Let the displacement in the mid-side points computed fro
formula (13) be equal t6x;_1/» andéx;;1/2. The new position of vertex; is denoted by
Xi. The length of the displacement is given&s = ||Xi — X;||. Once the displacement in
the vertices is computed, also the displacements in the mid-side points change. In ort
get both a local and global equilibrium in the amount of dissolved material, it is neces:
that the new area be equal to

1 1
§|i5Xi—1/2 + §|i+15Xi+1/2. (21)

The areaO depends om\x;, AXi_1/> and Ax;;1,2, whereAx;_1,» is the adapted length
of the displacement ig;_1/». SinceAX;_1/> andAX; 11> depend omAX; _1, AX;, andAX; ;1
the relation is nonlinear. In order to solve this system of nonlinear equations we proj
the following algorithm.

ALGORITHM 4. “Exact” satisfaction of balance between dissolution and diffusion.

for alli do
ComputeAx; from §x_1/» andéx; ;12 according toAlgorithm 3.
Xi = Xi + AXin;.

end for
while not convergedio
for alli do

Ri—12 = 3(Xi—1+%0).
ComputeAx; from Algorithm 3using the areas occupied by the known
quadrilateralgx;_1/2, Xi, Xi, Xi—1/2) and(Xi41/2, Xi, Xi, Xit+1/2).
Xi =% + o + AXin —X;).
end for
end while
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=

FIG. 9. Free boundary during the first 10 time-steps using Algorithm 3.

Numerical experiments showed that, in the case of a relaxation parameterl,
Algorithm 4 did not converge. The free surface switched between two states for succe
iterations. This behaviour is caused by an overestimation of the correction in each iter:
To solve this problem an underrelaxation factokx 1 has been tried. Practical computz
tions show that the iteration process is rather insensitive for the value of ffrerw = 0.5
we usually got convergence within five iterations. The process is stopped as soon
difference between the area due to the mid-side displacements, as defined in Eq. (1
the final area is less than 1%.

From Figs. 9 and 10 it appears that, especially during the first time-steps, the results
Algorithm 3 and Algorithm 4 are quite different. In order to compare the accuracy of k
algorithms we halved the space-step (Figs. 11 and 12). Itis clear from these figures, th
boundary of Algorithm 3 is unacceptable, whereas that of Algorithm 4 seems reasor
good. The reason for this strange behaviour is that the new positions of the two mid
points around the sharp corner are very close to thediaey (Fig. 13). As a consequence
the first estimate is very inaccurate. Iteration as used in Algorithm 4, however, is ab
solve this problem nicely. If we enlarge the time-step, the displacement of the mid-

-

FIG. 10. Free boundary during the first 10 time-steps using Algorithm 4.
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FIG. 11. Free boundary during the first time-step using Algorithm 3, mesh-size has been halved.

=

FIG. 12. Free boundary during the first 10 time-steps using Algorithm 4, mesh-size has been halved.

FIG. 13. Displacement of the mid-side points is too close to theline y.
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FIG. 14. Free boundary during the first 10 even time-steps using Algorithm 3; mesh-size and time-step
been halved.

points may even cross the lixe= y. In that case both algorithms fail, since they produ
a negative displacement for the vertexyat x.

This implies that when the space-step is reduced, one also has to decrease the tim
Figures 14 and 15 show the free boundaries for the finer mesh with the halved time-stej
boundaries are plotted at the same time-levels as the ones in Figs. 9 and 10. Further f
of the space- and time-steps leads to nice pictures for Algorithm 4. However, Algorith
again produces in the first time-step a free boundary like the one depicted in Fig. 11.

5. REMARKS CONCERNING THE MESH GENERATION DURING TIME-STEPPING

Atthe start of the computation a mesh is generated using the initial boundary. In each
step the boundary is updated according to one of the given algorithms. The free bou
itself consists of a number of curves (in the previous example 2 curves) and each cu
the free boundary is approximated by a spline. The number of nodes is not changec
nodes along the splines are distributed in such a way that local refinement in the i
free boundary is kept. Hence, the relative distribution of nodes along the initial bounde

~

FIG. 15. Free boundary during the first 10 even time-steps using Algorithm 4; mesh-size and time-step
been halved.
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FIG. 16. Free boundary without re-meshing.

maintained during the whole process. Once the boundary is changed, the mesh is up
In the first instance all points in the mesh are repositioned by taking the mean value o
coordinates of neighbouring nodes. This averaging process is performed in a humb
steps in a Gauss—Seidel-like procedure.

When the mesh is created, the quality of the mesh and the distances at the free bou
are checked. If the angles of the triangles in the new mesh are too large, or if the diste
between nodes at the free boundary differ too much from the original distances, the r
is completely regenerated. In that case also the nodes at the free boundary are recon
and the number of nodes at this boundary may be changed. After that, the just comy
solution is interpolated to the new mesh.

If we do not re-mesh the elements in the neighbourhood of the free boundary become
distorted. Figure 16 shows a part of the mesh 2t60 s, when no re-meshing is applied.
Due to the large distortions, the derivatives of the concentration along the free boundar
very inaccurate and the free boundary has an unnatural shape. For that reason re-m;
has been applied. Figure 17 shows the same part of the mésh @0 s as before, and it
is clear that the boundary is much more realistic.

In Fig. 18 the position and velocity of the free boundary versus time is given. The po
considered are the singular point and the intersection of the free boundary with a f

FIG. 17. Free boundary with re-meshing.
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FIG. 18. Position and velocity of the singular point ( ) and the intersection of the free boundary v

a fixed boundary.( .).

boundary. Re-meshing occurs at 22, 35.5, and 55.5 s. Note that at these times small |
appear in the velocity graphs.

The interpolation used is not conservative and mass may be created or lost. Indeed th:
before and after interpolation (only used when re-meshing is applied) differs somewhz
in our computations it is less than 0.2%. A more accurate approach would be, for exau
an L2-projection. However, even in 1D such a projection is quite complex due to the
that basis functions defined over elements in the new mesh are discontinuous in tt
mesh. See, for example, [14] for a discussion on this subject.

Although our interpolation technique is not the most sophisticated one, still the prev
results show that re-meshing is a necessary option once the mesh is largely deforme

6. NUMERICAL EXPERIMENTS

An algorithm has been developed, suitable for use to investigate the dissolution kin
for atwo-dimensional case. This algorithm has been implemented in our finite element
SEPRAN [18]. One of the goals of the algorithm is to determine the dissolution kine
of disk-like particles. Before two-dimensional problems are considered, we compar
outcomes of our algorithm to a one-dimensional axi-symmetric problem. Numerical ex|
ments show that the differences between the results obtained from the one-dimensiong
difference method [23] and the two-dimensional finite element method are very small. [
like particles are treated using axi-symmetry as well. In all our examples we have ch
the following parameters:

diffusion coefficient D = 0.04858
concentration in the particle  Cpan = 54,
concentration at the interface c¢qq = 3.88,
initial concentration co = 0.0011,
Stefan factor D — 0.000969

Cpan — Csol

6.1. Disk-like Problems

The dissolution of disk-like particles is, in fact, a three-dimensional problem. Due to
axi-symmetry it can be solved as a two-dimensional problem. We suppose that a disk
radius 1 and disk lengtB dissolves into a cell with radius 4 and cell lendth
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FIG. 19. Radius of cross section of the dissolving cylinder with @Y-plane.

First, we consider the special case Bf= L. The resulting problem is again one-
dimensional. In Fig. 19 Curve | corresponds to the 1D axi-symmetric finite differer
method (fdm). From a comparison of this method with an analytical method [24] the f
method appears to be reliable. The results from the finite element method are shov
Curve Il. Both results are nearly the same.

Second, we consider the position of the intersection of the free boundary ;aasl a
function of time for various disk-heights. Curves lll, 1V, V, and VI correspond to disl
lengths of 099L, 0.95L, 0.90L, and Q75L, respectively. In the limit (Curves Il and V),
the position approaches that of the one-dimensional case with axial symmetry. Note
for a small value oD (D = 0.75L), the final position of the intersection is close to 0.65
whereas the final position in the one-dimensional problem is approximately equal to C
So the behaviour of a disk-like particle is different from a cylindrical one, especially wh
the time increases.

Figure 20 gives the concentraticratr = 4, z = 0, as a function of the disk length for
different dissolution times. It can be seen in Fig. 20 that the influence of the disk lengt}
the concentration at= 4 increases with increasing dissolution time. This is in accordan
with what one expects physically, because at early stages of the dissolution proces
diffusion fields are small, so the shape of the particle hardly influences the concentratit
the intersection of'; andI',.

6.2. Dissolution in a Bar

In metallurgical literature only one-dimensional algorithms areused to investigate
solution kinetics. This requires the use of an equally shaped cell in which the part
dissolves such that the cell volume equals the real volume around the particle. Sinc
two-dimensional algorithm has been developed, the error of the last mentioned appr
may be analysed.
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FIG. 20. Concentration at = 4, z = 0 as function of the disk-length.

The dissolution kinetics of a cylinder, dissolving in a bar, has been compared tc
dissolution of a cylinder dissolving in a cylinder with an equal volume. As can be expe
for cases in which the cell size is large, the approach with an equally shaped cell is
accurate. The average distance between the free boundary and the origin does no
much for both geometries of the cell. However, for the case of a bar-like cell, the movel
of the free boundary near the intersections with the co-ordinate axes will be smaller the
movement of the free boundary near the intersection with the lirexy causing a shape
change during dissolution. These effects will be more pronounced as dissolution proc

Reducing the cell size with respect to the particle size would reveal a larger differ
between both approaches. However, such small cell sizes are not likely to occur in n
lurgy, so the approach made in literature can be considered as reasonable.

The free boundary of a square dissolving in a square has been sketched at different
of the dissolution process in Fig. 21. The edge of the particle has length 1; the edge
cell has length 4. One sees that the shape of the free boundary becomes more rour
dissolution proceeds. The shape of the free boundary even becomes almost circular :

FIG. 21. Free boundary of a bar dissolving in a bar at various stages of the dissolution process.
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FIG. 22. Free boundary of a disk dissolving in a disk at various stages of the dissolution process.

stages of the dissolution process. The same has been done for the dissolution of a ¢
a disk in Fig. 22. In this axi-symmetric cag® = 1, L = 4, the particle radius is equal
to 1 and the cell radius equal to 4. The same shape transition is observed. Moreovel
observed that the displacement of the interface is larger atéxés (horizontal axis) than
at thez-axis (vertical axis) (see Fig. 22).

6.3. Two Particles Dissolving in One Cell

In metallic systems the particle size is nonuniform. Most authors in literature incorpol
a particle size distribution using the assumptions

o all particles dissolve in an equally shaped cell,
e the average concentration of alloying element is equal in each cell.

This implies a unique correspondence between the cell size and the particle size. Fu
more, most authors assume that there is no mass transfer between the cells. Tund
Ryum [21] consider the approach that when the smallest particle is dissolved comple
the cells related to the residual particles are enlarged by them such that the volume
cells equal the sum of the volumes of the original cells.

In our two-dimensional numerical method, these assumptions can be released. T
fore we compute the dissolution of two particles in one cell. In this problem the len
of the edge of the square is equal to 5, whereas the radii of the particles are equ
2 and 0.5, respectively. The movement of the free boundaries is visualized in Fig.

N

FIG. 23. The movement of two circular free boundaries in a cell in which two particles dissolve.
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FIG. 24. Iso-concentration lines in a cell in which two particles dissolve.

As soft-impingement occurs, i.e. the interaction of the diffusion fields around the p
cles, movement of the free boundary is influenced by the presence of different part
Iso-concentration lines for this case have been sketched in Fig. 24. It is a straightfor
exercise to extend these calculations to a system with more cells or particles.

7. CONCLUSIONS

Particle dissolution in binary alloys is investigated by numerical techniques. The ir
ematical model used is that of a free boundary problem of Stefan type. This proble
solved by a two-dimensional finite element method. It has been shown that this appi
leads to an accurate solution of the problem.

With respect to the adaptation of the free boundary during time-stepping it has |
demonstrated that sharp corners require a special algorithm. Several algorithms hav
developed. From these algorithms, the nonlinear approach, based on the discretiza
the integral balance between dissolution and diffusion, has proven to be superior.

The finite element method applied is based upon a displacement of all nodes. Th
boundary is approximated by a spline and the nodes are redistributed in order to ma
the original coarseness of the nodes. Re-meshing is applied if necessary.

It has been shown that for some types of particles two-dimensional effects cann
neglected. For those cases it is not sufficient to run a one-dimensional code and o
finite element method gives a very attractive alternative.
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