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Abstract

Despite their geometric flexibility and high accuracy, an important drawback of Discontinuous
Galerkin (DG) methods is that the resulting linear systems cannot be solved efficiently by
standard iterative solution methods. In search of an effective preconditioning strategy for
these systems, we cast a uniform spectral two-level preconditioner proposed by Dobrev et al.
[6] into the deflation framework [17]. This report discusses how the resulting spectral two-
level deflation technique can be implemented in a Conjugate Gradient (CG) algorithm, and
studies its performance for Symmetric Interior Penalty Galerkin (SIPG) discretizations for
diffusion problems with extreme contrasts in the coefficients. Furthermore, it investigates the
influence of the SIPG penalty parameter, which is not well-understood for such applications.
Interestingly, we find that the proposed deflation technique essentially follows from the original
preconditioning variant by skipping one of the two smoothing steps involved, and dropping
the inconvenient restriction on the smoother which the original preconditioner required to
be SPD. Despite these simplifications, the spectral two-level deflation method yields uniform
convergence (independent of the mesh element diameter), and it is faster and more robust
than the original preconditioner for large problems. Regarding the penalty parameter, we
find that it can best be based on local values of the diffusion coefficient, instead of the usual
strategy to use one global constant for the entire domain. The former approach allows for
local minimization of the penalty parameter, resulting in smaller condition numbers and faster
convergence of both the SIPG and the CG method.

1 Introduction

Despite their geometric flexibility and high accuracy, the popularity of Discontinuous Galerkin
(DG) discretizations for elliptic problems [3] has been limited for a while. The primary reason for
this is that the corresponding coefficient matrix is relatively large compared to e.g. traditional
finite element methods. Moreover, this matrix is usually ill-conditioned, as its condition number
tends to increase for a smaller mesh element diameter, a higher polynomial degree, or a larger
stabilization factor [5, 16]. Altogether, standard iterative solution methods converge rather slowly
for linear systems resulting from DG discretizations.

However, the interest in DG methods was increased with the need for handling non-matching
grids and designing hp-refinement strategies, for which they are particularly suitable. For this
reason, much attention has been paid since to subspace correction methods [21]. For example,
Schwarz domain decomposition methods are based on subspaces that arise from subdividing the
spatial domain into smaller subdomains [1, 8]; geometric (h-)multigrid methods make use of sub-
spaces resulting from multiple coarser meshes [4, 10]; spectral (p-)multigrid methods apply global
corrections by solving problems with a lower polynomial degree [9, 11]; and algebraic multigrid
methods use algebraic criteria to separate the unknowns of the original system into two sets, one
of which is labelled ‘coarse’ [12, 15].

Usually, these methods can either be used as a standalone solver, or as a preconditioner in an
iterative Krylov method. The second strategy tends to be more robust for problems with a few
isolated ‘bad’ eigenvalues. The latter is common for diffusion problems with extreme contrasts in



the coefficients, such as those encountered in oil reservoir simulations [19]. This research focuses on
such problems, discretized by means of the Symmetric Interior Penalty Galerkin (SIPG) method
[14]. This DG method yields a Symmetric and Positive-Definite (SPD) coefficient matrix, as long
as its characterizing penalty parameter is sufficiently large, which is also required for convergence.
This makes the Conjugate Gradient (CG) method particularly suitable for solving the correspond-
ing linear systems. Altogether, this research is focused on an effective preconditioning strategy to
increase the efficiency of the CG method for linear systems resulting from SIPG discretizations
for diffusion problems with extreme contrasts in the coefficients.

Starting point of this research is one of the spectral two-level methods proposed by Dobrev et
al. [6]. This method is based on the idea of spectral multigrid, except that it uses only two levels:
at the coarse level, it applies a correction that is based on the SIPG discretization with polynomial
degree p = 0. Dobrev et al. showed that this method, and thus the resulting preconditioner, yields
uniform convergence (independent of the mesh element diameter) for a large class of problems.
Another nice property is that the use of only two levels offers an appealing simplicity. More
importantly, the coefficient matrix that is used for the coarse correction is quite similar to a matrix
resulting from a central difference discretization, for which very efficient solution techniques are
readily available.

However, two main issues remain when applying this spectral two-level preconditioner in a CG
algorithm for a SIPG matrix A: First, two smoothing steps must be applied during each iteration,
and the smoother M ~! =~ A~! must be chosen such that M + M” — A is SPD. The latter is not
easily verified for large practical problems. Furthermore, it is often not satisfied if the smoother
is the standard Jacobi smoother.

The second issue is that the influence of the penalty parameter on both A and the precondi-
tioner is not well understood for problems with strongly varying coefficients. On the one hand,
this parameter needs to be suffciently large to ensure that A is SPD and the SIPG method con-
verges. At the same time, it needs to be chosen as small as possible to avoid an unnecessarily
large condition number. Computable theoretical lower bounds for the penalty parameter that
ensure stability and convergence have been derived for a large variety of problems by Epshteyn
and Riviere [7]. However, these bounds are based on the ratio between the global maximum and
minimum of the diffusion coefficient, and are therefore impractical for our application.

To eliminate one of the two smoothing steps and the inconvenient restriction on the smoother
at the same time, we cast the spectral two-level preconditioner into the deflation framework. This
is achieved by using the analysis of Tang at al. [17], who considered from an abstract point of
view the relations between two-level PCG methods coming from the fields of deflation, domain
decomposition and multigrid. Besides the resulting spectral two-level deflation technique, we also
study the potential of a penalty parameter that is based on local values of the diffusion coefficient.

The outline of this report is as follows. Section 2 discusses the SIPG method and the result-
ing linear systems for diffusion problems. Furthermore, it studies the influence of the penalty
parameter on the properties of the coefficient matrix. Section 3 discusses the spectral two-level
preconditioner and transforms it into a deflation technique. Moreover, it considers the influence
of the penalty parameter on the coarse level accuracy of these methods. Section 4 compares the
numerical performance of the resulting spectral two-level deflation method to that of the original
preconditioning variant. Additionally, it examines the influence of the penalty parameter on the
convergence speed of both the SIPG and the CG method. Finally, Section 5 summarizes the main
conclusions.

2 SIPG method

DG methods are flexible discretization schemes that provide high-order solution approximations
for PDEs. This section discusses the SIPG method (Section 2.1) and the resulting linear sys-
tems (Section 2.2) for diffusion problems. Moreover, it investigates the influence of the penalty
parameter on the coefficient matrix (Section 2.3).
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Figure 1: We use a uniform Cartesian mesh for Q = [0,1]¢ with N = n? elements and spacing
h= % However, our solver can be applied to a wider range of problems.

2.1 Formulating the SIPG method for diffusion problems

DG methods usually assume that the solution approximation is a polynomial of degree p or lower
within each mesh element, and that it may be discontinuous at the element boundaries. Although
these discontinuities provide a convenient flexibility, they also tend to cause instability for second
order problems. To enforce weak continuity and ensure stability, the SIPG method, introduced
by Wheeler [20] and Arnold [2], penalizes the inter-element discontinuities. This section briefly
summarizes known literature regarding this method for diffusion problems. More details can also
be found in e.g. [3, 14]. The SIPG method converges at rate p + 1 for a large class of problems,
provided that the penalty parameter is sufficiently large.

Model problem We study the following diffusion problem on a domain €2 with outward normal
n, boundary 9Q = 9Qp U 0y, source term f € L2(), scalar diffusion coefficient K € L°°(Q)
(bounded below and above by a positive constant), Dirichlet data gp € H2 (8€2p), and Neumann
data gy € L2(00y) (cf. [14] for the definition of the function spaces):

-V - (KVu) = f, in Q,
U=J9p, o1 a(2D7
KVu-n =gy, on 0Qy. (1)

Mesh To construct a SIPG approximation uy, for the exact solution u in (1), we need to subdivide
the domain €2 into mesh elements F1, ..., Ex. In this report, we consider uniform Cartesian meshes
for @ = [0,1]¢ with N = n? elements and spacing h = + (cf. Figure 1 for the element ordering).
Nonetheless, our solver can be applied for other meshes as well. Furthermore, we will use the
following notation: let n; denote the outward normal of the mesh element Fj;, let I';, denote the
collection of all interior edges e = 0F; N JF; in the mesh shared by two adjacent elements, and
let I'p denote the collection of all Dirichlet boundary edges e = OF; N 0)p.

Test space and trace operators The SIPG approximation uy is sought in a test space V,
which contains each function that is a polynomial of degree p or lower within each mesh element,
and that may be discontinuous at the element boundaries. To deal with these discontinuities, we
need to introduce trace operators for jumps and averages at the mesh element boundaries: at each
interior element boundary 0E; N 0F; € I'y,, we define:

v; + v,
[U] =N +vng, {U} = D) E s (2)




(k] 1 J2 3[4 5 6]7 8 9 10]...]

k. ][ 0 [1 0]2 1 0[3 2 1 0.

k] 0 Jo 1]/0 1 20 1 2 3
p=0 p=1 =2 p=3

Table 1: Powers k, and k, as a function of k. These values are used to define two-dimensional
monomial basis functions

where v; denotes the trace of the function v along the side of E;. The trace operators are well-
defined if v is in the broken Sobolev space, i.e. v|g, € H'(E}) for each mesh element Ej. Observe
that [v] is a vector, while v is a scalar. Analogously, we define for a vector-valued function 7:

)= i ma 7y, {r} = gt 7).

Observe that [7] is a scalar, while 7 is a vector. Similarly, at the domain boundary, we define at
each element boundary 0F; N 92 € I'p:

[v] == viny, {v} = v, [T] :==T; - ny, {t} =7 (3)

Bilinear form Now that the required notation has been introduced, the SIPG approximation
can be defined as the function uy in the test space V' that satisfies:

B(up,v) = L(v), for all test functions v € V, (4)

with (for one-dimensional problems, the boundary integrals below should be interpreted as function
evaluations of the integrand):

Blun, v /KVuh vor 3 /—{KVuh} o] = ] - {KV0} + T[] - 0]), (5)

ecl'p,Ul'p

/fv—Z/ va —v gD+Z/'UgN, (6)

ecl'p ecl'n

where o is the so-called penalty parameter. This parameter penalizes the inter-element jumps to
ensure stability and enforce weak continuity. Although it is presented as a constant here, its value
may vary throughout the domain. For a large class of problems, the SIPG method is stable and
converges with order p+ 1 (where p is the polynomial degree), as long as the penalty parameter o
is large enough [14]. Suitable choices for the penalty parameter are discussed later in Section 2.3.

2.2 Computing the SIPG solution by solving a linear system

In order to compute the SIPG approximation defined by (4) in the previous section, it needs to
be rewritten as a linear combination of basis functions for the polynomial test space, in which
the coefficients can be determined by solving a linear system. This section briefly summarizes
the derivation and properties of this linear system. More details can be found in e.g. [14]. The
corresponding coefficient matrix is SPD if the penalty parameter is sufficiently large, which is also
required for convergence. As a consequence, the CG method is a suitable candidate for solving
the linear systems resulting from SIPG discretizations.

Monomial basis functions To rewrite the SIPG approximation, we start by choosing a basis
for the test space V. For the one-dimensional domain Q = [0, 1], we use monomial basis functions

Ej), which are zero in the entire domain, except in the element F; with center x;, where we define:

k—1
,(CZ)(x) = (I 1h30z) , foralli=1,...N, and k=1,...M :=p+ 1. (7)
2



Similarly, for the two-dimensional domain = [0, 1]?, we define within the element E; with center
(zi,yi):

- —zi\* (y—y\ " 1) (p +2
D(z,y) = (T2 YU foralli=1,.,N, and k=1,.., M := P+ Dp+2)
2h 3h 2
(8)

where k. and k, are selected as indicated in Table 1.

Linear system Now that we have a basis for the test space V, we can rewrite (4) as a linear
system. To this end, we express the SIPG solution uw, € V as a linear combination of basis

functions (b;f) :

N M
=32 w6, (9)

i=1 k=1
where the coefficients u,(f) can be determined by substituting the expression (9) for u;, and the

basis functions ¢E}j ) for v into (4). After a little rewriting, we then obtain a linear system Au = b
of the form:

An A ... AN

uy b1
Ag1 Az w2 _ by (10)
where the blocks all have dimension M, and where, for all 4,5 =1,..., N:
B o) By, ¢f") ... B(ey.e) ) L6
(@) () (@) () : u? L(oW)
4y = Pl o) Blozsor) ' Cui=| |, b= <.2) . (11)
Blo® o) B 4 o) L6
(017, &5r) (Par>Pir) M M

Once the unknowns u,(:)

be obtained from (9).

are solved from the system Au = b, the final STPG approximation uy can

Matrix properties The coefficient matrix A has the following structure: for polynomial degree
p =0, it is an N x N matrix with the same nonzero pattern as a central difference matrix. As
a matter of fact, if the penalty parameter is equal to the diffusion coefficient (¢ = K), then A is
equal to the central difference matrix. For polynomial degree p > 0, it is an N X N block matrix

with a similar structure, except that the nonzero elements are now dense blocks, which have size
(p+1)(p+2)

(p+1) x (p+1) for one-dimensional problems, and size x 2 +1)2(p +2) for two-dimensional

2
problems (note that w is integer for any positive integer p). As a consequence, the size

of A increases rapidly with the number of elements N and the polynomial degree p. Finally, the
matrix is SPD as long as the penalty parameter ¢ is sufficiently large, which is also required for
convergence. The influence of the penalty parameter is studied in more detail in the next section.

2.3 The effect of the penalty parameter on the coefficient matrix

The penalty parameter has a great influence on the SIPG discretization defined in the previous
sections. On the one hand, it needs to be chosen suffciently large to ensure that the STPG method
converges and the coefficient matrix A is SPD. At the same time, it needs to be chosen as small as



possible, since the condition number of A increases rapidly with the penalty parameter [5]. Known
theoretical lower bounds are based on the ratio between the global maximum and minimum of
the diffusion coefficient [7]. As this is unpractical for problems with strongly varying coefficients,
we explore the potential of a penalty parameter that is based on local values of the diffusion
coefficient. This section illustrates the impact on the coefficient matrix for both a common constant
penalty parameter and a diffusion-dependent value. We find that the latter strategy yields a better
representation of the underlying physics in the matrix coefficients. Furthermore, it allows for local
minimization of the penalty parameter. It is verified in Section 4.3 later on that this leads to
smaller condition numbers, and faster SIPG and CG convergence.

Computable lower bounds Computable theoretical lower bounds for the penalty parameter
that ensure stability and convergence have been derived for a large variety of problems by Epshteyn
and Riviere [7]. For one-dimensional diffusion problems, they propose:

> k2 o for i . d
o> ip7, or interior edges,
2
o> Q%pZ, for boundary edges, (12)

where ko and ki are the global lower and upper bounds for the diffusion coefficient K. However,
while these lower bounds are sufficient to ensure stability and convergence, lower values of o are
usually applied in practice for diffusion problems with strongly varying coefficients [6, 13]. A
common choice is ¢ = 10 or ¢ = 20.

The problem with global values To illustrate why the lower bounds (12) are unpractical for
problems with strongly varying coefficients, consider a one-dimensional diffusion problem (1) on
the domain [0, 1] with a large jump in the diffusion coefficient:

1
1, for x < 3,

K(z) = {0.001, else. (13)

For this problem, the penalty parameter o needs to be chosen close to 10000 according to (12),
which would lead to an inconveniently large condition number of the coefficient matrix. The
question is whether this is really necessary: when the domains [0, %) and [%7 1] are considered
separately, a value close to o = 10 is reasonable in the first domain, and a value close to ¢ = 0.01
is suitable in the second.

Diffusion-dependent penalty parameter This reasoning advocates to apply (12) using local
values of the diffusion coefficient (e.g. ¢ = 10K) instead of global ones (e.g. o = 10000). To
demonstrate the effect of such a diffusion-dependent penalty parameter on the coefficient matrix,
consider the aforementioned one-dimensional diffusion problem (cf. (13)) again with N = 4 mesh
elements and polynomial degree p = 1. If we use the common constant choice, ¢ = 10, which is
actually still far too small according to (12), the matrix reads:

80000 4000 | —40000 36000 0 0 0 0
4000 72000 | —36000 32000 0 0 0 0
—40000 —36000 | 80000 0 | —40000 39996 0 0
A—10-3 36000 32000 0 80000 | —36000 35996 0 0
0 0 | —40000 —36000 | 80000 0 | —40000 39996
0 0| 39996 35996 0 80000 | —39996 39992
0 0 0 0 | —40000 —39996 | 80000 —4
I 0 0 0 0| 39996 39992 —4 79992 |

Observe that the jump in the diffusion can hardly be noticed in the matrix coefficients in this
case. This is because the penalty parameter is much larger than the smallest value of the diffusion



coefficient. On the other hand, if we use a diffusion-dependent value, o = 10K (using the largest
value, K = 1, at the location of the jump), we obtain:

80000 4000 | —40000 36000 0 o] 0 0]

4000 72000 | —36000 32000 0 o] 0 o0

—40000 —36000 | 80000 0| —40000 39996 | 0 0

A — 108 | 36000 32000 0 80000 | —36000 35996 | 0 0 (14

0 0 [ —40000 —36000 | 40040 —39960 | —40 36

0 0| 39996 35996 | —39960 40040 | —36 32

0 0 0 0] —40  —36| 80 —4

I 0 0 0 0 36 32| -4 72|

The matrix is SPD in both cases, but, this time, the jump in the diffusion is clearly visible. In that
respect, the original problem is better represented by the matrix coefficients. For this reason, and
for reasons discussed in Section 3.3 and Section 4.3 later on, it is best to use a diffusion-dependent
penalty parameter for problems with strongly varying coefficients.

3 Casting the spectral two-level preconditioner into the de-
flation framework

The linear systems discussed in the previous section can be solved by means of the preconditioned
CG method. This section discusses the spectral two-level preconditioner introduced by Dobrev et
al. [6] (Section 3.1) and casts it into the deflation framework (Section 3.2). Moreover, it considers
the influence of the penalty parameter on the coarse level accuracy of these methods (Section 3.3).

3.1 Formulating the original spectral two-level preconditioner

The condition number of the SIPG coefficient matrix A is typically large for a small mesh element
diameter [5]. To avoid that the convergence of the CG method is slower for finer meshes, Dobrev
et al. introduced a spectral two-level preconditioner that applies coarse corrections based on the
SIPG solution with p = 0. This section briefly summarizes the definition and properties of this
preconditioner. For a large class of problems, Dobrev et al. showed that the condition number
of the preconditioned system is independent of the mesh, resulting in uniform convergence of the
PCG method.

Coarse correction operator Spectral two-level methods are defined in terms of a coarse cor-
rection operator @ ~ A~! that switches from the original DG test space to a coarse subspace,
then performs a correction that is now simple in this coarse space, and finally switches back to the
original DG test space. Dobrev et al. apply this strategy using the coarse subspace that consists
of all piecewise constants. More specifically, the coarse correction operator () reads:

~—

restriction

T -1
Q= R A R
~—
prolongation

coarse correction

where the so-called restriction operator R is defined such that
Ap = RAR"

is the SIPG matrix with polynomial degree zero. Observe that ) and Ag are SPD if A is SPD.
The matrix Ag is also referred to as the Galerkin matriz, or coarse matriz.



Matrix example For example, for a two-dimensional Laplace problem with p = 1, a mesh with
2 x 2 elements, and penalty parameter o = 10 we have:

T4 1 1|-10 9 of-10 0o 9| 0 0 07
1 25 0] =9 8 0 0 -3 =0 0 0 0
1 -0 25 0 -0 -3 -9 0 8| 0 0 ©0
-10 -9 0| 40 -1 1 0 0 O0|/-10 0 9
9 8 —0| -1 25 0 0O 0 0| 0 =3 0
" 0 0 -3| 1 0 25 0O 0 0| -9 o0 8
=10 0 —9] 0 0 oOof 40 1 —-1[-10 9 0
0 -3 0| 0 0 0 1 25 0] -9 8 0
9 -0 8| 0O 0 0| -1 0 25/ 0 0 -3
0 0 O0]-10 0 -9 -10 -9 0] 40 -1 -1
0O 0 0| 0 -3 0 9 8 0| -1 25 0
. 0 o0 0| 9 o0 8 0 0 -3| -1 0 25|
T 40 | =10 || —10 0
A0:—1o 40 010}
—10 ol 40 -10
i —10 =10 | 40
1 0 0/0 0 0[O0 0 0l0O 0 O
R 0 0 0[1 0 0ff[0 0 0[O0 O O
|0 0 0of0o 0 0fft o 0[O0 O O
0 0 0/0 O 0[[0 0 0|1 0 O

Observe that every element in Aq is also present in the upper left corner of the corresponding
block in the matrix A. This is because the piecewise constant basis functions are in any monomial
basis. As a consequence, the matrix R contains elements equal to 0 and 1 only, and does not need
to be stored explicitly: multiplications with R can be implemented by simply extracting elements
or inserting zeros.

Spectral two-level preconditioner Now that the coarse correction operator @Q has been de-
fined, we can formulate the spectral two-level preconditioner. Basically, the result y = Mpyec7 of
applying this preconditioner to a vector r can be computed in three steps:

y = My (pre-smoothing),
y? =y 4 Q(r — Ay(l)) (coarse correction),
y =y + M T(r - Ay®) (post-smoothing), (15)

where M~! ~ A~! is an invertible smoother, for which we typically use block Jacobi. The
preconditioning operator My,e. can also be written explicitly as (cf. e.g. [17]):

Mopree = M(M + M*T — A)'MT + (I - M~ TA)Q(I — AM™). (16)

For a large class of problems, it can be shown that the preconditioner is uniform, assuming that
M + M7 — A is SPD [6]. The same requirement implies that the operator M. is SPD [18],
which is required for the PCG method.

3.2 Casting the spectral two-level preconditioner into the deflation frame-
work

Despite its uniform convergence, the spectral two-level preconditioner discussed in the previous
section has a two relevant drawbacks: the first is that {fwo smoothing steps are required. The
second is that the smoother must be chosen such that M + M7T — A is SPD. Unfortunately, for



large problems, it is usually not easy to verify this requirement. Furthermore, it is typically
not satisfied for standard Jacobi smoothing. To eliminate one of the two smoothing steps and
the inconvenient restriction on the smoother at the same time, we cast the spectral two-level
preconditioner into the deflation framework. This section discusses how this deflation method can
be implemented in a PCG method by applying the analysis by Tang et al. [17]. We find that
this can basically be achieved by simply skipping one of the two smoothing steps in the original
preconditioning variant. The resulting spectral two-level deflation technique can be applied for
any SPD smoothing operator.

Spectral two-level deflation Essentially, we propose to skip the last smoothing step in (15).
In other words, the result y = Mgear of applying the spectral two-level deflation technique to a
vector r can be computed as:

yM =M1y (pre-smoothing),
y =y +Q(r— AyW) (coarse correction). (17)

The operator Mgen can also be written explicitly as (cf. [17]):
Maen = PTM™1 +Q, Pi=1-AQ.

This operator is not symmetric in general. As such, it seems unsuitable for the standard PCG
method. Surprisingly, it can still be implemented successfully in a generalized PCG algorithm
in its current asymmetric form, for any SPD smoothing operator M~'. This is explained be-
low. We stress that we have dropped the smoothing criterion that was required for the original
preconditioning variant. In other words, unlike the preconditioning variant, the deflation variant
allows that we apply no smoothing at all, i.e. that we set M ~! = I. However, in practice, some
smoothing is usually required for fast convergence.

Two-level PCG The spectral two-level deflation technique (17) can be implemented as an
asymmetric operator in a PCG algorithm by pre-processing the starting vector &:

Z— Qb+ PT& = V. (18)

In other words, the generalized PCG algorithm reads, substituting Mgeq for M:

1. ®g = Vstart

2. To = b— Awo

3. yy = Mrg

4. po = Yo

5. for j =0,1,... until convergence do
6. w; := Ap;

7. Qj = (rjvyj)/(pj7wj)

8. IBJ‘+1 = il)j + ajpj

9. Tjt1:=T; — ;W
10. Yjr1 = Mrjp
11. Bj = (rj+1,9541)/ (75, ;)
12. Pjt1:=Yjt1 +5p;
13. end

Indeed, it was shown in [17] that this algorithm with (18) produces the same iterates when sub-
stituting for M either one of the following three operators (note that M; and My are SPD):

o Myes,



operation flops (rounded) | # defl. | # prec.
mat-vec (Au) 10m*N 2 3
inner product (u?v) 2mN 2 2
scalar multiplication (o) mN 3 3
vector update (u £ v) mN 5 7
smoothing (M ~1u) variable 1 2
coarse solve (Ag u) variable 1 1

Table 2: Comparing the computational costs per CG iteration for A-DEF2 and the spectral
preconditioner.

e My :=PTM~'P+Q,
o My:=PTM-'P.

In other words, because of the simple pre-processing step (18), the deflation variant (17) can be
applied effectively for arbitrary starting vector & and SPD smoothing operator M ~!. The costs
for the pre-processing are comparable to those for one preconditioning step (17).

Finally, we remark that the original spectral two-level preconditioner (15) can be incorporated
in a PCG algorithm in the usual manner: assuming that M + M7 — A is SPD, the algorithm
above can be applied for starting vector & =: Vstart, substituting Mpyec (15) for M. We stress
that the resulting iterates are not the same as for the deflation variant.

Flops Table 2 compares the computational costs per CG iteration for both spectral two-level
methods in terms of FLoating point OPerationS (FLOPS). This table applies to two-dimensional
diffusion problems with polynomial degree p, a mesh with N elements, and polynomial space
dimension m := W (cf. Section 2.1). Using the spectral two-level preconditioner, the
CG method requires per iteration (30m? + 14m)N flops, plus the costs for two (non-trivial)
smoothing steps, and plus the costs for one coarse solve. Using the spectral two-level deflation
method, the CG method requires per iteration (20m? + 12m)N flops, plus the costs for one
(optional) (pre-)smoothing step, and plus the costs for one coarse solve. This is significantly
cheaper, especially when the smoothing costs are high. A block Jacobi smoothing step with
blocks of size m requires (2m? — m)N flops.

3.3 Studying the influence of the penalty parameter on the coarse level
accuracy

It can be expected that the spectral two-level methods defined in the previous section are only
effective if the coarse solution, i.e. the SIPG solution with p = 0, is sufficiently accurate. To
gain insight in the coarse level accuracy, we compute the SIPG solution with p = 0 for both a
constant and a diffusion-dependent penalty parameter. This section discusses the results and the
implications for the performance of the spectral two-level methods. We observed that, although
the SIPG method converges at rate p + 1 for p > 0, the accuracy for p = 0 is very limited and
depends strongly on the penalty parameter. For a diffusion-dependent penalty parameter, the
underlying physics is captured better in the shape of the solution than for a constant penalty
parameter. This is valuable coarse level information for the spectral two-level methods. Later on,
Section 4.3 demonstrates that the spectral two-level deflation method yields faster CG convergence
for a diffusion-dependent penalty parameter than for a constant value. However, fast uniform
convergence is obtained in either case.

Coarse level accuracy for a constant penalty parameter Figure 2 displays the SIPG
approximation with polynomial degree p = 0 for a one-dimensional diffusion problem (1) with
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Dirichlet boundary conditions, exact solution u(z) = cos(27z), and a diffusion coefficient that
varies smoothly between 0.001 and 1:

K(z) = 0.5005 4 0.4995 sin(27z).

If the penalty parameter is constant (cf. Figure 2a and Figure 2b), the accuracy of the approx-
imation is quite poor for this problem. This is because the coefficient matrix is independent of
the diffusion coefficient in this case, as can be seen from equations (10), (11), and (5). And since
the diffusion process is not captured at all by the discretization, the approximation can not be
accurate.

Coarse level accuracy for a diffusion-dependent penalty For a diffusion-dependent penalty
parameter ¢ = K, the discretization is equivalent to a central difference discretization, and the
method converges (cf. Figure 2c). If the penalty parameter o = 10K, the method does not con-
verge, but the shape of the solution is still captured accurately (cf. Figure 2d). This is because
the coefficient matrix is equivalent to a central difference matrix, aside from a constant equal to
10. Altogether, although the approximation for p = 0 is not accurate in general, the shape of the
solution is captured better for a diffusion-dependent o than for a constant . This is valuable
information for the spectral two-level methods.

15 15 15

°
@

Solution
°

Solution

0 02 04 06 08 1 "0 02 04 06 08 1
X X

(¢)o=K (d) o = 10K

Figure 2: Accuracy of the SIPG solution (red) with polynomial degree p = 0 and N = 40 mesh
elements compared to the exact solution (black) for different values of the penalty parameter o.
Although the approximation is not accurate in general, the shape of the solution is captured better
for a diffusion-dependent ¢ than for a constant ¢. This information likely benefits the performance
of the spectral two-level methods.

4 Numerical validation: comparing both two-level variants

Now that the spectral two-level methods have been defined, their performance can be tested
by means of numerical experiments. After specifying the experimental setup (Section 4.1), this
section compares the performance of the proposed spectral two-level deflation method to that of
the original preconditioning variant (Section 4.2). Additionally, it examines the influence of the
penalty parameter on the convergence speed of both the SIPG and the CG method (Section 4.3).

4.1 Specifying the experimental setup

To validate the spectral two-level deflation method, we study four diffusion problems, discretized
by means of the SIPG method, and solved by means of the the generalized (deflated) PCG method.
This section discusses the details of the experimental setup. In short, the test cases are smooth or
layered problems with extreme contrasts in the coefficients. The SIPG penalty parameter is chosen
diffusion-dependent, as motivated by Section 2.3 and Section 3.3, but a distorted version and a
common constant value are also considered for comparison. Furthermore, block Jacobi smoothing
is used for both the spectral two-level deflation technique and the original preconditioning strategy.

11
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Figure 3: Smooth problem: the diffusion coefficient varies smoothly between 0.001 and 1 (cf.

(19)).
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Figure 4: Three layered problems with extreme contrasts in the coefficients: a problem with five
layers, a problem with seven layers, and a problem with two layers in a ‘bowl’.
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(a) Five layers

(b) Seven layers (c) Bowl

Figure 5: For the problem with five and two layers, the grid lines fall together with the layers. For
the problem with seven layers this is not the case.

Test cases We consider the following two-dimensional diffusion problems of the form (1) on the
domain [0, 1]2:

1. Smooth problem: this test case uses a diffusion coefficient that varies smoothly between 0.001
and 1 (cf. Figure 3):

K(x,y) = 0.5005 + 0.4995 sin(27x) sin(27y). (19)

Dirichlet boundary conditions are applied at the entire domain boundary. The strong vari-
ations in the diffusion make this an interesting test case.

2. Five layers: this test case uses five layers of the same thickness, and the diffusion coefficient
is either 1 or 0.001 in each layer (cf. Figure 4a). Dirichlet boundary conditions are applied
at the entire domain boundary. This problem is more challenging than the smooth problem
due to the jumps in the diffusion. Furthermore, the layered nature is characteristic for oil
reservoir simulations. Similar problems were studied in [6, 13, 19].

3. Seven layers: this test case is the same as the one with five layers, except for the use of two
extra layers (cf. Figure 4b).

4. Bowl: this test case uses only two layers of the same thickness, and the diffusion coefficient
is either 1 or 0.1 (cf. Figure 4c). The challenging part of this test case is that homogeneous
Neumann boundary conditions are applied at the black edges in Figure 4c (resulting in a
bowl-shaped problem): these have a strongly negative impact on the conditioning of the
SIPG coefficient matrix.

In each case, the Dirichlet boundary conditions and the source term f in (1) are chosen such that
the exact solution reads:

u(zx,y) = cos(2mx) cos(mmy),

where m = 2 for the smooth problem, and m is the number of layers for the layered problems.

SIPG Setup All model problems are discretized by means of the SIPG method as discussed in
Section 2. We use a uniform and Cartesian mesh with n X n elements, where n = 10, 20, 40, 80.
Observe that the grid lines fall together with the discontinuities for the problems with five and two
layers (cf. Figure 5). For the problem with seven layers, this is not the case, so proper convergence
of the SIPG method is not predicted by theory. We include this test case anyway for the sake
of completeness. Furthermore, we use monomial basis functions with polynomial degree up to
p=1,23.

13



The penalty parameter is chosen diffusion-dependent, ¢ = 20K (using the largest limit value of
K at the location of the discontinuities), as motivated by Section 2.3 and Section 3.3. Although it
is common to use only one value for o per edge in the mesh, we choose to let o follow the diffusion
coeflicient naturally along the edge. For comparison, we also consider a common constant o = 20,
and a distorted version of 0 = 20K:

o(z,y) = 20K (z,y)(1.25 + 0.25 sin(27x) sin(27wy)) > 20K. (20)

This last choice is considered to test the robustness of the methods with respect to the penalty
parameter.

CG Setup The linear systems resulting from the SIPG discretizations are solved by means of
the generalized (deflated) PCG method as discussed in Section 3.2. Besides the original spectral
two-level preconditioner (cf. Section 3.1) and the proposed deflation variant (cf. Section 3.2),
we also consider standard diagonal preconditioning and basic block Jacobi preconditioning with
blocks of order W, the dimension of the polynomial test space within one element. Block
Jacobi is also used for the smoothing operator M ! in both spectral two-level variants. Coarse
systems, involving the SIPG matrix Ay with polynomial degree p = 0, are solved directly unless
stated otherwise. However, a more practical strategy is also provided and tested in Section 4.2
below. In any case, the coarse matrix Ay is quite similar to a central difference matrix, for which
very efficient solvers are readily available.

Diagonal scaling is applied as a pre-processing step in all cases, and the same random start
vector T is used for all problems of the same size. For the stopping criterion we use:

[k l2
[161]2

where TOL = 1077, and r, = b— Axy, is the residual after the k*" iteration. Additionally, we stop
if the number of iterations is equal to the order of the matrix. Finally, we measure the condition
number of the (diagonally-scaled) matrix A as the ratio between the largest and the smallest
eigenvalue.

< TOL, (21)

4.2 Main results for a diffusion-dependent penalty parameter

To validate the spectral two-level deflation method, we perform the experiments specified in the
previous section. This section discusses the outcome of these experiments. We observe that the
spectral two-level deflation technique yields uniform convergence, and that it is faster than the
original preconditioning variant for larger problems, even though its costs per iteration are lower.
Furthermore, we observe that the coarse systems can be solved efficiently by applying the CG
method in an inner loop using relatively low accuracy.

Comparison of preconditioning strategies Table 3 compares the four preconditioning strate-
gies in terms of the number of CG iterations required for convergence (also cf. Figure 6 for the
convergence per iteration in the A-norm and the L?-norm). As expected, the convergence for the
two basic preconditioners slows down rapidly for larger meshes, whereas both spectral two-level
methods yield fast uniform convergence, independent of the mesh element diameter. Interestingly,
for large problems, the deflation variant requires fewer iterations, even though it is less expen-
sive due to lower smoothing costs, and more practical due to the absence of restrictions on the
smoother.

More practical solution strategy for coarse systems To obtain the results in Table 3, a
direct solver was used for the coarse systems with coefficient matrix Ag (cf. Section 3.1). In
practice, this is usually not feasible, since Aj is a large N x N matrix, where N is the number
of mesh elements. For this reason, Table 4 considers the cheaper alternative of applying the CG
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degree =1 p=2 p=3
mesh N=10? N=202 N=40? N=802 N=10? N=202 N=40?2 N=80? N=10? N=20? N=40? N=80?2
condition number | 2.5e4+03 1.0e+04 3.9e+04 1.5e+05 | 6.1e+03 2.1e+04 7.6e+04 2.9e+05 | 8.9e+03 2.9e+04 1.1e+05 4.0e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 122 236 461 889 206 400 721 1362 237 410 729 1393
Block Jacobi (BJ) 116 239 469 885 130 248 438 845 129 244 446 847
TL prec., 2x BJ 32 38 40 41 40 43 44 45 46 56 62 63
TL defl., 1x BJ 36 41 43 44 38 39 39 39 40 41 43 43
(a) Smooth problem, diffusion-dependent o = 20K
degree p=1 p=2 p=3
mesh N=10> N=202 N=402 N=80? | N=102 N=20> N=40®> N=80%2 | N=10> N=202 N=40®> N=802
condition number | 3.1e404 4.5e+04 7.6e+04 2.5e+05 | 1.6e+05 1.7e4+05 2.3e+05 5.1e+05 | 3.0e+05 2.8e+05 3.3e+05 6.7e4+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 300 690 948 1264 600 1247 1469 1876 1000 1665 1913 2317
Block Jacobi (BJ) 123 249 485 883 144 259 490 932 144 255 492 870
TL prec., 2x BJ 35 41 42 42 46 52 49 49 49 62 64 65
TL defl., 1x BJ 43 46 51 52 51 51 54 54 53 56 57 58
(b) Five layers, diffusion-dependent o = 20K
degree =1 p=2 p=3
mesh N=10> N=20> N=40> N=80%> | N=10> N=202 N=40> N=80%> | N=10° N=20> N=402> N=80?
condition number | 6.5e4+03 2.1e+04 7.5e+04 2.9e+05 | 2.8e+04 4.0e+04 1.4e+05 5.4e+05 | 7.4e+04 6.0e+04 2.1e4+05 8.2e405
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 188 328 625 1205 538 727 1066 1736 855 926 1402 2152
Block Jacobi (BJ) 138 267 515 982 167 296 524 990 161 298 530 975
TL prec., 2x BJ 34 38 39 40 39 46 46 45 45 56 60 62
TL defl., 1x BJ 39 41 43 44 38 41 42 41 42 43 44 45
(c) Seven layers, diffusion-dependent o = 20K
degree p=1 p=2 =3
mesh N=10> N=20> N=402 N=80? | N=10> N=20> N=40®> N=80%? | N=10> N=20> N=40> N=80?
condition number | 9.5e4+04 3.7e+05 1.5e+06 5.9e+06 | 1.8e+05 7.2e4+05 2.8e4+06 1.1e+07 | 2.5e+05 9.7e+05 3.9e+06 1.5e407
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 233 454 895 1654 366 633 1222 2423 434 735 1443 2729
Block Jacobi (BJ) 194 394 779 1446 219 415 785 1514 214 423 795 1496
TL prec., 2x BJ 41 44 45 45 52 51 52 52 63 67 67 68
TL defl., 1x BJ 49 50 55 56 50 53 54 54 56 57 57 58

(d) Bowl, diffusion-dependent o = 20K

Table 3: Comparing preconditioning techniques in terms of the number of CG iterations required
for convergence: both spectral two-level methods yield fast uniform convergence. However, for
the large problems, the proposed deflation technique is faster than the original preconditioning
variant, even though the latter is more expensive per iteration due to an extra smoothing step.

method again in an inner loop with the standard incomplete Cholesky preconditioner without
fill-in. This table displays the number of outer iterations required for converge of the CG method
with the spectral two-level deflation technique. Both the outer and the inner loop use stopping
criterion (21). For the inner loop, we consider several values for TOL. For comparison, the results
for a direct coarse solver are also displayed. The maximum number of iterations is set to 300.
Observe that low accuracy in the inner loop is sufficient for high accuracy in the outer loop. For
example, for the problems with five and seven layers, the inner tolerance can be 10° times as large
as the outer tolerance.

4.3 Influence of the penalty parameter on the convergence of the SIPG
and CG method

The previous section demonstrated that the spectral two-level method is quite effective for a
diffusion-dependent penalty parameter. The question remains how this uncommon choice for
the penalty parameter affects the convergence of the SIPG method. Another question is how the
convergence of the CG method would change if the coarse matrix Ag would no longer be equivalent
to an accurate central difference matrix, as would be the case for a non-uniform mesh for instance.
To answer these two questions, we compute the SIPG solutions for both a common constant and
a diffusion-dependent penalty parameter. Furthermore, we repeat the CG experiments of the
previous section for both a constant and a distorted diffusion-dependent penalty parameter, for
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Figure 6: CG convergence per iteration in terms of both the A-norm (top row) and the L?-norm
(bottom row) for polynomial degree p = 3, N = 802 mesh elements, and a diffusion-dependent
penalty parameter o = 20K . The spectral two-level deflation technique (red) is faster than the
preconditioning variant (black) in all cases.

degree =1 p=2 p=3
mesh N=10> N=20> N=40> N=802 | N=10> N=20®> N=40> N=80? | N=10> N=202 N=40> N=802
condition number | 2.5e+03 1.0e+04 3.9e4+04 1.5e+05 | 6.1e+03 2.1e+04 7.6e+04 2.9e+05 | 8.9e4+03 2.9e+04 1.1le+05 4.0e4+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
exact 36 41 43 44 38 39 39 39 40 41 43 43
TOL = 10~* 36 41 43 44 38 39 39 39 40 41 43 43
TOL =103 36 41 43 44 38 39 39 39 40 41 43 44
TOL = 1072 36 41 43 46 38 39 39 40 40 41 43 44
TOL =101 49 91 160 300 43 64 98 131 45 69 78 300
(a) Smooth problem, inexact coarse solves
degree p=1 p=2 p=3
mesh N=10? N=202 N=40? N=80?2 N=10? N=202 N=402 N=80?2 N=102 N=20? N=402 N=802
condition number | 3.1e+04 4.5e+04 7.6e4+04 2.5e+05 | 1.6e+05 1.7e4+05 2.3e+05 5.1e+05 | 3.0e+05 2.8e+05 3.3e+05 6.7e405
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
exact 43 46 51 52 51 51 54 54 53 56 57 58
TOL =104 43 46 51 52 51 51 54 54 53 56 57 58
TOL = 1073 43 47 50 53 51 51 54 54 53 56 57 58
TOL = 102 44 47 53 55 51 51 53 55 53 56 56 58
TOL =101 300 300 300 300 68 81 118 300 67 79 93 141
(b) Five layers, inexact coarse solves
degree p=1 p=2 p=3
mesh N=10? N=202 N=40? N=80?2 N=10? N=20? N=402 N=80?2 N=10? N=202 N=402 N=80?2
condition number | 6.5e+03 2.1e+04 7.5e+04 2.9e+05 | 2.8¢+04 4.0e+04 1.4e+05 5.4e4+05 | 7.4e+04 6.0e+04 2.1e+05 8.2e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
exact 39 41 43 44 38 41 42 41 42 43 44 45
TOL = 10~* 39 41 43 44 38 41 42 41 42 43 44 45
TOL =103 39 41 43 44 38 41 42 41 42 43 44 45
TOL =102 40 41 44 46 38 41 43 43 42 43 44 45
TOL = 107! 85 188 300 300 67 87 125 300 63 111 201 300
(c) Seven layers, inexact coarse solves
degree p=1 p=2 p=3
mesh N=102 N=20> N=40> N=802 | N=10> N=202 N=402> N=80%2 | N=10> N=202 N=40> N=80?
condition number | 9.5e+04 3.7e+05 1.5e4+06 5.9e4+06 | 1.8e+05 7.2e4+05 2.8e+06 1.1e+07 | 2.5e4+05 9.7e+05 3.9e+06 1.5e4+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
exact 49 50 55 56 50 53 54 54 56 57 57 58
TOL =104 49 50 55 56 50 53 54 54 56 57 57 58
TOL =103 49 50 55 56 50 53 54 54 56 57 57 58
TOL =102 51 56 56 64 50 53 55 55 56 58 59 59
TOL = 107! 127 300 300 300 89 300 300 300 300 300 300 300

(d) Bowl, inexact coarse solves

Table 4: Solving coarse systems for the spectral two-level deflation technique by applying CG
again (with a standard IC preconditioner): low accuracy in the inner loop is sufficient for high

accuracy in the outer loop.
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‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘ ‘ mesh H p=1 ‘ p=2 ‘ p=3
‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘ ‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘
N =10% [ 3.73e-01 - 4.43e-03 2.25e-04 - N =107 ][ 2.02e-01 - 3.02e-03 - 1.95e-04 -

N =202 [ 1.27e-01 | 1.56 | 4.08¢-04 | 3.44 | 1.25e-05 | 4.17 N =207 || 6.16e-02 | 1.71 | 3.09e-04 | 3.29 | 1.20e-05 | 4.02
N =402 || 3.60e-02 | 1.81 | 3.94e-05 | 3.38 | 7.33e-07 | 4.09 N =407 || 1.66e-02 | 1.90 | 3.42e-05 | 3.18 | 6.97e-07 | 4.10
N =802 | 9.49e-03 | 1.93 | 4.34e-06 | 3.18 | 4.45¢-08 | 4.04 N =807 || 4.24e-03 | 1.97 | 4.10e-06 | 3.06 | 4.24e-08 | 4.04

(a) Smooth problem, fixed o = 20 (b) Smooth problem, diffusion-dependent o = 20K
‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘ ‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘
‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘ ‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘

N =102 [[ 4.12e-01 - 9.36e-02 - 9.47e-03 - N =107 || 3.02e-01 - 1.93e-02 - 1.90e-03 -
N =207 || 2.48e-01 | 0.73 | 2.32e-02 | 2.01 | 1.20e-03 | 2.98 N =202 || 1.15e-01 | 1.40 | 1.92e-03 | 3.33 | 1.16e-04 | 4.04
N =407 || 1.54e-01 | 0.69 | 4.90e-03 | 2.25 | 1.13e-04 | 3.40 N =407 || 3.43e-02 | 1.74 | 2.13e-04 | 3.17 | 7.11e-06 | 4.02
N =802 || 1.10e-01 | 0.48 | 6.91e-04 | 2.82 | 7.50e-06 | 3.92 N =807 || 9.12e-03 | 1.91 | 2.55e-05 | 3.06 | 4.42e-07 | 4.01

(c) Five layers, fixed o = 20 (d) Five layers, diffusion-dependent o = 20K
mesh p=1 p=2 p=3 mesh p=1 p=2 p=3
error order error order error order error order error order error order
N =107 || 4.87e-01 - 7.55e-01 - 1.04e+00 - N =107 [ 9.35e-01 - 9.93e-01 - 1.08e+00 -

N =207 || 2.62e-01 | 0.89 | 3.97e-01 | 0.93 | 4.16e-01 1.32 N =207 || 4.32e-01 | 1.11 | 4.29e-01 | 1.21 | 4.11e-01 1.39
N =407 ]| 9.92e-02 | 1.40 | 6.04e-02 | 2.72 | 5.86e-02 | 2.83 N =407 || 5.55e-02 | 2.96 | 5.76e-02 | 2.90 | 5.87e-02 | 2.81
N =807 || 1.46e-01 | -0.56 | 1.24e-01 | -1.04 | 1.24e-01 | -1.08 N =802 || 1.27e-01 | -1.19 | 1.24e-01 | -1.11 | 1.24e-01 | -1.08

(e) Seven layers, fixed o = 20 (f) Seven layers, diffusion-dependent o = 20K
‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘ ‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘
‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘ ‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘

N =107 [ 2.82¢-01 - 7.72e-03 - 2.67e-04 -

N =207 [[ 1.23e-01 | 1.20 | 8.62e-04 | 3.16 | 1.47e-05 | 4.18
N =407 || 4.52e-02 | 1.44 | 7.27e-05 | 3.57 | 7.89e-07 | 4.22 1.78e-02 | 1.83 | 3.45e-05 | 3.21 | 6.82e-07 | 4.04
N =802 || 1.40e-02 | 1.69 | 5.99e-06 | 3.60 | 4.54e-08 | 4.12 4.60e-03 | 1.95 | 4.11e-06 | 3.07 | 4.22e-08 | 4.01

(g) Bowl, fixed o = 20 (h) Bowl, diffusion-dependent o = 20K

1.77e-01 - 3.39e-03 - 1.93e-04 -
6.33e-02 | 1.48 | 3.19e-04 | 3.41 | 1.12e-05 | 4.10

Table 5: SIPG convergence for both a constant and diffusion-dependent penalty parameter: the
convergence for the problem with seven layers is poor, as its discontinuities do not fall together
with the mesh element boundaries. For the other cases, a diffusion-dependent penalty parameter
yields higher SIPG accuracy, both in order and in absolute value.

which the coarse matrix Ag is no longer equivalent to an accurate central difference matrix. This
section discusses the results and compares them to those obtained in the previous section. We
found that a diffusion-dependent penalty parameter yields smaller condition numbers and faster
SIPG and CG convergence than a constant penalty parameter. Additionally, we observe that
the spectral two-level deflation method suffers much less from changes in the penalty parameter
than the preconditioning variant for large problems. In that sense, it is more robust. Finally, it
can be concluded that the proposed combination of a diffusion-dependent penalty parameter and
the spectral two-level deflation method can yield over 100 times faster CG convergence than the
original combination of a constant penalty parameter and the spectral two-level preconditioner.

SIPG convergence Table 5 displays the SIPG convergence for both a constant and a diffusion-
dependent penalty parameter. For all test cases except the problem with seven layers, the SIPG
method converges at rate p+ 1 for both a constant and a diffusion-dependent penalty parameter.
Interestingly, for a diffusion-dependent penalty parameter, the accuracy is better, both in order
and in absolute value. This is congruent with the observation in Section 2.3 that the underlying
physics is better represented by the matrix coefficients for a diffusion-dependent penalty parameter.

As expected, the convergence for the problem with seven layers is poor, as the discontinuities do
not fall together with the mesh element boundaries in that case (cf. Section 4.1). This explanation
is extra verified in Table 6, which considers the SIPG convergence for the problems with five and
seven layers for meshes with N = 21,42, 84 elements: indeed, proper convergence is now obtained
for the problem with seven layers, but not for the problem with five layers.

CG convergence for a constant penalty parameter Table 7 repeats the experiments of
Section 4.2 for a constant penalty parameter o = 20 (also cf. Figure 7 for the convergence per

17



‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘ ‘ mesh H p=1 ‘ p=2 ‘ p=3 ‘
‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘ ‘ H error ‘ order ‘ error ‘ order ‘ error ‘ order ‘
N =212 ][ 2.02e-01 - 3.87e-02 - 1.04e-02 N =212 ][ 9.01e-02 1.31e-02 - 8.63e-03

N =422 [ 1.06e-01 | 0.93 | 5.01e-03 | 2.95 | 4.81e-03 | 1.12 N =427 || 2.77e-02 | 1.70 | 3.59¢-03 | 1.86 | 5.97e-03 | 0.53
N =842 || 9.52e-02 | 0.16 | 1.09e-03 | 2.20 | 1.51e-03 | 1.68 N =842 || 8.14e-03 | 1.76 | 7.43e-04 | 2.27 | 1.66e-03 | 1.85

(a) Five layers, fixed o = 20 (b) Five layers, diffusion-dependent o = 20K
mesh p=1 p=2 p=3 mesh p=1 p=2 p=3
error order error order error order error order error order error order
N =212 || 2.35e-01 - 4.15e-02 2.87e-03 N =212 || 1.20e-01 - 3.74e-03 - 2.76e-04

N =422 || 1.59¢-01 | 0.57 | 8.70e-03 | 2.25 | 2.73e-04 | 3.39 N =427 || 3.78¢-02 | 1.67 | 4.27e-04 | 3.13 | 1.74e-05 | 3.99
N =842 || 1.14e-01 | 0.48 | 1.21e-03 | 2.84 | 1.79¢-05 | 3.93 N =842 || 1.02¢-02 | 1.88 | 5.18¢-05 | 3.04 | 1.09¢-06 | 4.00

(c) Seven layers, fixed o = 20 (d) Seven layers, diffusion-dependent o = 20K

Table 6: Extra verification using an alternative mesh (cf. Table 5): the SIPG method conver-
gences at rate p + 1 for both a constant and a diffusion-dependent penalty parameter, as long as
discontinuities fall together with the mesh element bounaries.

iteration in the A-norm and the L?-norm). Because this value is much larger than the average
diffusion-dependent value (cf. Table 3 with o = 20K), the condition numbers are much larger. As
a result, the convergence of the CG method is typically significantly slower for all preconditioning
strategies. Nonetheless, for the large problems, the spectral two-level deflation technique can
converge up to six times faster than the preconditioning variant. Finally, for the problem with
five layers wit p = 3 and N = 80, the spectral two-level preconditioner (cf. Table 7 with constant
penalty parameter o = 20) requires 90 times more iterations than the deflation technique with
a diffusion-dependent penalty parameter (cf. Table 3 with ¢ = 20K). Taking into account that
the deflation technique is less expensive per iteration, it is over 100 times faster in terms of overal
computational time.

CG convergence for a distorted diffusion-dependent penalty parameter Table 8 repeats
the experiments of Section 4.2 for a distorted version of o = 20K (20) (also cf. Figure 8 for the
convergence per iteration in the A-norm and the L2-norm). The average of this value is a little
larger than the average diffusion-dependent value (cf. Table 3 with o = 20K), but much smaller
than the constant value (cf. Table 7 with o = 20). The condition numbers and convergence rates
behave accordingly: both are worse compared to the undistorted diffusion-dependent case, but
only slightly compared to the constant case. Furthermore, for the large problems, the spectral
two-level deflation method can require up to 37% fewer iterations than the preconditioning variant.

5 Conclusions

This research is focused on an effective preconditioning strategy to increase the efficiency of the CG
method for linear systems resulting from SIPG discretizations for diffusion problems with extreme
contrasts in the coefficients. In short, we propose to apply the spectral two-level preconditioner
introduced by Dobrev et al. [6] as a deflation method. Furthermore, we propose to choose the
penalty parameter based on local values of the diffusion coefficient, instead of the usual strategy
to use one global parameter for the entire domain. We found that the combination of these two
approaches can render the CG method up to 100 times faster.

The spectral two-level preconditioner can be cast into the deflation framework by simply skip-
ping one of the two smoothing steps. Interestingly, the resulting asymmetric ‘preconditioning’
operator can be effectively implemented in a PCG algorithm, as long as the starting vector is
pre-processed in one cheap step. Coarse systems can be solved efficiently by applying the CG
method again with a relatively large tolerance. Compared to the original preconditioning variant,
the spectral two-level deflation strategy is less expensive per iteration due to lower smoothing
costs, and more practical due to the absence of restrictions on the smoother. Nevertheless, it
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degree =1 p=2 p=3
mesh N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=80?
condition number | 3.9e4+03 1.7e+04 7.1le+04 3.0e+05 | 1.4e+04 6.4e4+04 2.6e+05 1.0e+06 | 2.7e+04 1.0e+05 4.1e+05 1.5e4+06
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 157 336 714 1311 337 677 1262 2432 419 766 1427 2514
Block Jacobi (BJ) 157 336 714 1311 224 424 823 1466 232 477 833 1482
TL prec., 2x BJ 41 57 83 116 82 147 275 487 102 214 375 615
TL defl., 1x BJ 51 76 107 147 108 205 350 523 128 240 416 594
(a) Smooth problem, constant o = 20
degree p=1 p=2 p=3
mesh N=10> N=20> N=402 N=80% | N=10> N=20> N=40?> N=80%? | N=10> N=20> N=40> N=80?
condition number | 4.5e4+03 2.8e+04 2.2e+05 2.2e+06 | 3.4e+05 1.6e4+06 5.7e+06 2.1e+07 | 8.7e+05 2.6e+06 7.9e+06 2.7e407
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 165 392 1125 2773 600 2218 5916 12249 1000 3353 6684 12630
Block Jacobi (BJ) 165 392 1125 2772 425 1157 3007 6905 692 1785 3999 7710
TL prec., 2x BJ 51 91 188 348 186 490 1471 3022 504 1316 2603 5229
TL defl., 1x BJ 61 127 273 462 152 276 461 598 365 547 769 864
(b) Five layers, constant o = 20
degree p=1 p=2 p=3
mesh N=10> N=20> N=402 N=80? | N=10> N=20> N=40®> N=802 | N=10> N=202 N=40®> N=802
condition number | 4.0e+03 2.6e+04 1.5e4+05 1.2e+06 | 2.3e+04 4.9e4+05 2.6e+06 1.0e+07 | 1.2e+05 1.4e+06 3.9e+06 1.5e+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 155 382 1046 2775 431 1765 4486 9206 895 2680 4868 9691
Block Jacobi (BJ) 155 384 1044 2768 298 1084 2640 5733 552 1465 2876 6036
TL prec., 2x BJ 44 81 170 344 120 494 1158 2339 321 1106 2310 4508
TL defl., 1x BJ 58 115 267 435 167 441 696 760 428 774 852 921
(c) Seven layers, constant o = 20
degree p=1 p=2 p=3
mesh N=10? N=20? N=40? N=802 N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=80?
condition number | 1.2e+05 4.8e+05 1.9e4+06 7.6e+06 | 2.2e+05 8.6e+05 3.4e+06 1.4e+07 | 3.1e+05 1.2e+06 4.8e4+06 1.9e+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 300 763 1640 2967 600 1339 2618 4753 764 1430 2739 5200
Block Jacobi (BJ) 273 683 1447 2635 417 845 1558 2906 423 800 1460 2857
TL prec., 2x BJ 84 116 125 134 146 196 227 238 191 295 408 517
TL defl., 1x BJ 90 111 120 129 106 112 116 119 123 126 129 131

(d) Bowl, constant o = 20

Table 7: Using a constant penalty parameter o = 20: this typically yields much slower CG
convergence for all preconditioning strategies than a diffusion-dependent value (cf. Table 3).
Interestingly, for large problems, the spectral two-level deflation technique suffers much less from
this than the preconditioning variant, even though the latter is more expensive per iteration due
to an extra smoothing step.
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Figure 7: CG convergence per iteration in terms of both the A-norm (top row) and the L?-norm
(bottom row) for polynomial degree p = 3, N = 80? mesh elements, and a constant penalty pa-
rameter o = 20. The spectral two-level deflation technique (red) is faster than the preconditioning
variant (black) in all cases (except for the smooth problem, for which the convergence is similar

near the end).
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degree p=1 p=2 p=3
mesh N=10? N=20? N=40? N=802 N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=80?
condition number | 3.4e+03 1.3e+04 5.2e+04 2.0e+05 | 8.2e+03 2.8e+04 1.0e+05 3.9¢+05 | 1.2e+04 3.9e+04 1.4e4+05 5.4e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 135 251 508 1000 236 447 834 1525 260 469 811 1560
Block Jacobi (BJ) 131 265 522 992 145 282 514 991 147 279 510 964
TL prec., 2x BJ 35 43 46 48 46 51 54 57 56 71 80 85
TL defl,, 1x BJ 41 46 50 52 45 47 48 49 48 50 52 53
(a) Smooth problem, distorted version of o = 20K
degree p=1 p=2 p=3
mesh N=10> N=20> N=40> N=80? | N=10> N=207 N=40> N=80%> | N=10> N=202 N=40> N=80?
condition number | 3.7e+04 5.7e+04 9.8e+04 3.2e+05 | 2.2e+05 2.3e4+05 3.0e+05 6.5e+05 | 4.1e+05 3.9e+05 4.5e+05 8.5e4+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 300 739 1080 1437 600 1434 1705 2168 1000 1902 2251 2750
Block Jacobi (BJ) 132 274 545 1070 161 301 512 1094 161 302 560 1073
TL prec., 2x BJ 39 46 48 50 52 61 60 62 57 74 82 87
TL defl., 1x BJ 47 53 59 62 60 61 62 63 64 64 67 69
(b) Five layers, distorted version of o = 20K
degree p=1 p=2 p=3
mesh N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=802
condition number | 8.3e+03 2.7e+04 9.6e+04 3.7¢+05 | 3.6e+04 5.1e+04 1.8¢4+05 7.0c+05 | 9.9e+04 9.3e+04 2.7e4+05 1.1e+06
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 199 359 689 1367 531 850 1243 1980 946 1064 1575 2461
Block Jacobi (BJ) 152 309 568 1102 186 343 571 1151 192 316 596 1114
TL prec., 2x BJ 37 43 46 49 45 54 56 56 52 68 80 86
TL defl., 1x BJ 44 48 50 52 45 50 50 51 51 53 53 55
(c) Seven layers, distorted version of o = 20K
degree p=1 p=2 p=3
mesh N=10? N=20? N=40? N=80? N=10? N=20? N=40? N=80?2 N=10? N=20? N=40? N=802
condition number | 1.3e+05 5.1e+05 2.0e+06 8.1e+06 | 2.5e+05 9.8e+05 3.9e+06 1.5¢+07 | 3.4e+05 1.3e+06 5.3e+06 2.1e+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
Diagonal prec. 252 529 1036 2020 408 751 1450 2837 485 879 1644 3227
Block Jacobi (BJ) 212 458 920 1763 240 478 911 1765 234 466 904 1760
TL prec., 2x BJ 47 50 51 52 62 61 60 60 76 84 85 88
TL defl., 1x BJ 55 58 62 63 58 60 61 62 62 64 65 66

(d) Bowl, distorted version of o = 20K

Table 8: Using a distorted version of the diffusion-dependent penalty parameter o = 20K (20):
this yields somewhat slower CG convergence for all preconditioning strategies than the undis-
torted case (cf. Table 3). Interestingly, for the larger problems, the spectral two-level deflation
technique suffers much less from this than the preconditioning variant, even though the latter is
more expensive per iteration due to an extra smoothing step.
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Figure 8: CG convergence per iteration in terms of both the A-norm (top row) and the L?-norm
(bottom row) for polynomial degree p = 3, N = 80? mesh elements, and a distorted version of the
diffusion-dependent penalty parameter o = 20K (20). The spectral two-level deflation technique
(red) is faster than the preconditioning variant (black) in all cases.
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yields fast uniform convergence, and it requires significantly fewer iterations for large problems.
Altogether, the proposed spectral two-level deflation technique forms an effective preconditioning
strategy for our application, especially when smoothing costs need to be minimized.

Compared to a constant penalty parameter, we find that the use of a diffusion-dependent
penalty parameter introduces a new flexibility that has two main advantages for problems with
strongly varying coefficients. First, the SIPG coefficient matrix resembles the underlying physical
model better, which results in more accurate SIPG approximations. Second, the use of local values
allows for local minimization of the penalty parameter, resulting in smaller condition numbers,
and faster CG convergence. For these reasons, the penalty parameter can best be chosen diffusion-
dependent for problems with extreme contrasts in the coefficients.
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