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AN EFFICIENT DEFLATION METHOD
APPLIED ON 2-D AND 3-D BUBBLY FLOW PROBLEMS

J.M. TANG AND C. VUIK

ABSTRACT. Simulating bubbly flows is a very popular topic in CFD. These
bubbly flows are governed by the Navier-Stokes equations. In many popular
operator splitting formulations for these equations, solving the linear system
coming from the discontinuous Poisson equation takes the most computational
time, despite of its elliptic nature. ICCG is widely used for this purpose, but
for complex bubbly flows this method shows slow convergence.

As alternative for ICCG, we apply a deflated variant of ICCG which is
called DICCG. This new method incorporates the eigenmodes corresponding
to the components which caused the slow convergence of ICCG. Some imple-
mentation issues of DICCG are discussed in this paper and some considerations
about the singularity are made. Moreover, coarse linear systems have to be
solved within DICCG. We discuss methods to do this efficiently which results
in two approaches DICCG1 and DICCG2. In exact arithmetics, we prove that
these variants lead to the same convergence results. Thereafter we show with
numerical experiments that both DICCG approaches are very efficient. Com-
pared to ICCG, DICCG decreases significantly the number of iterations and
the computational time as well, which are required for solving Poisson equation
in applications of 2-D and 3-D bubbly flows.

Keywords. deflation, conjugate gradient method, preconditioning, Poisson equa-
tion, symmetric positive semi-definite matrices, bubbly flow problems.
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1. INTRODUCTION

Numerical simulation of bubbly flows are relevant to problems found in various
disciplines such as oil, nuclear and chemical industry. These bubbly flows are gov-
erned by the incompressible Navier-Stokes equations. Efficient solution of these
Navier-Stokes equations in complex domains depends upon the availability of fast
solvers for sparse linear systems. Most popular in use are the Krylov subspace it-
erative solvers, like the CG method with the incomplete Cholesky preconditioner
denoted by ICCG [5].

FIGURE 1. An example of a bubbly flow problem: a water splash.

For bubbly flows, the pressure operator is often the leading contributor to stiff-
ness. This pressure operator is coming from the discontinous Poisson equation. In
the context of operator splitting formulations for the Navier-Stokes equations, it is
the Poisson solve which is the most computationally challenging despite its elliptic
origins, see also [8,9,12].

We seek to improve the ICCG method for the pressure solve in order to overcome
the slow convergence, frequently observed in the presence of highly refined grids and
flows with high density ratio’s or with many bubbles. The presence of small eigen-
values have a harmful influence on the convergence of ICCG. These slow converging
components are not cured by preconditioning. A significant improvement consists
of the removal of the eigenmodes corresponding to these small eigenvalues out of the
system. This leads to the DICCG method. This method is equal to ICCG which is
extended with a deflation technique [7].

In many applications, DICCG has been proven to be an efficient method, such
as in applications of porous media flows [6] and ground water flows [15]. However,
in these cases, the interfaces in the domain can be described explicitly so that
applying the deflation technique is straightforward. Due to the possible appearance
of complex geometries in our problems of bubbly flows, the interfaces of the bubbles
can only be described implicitly in general, making the deflation technique more
sophisticated to apply.

Recently, DICCG applied on bubbly flows has been studied by the authors [13,
14]. In that paper theoretical considerations of DICCG are given with respect to
the singularity of the linear system. Moreover, some 3-D numerical experiments
have been performed, where ICCG and DICCG have been compared by considering
the number of iterations required for convergence to the solution. However, it is
known that a reduction of the number of iterations does not guarantee a reduction
of the required computational time, since the work per iteration may increase in the
new method. Therefore, in this paper we present new results by investigating both
the number of iterations and the required CPU time. To do so, DICCG has to be
programmed efficiently which is not straightforward. Hence, in this paper we will
consider some implementation issues in more detail in order to obtain an efficient
programming code.
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This paper is organized as follows. First the problem setting of the bubbly flow
is given in Section 2. Subsequently, we describe shortly the ICCG and DICCG
methods in Section 3. After that, in Section 4, DICCG will be treated in more
detail, especially the operations with the deflation matrix will be investigated. Next,
efficient methods to solve the coarse linear systems with DICCG will be proposed
in Section 5. Thereafter, a theoretical comparison of these efficient methods will
be made in Section 6. Section 7 and 8 are devoted to the 2-D and 3-D numerical
experiments to investigate the performance of both ICCG and DICCG. Moreover,
a real-life applications of a rising bubble in water and a falling droplet in air will be
considered in Section 9, where both ICCG and DICCG will be compared. Finally,
the conclusions will be presented in Section 10.

2. PROBLEM SETTING OF THE BUBBLY FLOW

We consider the singular SPSD (symmetric and positive semi-definite) linear
system
Ar=b, AeR™"™ (1)
The linear system (1) is derived after a second-order finite-difference discretization
of the 2-D or 3-D Poisson equation with Neumann boundary conditions, which is

{ -V (ﬁVp(x)) = f(x), xeq, @)
wmp(x) = g(x), x99,
where p, p,x and n denote the pressure, density, spatial coordinates and the unit
normal vector to the boundary 0%, respectively. In the 2-D case, domain 2 is chosen
to be a unit box, whereas 2 is a unit cube in 3-D. We apply the computations on
a uniform Cartesian grid, so that n = N, - N, in 2-D and n = N, - N, - N, in 3-D,
where N, N, and N, are the grid sizes in each spatial direction. Furthermore, we
consider two-phase bubbly flows with air and water. In this case, p is piecewise
constant with a relatively high contrast:
po =1, x € Ao,

p:{ p1:1073, x € Ay, (3)
where A is water, the main fluid of the flow around the air bubbles, and A; is the
region inside the bubbles. In the numerical experiments, we will take bubbles with
equal radius and which are well-structured in Ag. In Figure 2 one can find a plot
in the case of such a problem with eight bubbles. In the numerical experiments,
we will also consider other two-phase flows instead of the air-water flows. In these
cases, the contrast between the densities py and p; will be larger, resulting in a
more ill-conditioned linear system (1).

FIGURE 2. Geometry of a 3-D bubbly flow problem with eight air
bubbles in the unit domain filled with water.
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Subsequently, inhomogeneous Neumann boundary conditions (i.e., g(x) # 0) and
no source term (i.e., f(x) = 0) are imposed, so that vector b has only contributions
from the boundary conditions.

Finally, define 1, and 0, by the all-one and all-zero vector with p elements,
respectively. Then, through this paper the following assumption holds which follows
implicitly from the above problem setting.

Assumption 1. The singular SPSD matriz A and the vector b have the following
properties.
(i) A1, = 0,.
(i) The algebraic multiplicity of the zero-eigenvalue of A is equal to one.
(iii) bT 1, = 0.
Obviously, from (i) and (%), it follows that the Az = b is compatible. Hence,

although A is singular, this linear system is always consistent and an infinite number
of solutions z exists.

3. ICCG aAND DICCG ALGORITHMS

3.1. ICCG. The construction of the incomplete Cholesky (IC) preconditioner M =

CTC can be found in e.g. [3, Sect. 10.3.2]. Matrix C is lower triangular with the

same sparsity pattern as A. The resulting linear system which has to be solved is
M~ Az = M~"Ab.

Although A is singular, it can be shown that the IC preconditioner M is invertible [2,
Th. 3.2]. Next, the ICCG algorithm is given in Algorithm 1.

Algorithm 1 ICCG Algorithm solving Ax = b

1: compute rg := b — Axg,

solve Mwv; = rg and compute p; := vy
2: for j:=1,..., until convergence do
3 wj = Apj
4 oy = (ry,v5)/ (g, wy)
5. Tjy1 =T+ QP
6: Tjt+1 (= T5 — QjW;
7
8

solve Mv;11 = rj41
Do B = () /(-1 v0j-1)
9 pj41 = vjt1 + B;p;
10: end for
11t ¢ =241

3.2. DICCG. Before giving the algorithm of DICCG, we start with defining and
giving properties of the deflation subspace matrix Z, the coarse matrix £ and the
deflation matrix P, see also [14].

3.2.1. Definition of Z. Let the computational domain {2 be divided into open sub-
domains Q;, j = 1,2,...,k, such that Q = U?Zlﬁj and ﬂ?zlﬁj = () where Q; is
; including its adjacent boundaries. The discretized domain and subdomains are
denoted by Qp, and Q,, respectively. Then, for each Qp,; with j = 1,2,...,k, we
introduce a deflation vector z; as follows:
NS0, mie )\ Oy
(Zj)l o { 17 T € Qh_77
where x; is a grid point in the discretized domain 2. Then we define

Z:=z1 29 -+ 2k e R™*k,
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This implies immediately
71, = 1,. (4)

Hence, Z consists of orthogonal disjunct piecewise-constant vectors.

3.2.2. Definition of P and E. Matrices E and P are defined as follows [7]:
P:=1—-AZE'ZT c R E:=7zTAZ c R¥*F, (5)

Note that E~! is just a notation, since it will never be determined explicitly in the
computations. In addition, determining F~! is also not possible in our case, since
A is singular and therefore F is singular as well due to

F1,=27Az1, = z7 A1, = z70,, = 0, (6)

where we have applied Eq. (4) and Assumption 1. This means that direct com-
putations with E requires an invertible matrix A and iterative computations with
E have to satisfy consistency conditions. In fact, matrix E~! is known as the
Moore-Penrose inverse or pseudo-inverse !. This will be investigated extensively in
Section 4.

Now, in DICCG we have to solve the resulting linear system

M~'PAZ = M~'Pb.
From Z we can find solution z using the following expression (see e.g. [6]):
x=ZE"'Z"b+ P'i.

3.2.3. The DICCG Algorithm. Now, the algorithm of DICCG is presented in Algo-
rithm 2.

Algorithm 2 DICCG Algorithm solving Az =0

1: compute rg := b — Az and 7y := Pro,
solve Mwv; = 7p and compute p; := vy

2: for j:=1,..., until convergence do
3 wj = PAp;

4 aj = (75, 05)/ (P wy)

5:  Tjy1 =I5+ o p;j

6: fjJrl = fj — Wy

7 solve M’Uj+1 = ’Pj+1

8 B i=(F,v5)/(Fj-1,0-1)

9 pj41 = vjt1 + B;p;
10: end for
11: o = ZEilZTb—FPT{fJ‘Jrl

ISince A is symmetric, it is also diagonalizable where we can write
A=VAVT, V=[vive - vn], A=diag(0,A2,...,\n),

with A is the diagonal matrix consisting of the eigenvalues of A on the diagonal satisfying
A2,...,An > 0 and V is an orthonormal matrix consisting of the corresponding eigenvectors.
Then, the real inverse can be written as A~1 = VEVT with ¥ = A~1, if A is invertible. In our
case, A is singular, so that the real inverse is not defined. Instead, the Moore-Penrose inverse or
pseudo-inverse is defined by

AL =vetvT St =diag(0,1/A2,...,1/An).

Note that in this paper we use the same notation for both the real and pseudo-inverse when there
is no ambiguity. Now, it can easily be shown that a solution of the singular and consistent linear
system Ax = b is

z=A"1=vstvTh



EFFICIENT DEFLATION METHOD APPLIED ON BUBBLY FLOW PROBLEMS 11

Note from Algorithm 1 and 2 that v; represents the updated preconditioned
residuals in ICCG, whereas v; are the updated deflated-preconditioned residuals in
DICCG.

Furthermore, operations with P in Algorithm 2 should be treated carefully during
the implementation, since the success of DICCG depends strongly on the way of
implementation of these operations. In the next sections, we treat this topic in more
detail.

3.3. Termination Criterions for ICCG and DICCG. In the original method
ICCG, we terminate the iterative process if the relative preconditioned residuals
are smaller than a stopping tolerance € > 0, i.e., for ICCG we take the following
termination criterion:

M=tb-A
MG~ Aall -
IM=1(b — Azo)||2
This is equivalent to the following termination criterion in DICCG:
M~'P(b— A%
IDtPO Azl .
|M=1(b — Axo)||2
since it is easy to see that b — Az, = P(b— AZy). Note that the deflation matrix P
appears only once in Eq. (8).

4. TREATMENT OF OPERATIONS WITH DEFLATION MATRIX

Since the iterative method DICCG should be implemented efficiently in a pro-
gramming code to obtain a fast solver, some implementation issues considering
DICCG will be treated below. Details on flop calculations, which are given below,
can be found in Appendix C and D.

4.1. Construction of AZ. The matrix-vector product AZ is computed by only
determining the non-zero elements, which will be stored as a sparse matrix denoted
by Saz. Denote v the number of non-zero elements of the full matrix AZ. Then,
Saz is a v X 3 matrix, where the first and second columns are filled with the row
and column number of the non-zero elements of AZ, respectively. The third column
of S4z is devoted to the corresponding value of these non-zero elements. Therefore,
each row of S,z consists of two integers and one double.

Determining the elements of S 4z can be done efficiently, by noting that in the 2-D
case and in the 3-D case Z represents non-overlapping blocks and cubes, respectively.
Moreover, AZ has only contributions near the interfaces of these blocks and hence
it consists of relatively many zeros. So the participating elements of AZ are known
beforehand. Using Assumption 1, we can determine the value of each of those
elements immediately.

For an extensive treatment of the efficient construction of S4z and the computa-
tion of « for both the 2-D and 3-D case, we refer to Appendix A and B. In addition,
considering the number of floating point operations, it appears that constructing
Saz requires O(v/nk) flops for the 2-D case, while O(n?/3k'/3) flops are required
in the 3-D case.

4.2. Construction of E and E~'. The coarse matrix F := Z7 AZ can be formed
easily during the construction of AZ. Each non-zero element of AZ has exactly one
contribution to E by simply adding the value to the corresponding position in F.
If this position is in the interior of the participating block than the contribution is
to the main diagonal of F, otherwise it contributes to one of the subdiagonals of E.

It depends on the choice of solving the linear system Fys = y; in which sparse
way F is stored resulting in Sg. Moreover, E~! will never be determined explicitly,
as earlier mentioned. We treat this extensively in Section 5. Some implementation
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remarks about Sg, which are filled with doubles, are also made in Appendix A
and B.

4.3. Construction of Matrix-Vector Products Py and PTy. In contrast to
AZ and FE, the deflation matrix P is not constructed explicitly. Instead, the matrix-
vector product Py :=y— AZE~'Z7y will be computed in several steps, which are
summed up in Algorithm 3. Similarly, PTy can be treated in the same way, see
Algorithm 4. Both algorithms require O(n) flops in the 2-D and 3-D case.

Algorithm 3 Algorithm computing Py

1oy =27y

2: solve Fys =11
3: Y3 = AZyg

4 Py:=y—ys3

Algorithm 4 Algorithm computing PTy

1y = (AZ)Ty
2: solve Fys = 11
3 Y3 1= ZYa

4 PTy:=y—ys

Note that Z is not stored explicitly, since the matrix-vector products Z7y and
Zys can be simply determined from y, requiring O(n) flops. Furthermore, since
Saz is known, the products AZy, and (AZ)Ty can also be computed easily using
O(V'nk) flops in 2-D and O(n?/3k'/3) flops in 3-D. Finally, solving the linear system
FEys = y1 will be treated in the next section.

5. SOLVING THE COARSE LINEAR SYSTEM EFFICIENTLY

In each iterate of DICCG, we have to solve the coarse linear system Eya = ;.
Below, we give two alternatives to do this. We define k, to be the number of grid
points in each spatial direction of a block or cube from Z, i.e., k; := \/n/k in 2-D
and k; := {¢/n/k in 3-D, by assuming that k is a divisor of n and that the number
of grid points are equal in each spatial direction.

5.1. Solving FEy, = y1 directly. If k is relatively small, we can solve Fys = 1
with a direct method, using the band-Cholesky decomposition [3, Sect. 4.3.5] and
thereafter the band-back/forward substitution [3, Sect. 4.3.2]. In this case, Sg is
a full matrix with dimensions k& x (k; + 1) in the 2-D case and k x (k2 + k, + 1)
in 3-D. Therefore, determining the band-Cholesky is especially efficient in the 2-D
case, since the bandwidth is just k.. In the 3-D, the bandwidth is k2 + k, making
the decomposition more expensive, but it can still be efficient for relatively small k
and/or n.

In the previous section we noted that E~! does not exist in Eq. (5). Hence, the
band-Cholesky decomposition does also not exist due to the singularity of E. Now,
instead of solving the singular SPSD linear system Az = b, we attempt to solve the
invertible SPD linear system

Az = b, 9)
where A is exactly equal to A except for the last element which is
npn=(140)ann oc>0.

In other words, matrix A is forced to be invertible by modifying one of its diagonal
elements. Usually, this modification will cause slow convergence of the iterative
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process, since the condition number of Ais always larger than the effective condition
number of A. However, it has been shown that the modification does not affect the
condition numbers and the convergence of DICCG at all [14]. Thus, even in the
case of a singular A, we can apply the definition of P and E as given in Eq. (5) by
simply replacing A by A. The resulting deflation matrix is denoted by P, ie.,

P:=1-AzE'Z", E:=7TAZ (10)

Since it is allowed to replace A by A in the DICCG method, the band-Cholesky
decomposition exists. The resulting DICCG, which is based on Az = b and where
Eys = 11 is solved directly, will be denoted by DICCGI.

Considering the floating point operations, we note that in the 2-D case con-
structing the Cholesky decomposition and the backward and forward substitutions
require O(k?) and O(kVk) flops, respectively. In the 3-D case, constructing the
Cholesky decomposition requires O(k7/3) flops, whereas the backward and forward
substitutions takes (’)(k‘5/ 3) flops, see Appendix C and D for more details.

5.2. Solving Fy, = y; iteratively. If k or n is relatively large, it is not benificial
to solve the coarse system Fy,; = y; in a direct manner. In this case, it is more
efficient to use an iterative method like ICCG. This is possible since F has more
or less the same properties as A. Obviously, E is SPSD and has the same sparsity
pattern as A. Moreover, E has an effective condition number which is smaller than
the effective condition number of A, due to Theorem 1.

Theorem 1. Let the eigenvalues of both A and E sorted increasingly, i.e., 0 =
() <p2(B) <...<pp(E) and 0 = A (A) < A2(A) < ... < A (A). Let Z be as
defined in Section 3, where Z is scaled with \/n/k such that it satisfies Z*Z = I.
Then,

A2(A) < pe(BE) < ... < uk(E) < An(4). (11)

Proof. The theorem can be derived from the Courant-Fischer Minimax Theorem,
see e.g. [4, Th. 4.2.11]. From this theorem, we obtain in particular
A2(A) = min 2T Az, A\,(A) = max 2 Az, (12)
zTz=1, xLluq(A) zTz=1
where u1(A) is the eigenvector corresponding to A;(A), see for details [4, Sect. 4.2].
Note first that the identities u1(A4) = 1,, and u;1(E) = 1; hold due to Assump-
tion 1 and Eq. (6). In addition, we have 27 Az = (Zy)T AZy = yT* ZT AZy = yT By,
(ZNT(Zy) =yT 2T Zy = y"y and (Zy)T'1,, =y Z71,, = yT'1;, using the fact that
ZT1,, = 1;. Hence, this implies

i Zy)T A(Zy) = i TEy. 13
(Zy)T(Zgliri ZyLln( y) AZy) yTy:rrll,Hgl,uky y (13)

Now, combining Eqs. (12) and (13) gives us

A2(A) = i TAz < i TEy = ps(E),
2o04) = min @iAzs | min oyt Ey = pa(E)
which is the left inequality of (11). For the right inequality of (11) it follows in a
similar way
pr(E) = max yTEy < max x7 Az = \,(A),
yTy=1 zTz=1
where we have applied max(zy)T(Zy)zl(Zy)TA(Zy) = max,r,—1 yTEy.
0

Note that applying DICCG with the scaling of Z as given in Theorem 1 does
not affect the method at all, since the column space of Z and as well the deflation
matrix P do not change [6, Lemma 2.9]. It appears that DICCG depends on the
column space of Z rather than on the exact deflation vectors.
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Next, there is no need to force invertibility of E, since ICCG can deal with
singular matrices. Thus, in contrast to DICCG1, we can solve the original singular
linear system Az = b. This variant of DICCG is denoted by DICCG2.

Note that we have to ensure the consistency of all coarse linear systems during
the whole process of DICCG2. Theorem 2 guarantees this.

Theorem 2. All coarse linear systems within DICCG2 are consistent if Ax = b is
consistent.

Proof. Note first that for ro = b — Azg we have
(ZTro)" 1y, = rd 21 = rd1, =071, — 2l A1,, =0, — 2l0,, = 0,, (14)
and, moreover, for all arbitrary vectors ¢ € R™ we obtain
(ZTAq)"1, = ¢" AZ1), = ¢T A1,, = 0,,, (15)

where we have applied Eq. (4) and Assumption 1.
The coarse linear systems Eys = y; appears three times in Algorithm 2 (Lines
1, 3 and 11). We consider each of these cases.

(i) In the matrix-vector product Pry we have to solve the coarse linear system
Eyg = ZTT'().

This system is consistent, since it is compatible due to Egs. (6) and (14).
(74) In PAp; we have

Ey, = Z" Apy.

This system is consistent, since it is compatible due to Egs. (6) and (15) by
substituting q := pog.
(i) Using the same argument as in (ii), we conclude that P77, is also con-
sistent, since PT3;11 = %41 — ZE'ZT A%j44.
O

So it is convenient to solve the coarse systems iteratively, since ICCG guarantees
solutions for the coarse systems. Each of these ICCG steps costs O(k) and the
efficiency of this method depends on the number of required inner ICCG iterations.

Note that in DICCG2 we have an inner-outer iterative process with DICCG and
ICCG, so we need two different termination criteria. The inner and outer tolerance
€ are called €., and €;,, respectively. We will take

€in = W €out, w > 0. (16)

For large w > 1, DICCG2 will not converge, since the operations with P are not
computed sufficiently accurate, see also [6, Sect. 3]. However, for small w < 1,
DICCG2 will not converge as well, since the termination criterion is too severe with
respect to the machine precision. Therefore, w should be chosen carefully to obtain
an accurate and efficient method. From numerical experiments it appears that

w=10"2 (17)

is a proper choice. We refer to [10,11] for more information about inner-outer
iterative processes and their termination criteria.

We end this section with the remark that for large problems it can be advanta-
geous to solve the inner iterations also with DICCG instead of ICCG. The inner
iterations can even be solved by recursively application of DICCG. This is in analogy
with multigrid, see also [1, Sect. 3]. It is however left for future research.
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6. THEORETICAL COMPARISON OF DICCG1 aND DICCG2

In the previous section we have introduced the two deflation variants DICCG1
and DICCG?2. In this section we will make a theoretical comparison between these
two methods. We will show that DICCG1 and DICCG2 perform the same theo-
retically, since it can be proven that the system PA in DICCGI is equal to PA in
DICCG2.

The proof is given in Subsection 6.3, after introducing some notations and giving
some auxiliary results in the next subsections.

6.1. Notations. We adopt the notation from [14], where we denote P with k de-
flation vectors by P, i.e.,

P,:=1-AZyE'Z, Py :=1-AZ,E " 7],

where
Ey:=ZIAZy, FEy_1 =2} |AZy,,
and
Zp1 =21 22 - 2-1]y Zi = [Zi-1 1a).

Note that replacing Z = [Zk—1 1,] by Z = [Zk—1 zi] would lead to exactly the same
deflation matrix Py, since the column space of Zj and Z are equal [6, Lemma 2.9].

Furthermore, we can observe that Ej_; is invertible whereas Ej is singular.
Therefore, £, 1'is the pseudo-inverse while E,;ll is the real inverse. Recall that
in DICCG2 the computations considering £, 1 are done using the ICCG method.
Note that E,;lleTil can not be computed using CG, since it is not compatible, in
contrast to E ', Z] | A which is compatible (cf. Theorem 2). Therefore, P and
P,_1 can not be compared, while a comparison between P, A and Py_1A can be
made without problems.

6.2. Auxiliary Results. In [14, Lemma 5.5], we have proven the following lemma.

Lemma 1. Let A and Zy, be defined as above. Then there exists a matrix Y €
R~k such that

o matriz X := Y Zj] is invertible;

o identity ZTAY = Oy, ,,_, holds.

Note that A can not be _replaced by A, since in the proof of the lemma we
have used the fact that the A-inner product is an inner product, while the A-inner
product is not an inner product: (z,z)a can be zero for z # 0,

From Lemma 1 we can find the following corollary.

Corollary 1. LetY be as given as in Lemma 1. Then,

(i) the last row of Y is OL;
(i1) Y satisfies Z,?AY = O n—k-

Proof. (i) Note that from [14, Cor. 2] we have
Al, = oa, ,el™, (18)

resulting in a last row of Z,?Zl which is equal to aan,ne%"). Hence, Z,CT/TY =0pn—k
can only be satisfied if all elements of the last row of Y are zero, i.e., the last row
of Y is 0%

(i) We have (cf. [14, Th. 1])

A=A—recT, CZeSZ"), T=0"0npn.

Moreover, note that
Zxeet = cecT.



16 J.M. TANG AND C. VUIK

Then,
Z]?CCTY =Y = Ok, n—k,

since the last row of Y is 02, Finally, this yields
ZFAY = ZI(A—rec")Y = ZLAY — 720"y =0, —OF,_, = 0L, _,.
O

6.3. Identical Systems in DICCG1 and DICCG?2. First we will prove that the
deflated system of A with k deflation vectors is the same as the deflated system of A
with k — 1 deflation vectors, i.e., PtA = Py_1A. This result is somewhat suprising,
since Col(Zi—1) C Col(Zy). Therefore, a more favorable spectrum of P, A will be
expected compared to Px_1A. However, this is not the case; the spectra of both
systems Py A and P,_1 A are equal. More strongly, the identity Py A = P_1 A holds,
see Theorem 3.

Theorem 3. The following identity holds:
PA= P, A (19)

Proof. Let X = [Z), Y] € R™"™ where Z), and Y be matrices as defined in Lemma 1.
We prove that
(P, — Pr_1)AX =0, (20)
holds. Then after right-multiplying both sides with X!, Eq. (19) follows immedi-
ately.
We know ZEAY = Op,n—k from Corollary 1. In particular we have Z,?_lAY =
0—1,n—k, Which gives immediately

(P — Po_)AY = AZy 1B '\ ZF (AY — AZ E; ' ZTAY
= AZp1E ' 0p_1 -k — AZLE;  0p i,
= On,nfk
Hence,
(P — Po—1)AY =04 . (21)

Next, it appears that AZkEllekTAZk = AZy, since E,;leTAZk = I. Moreover,
note also that

AZy 1 E; N ZF (AZ, = AZk_lEk‘flleTflA- (Z1—1 1,) 1
= [AZkflE];_lZg_lA%kfl AZk,lE,;_lZ,?_lAln]
= [AZp1 AZk—1Ek_,1Z;{,10n]

= [AZkfl On]
= AZ.
Combining the latter expressions we obtain
(Py — Poo1)AZy = AZy BN ZL | AZy — AZWE;, ' ZF AZ),
= AZ,— AZ (22)
= 0p .
Finally, Eq. (20) follows immediately from Egs. (21) and (22), i.e.,
(Py — Pr—1)AX = (P — Pr_1)A[Z, Y]
= [On,k On,nfk]
= 0n,n~

As a consequence, Corollary 2 follows.

Corollary 2. PLA = ]3;@11
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Proof. Theorem 3 of [14] gives
PiA = P,_ A (23)
Combining Eq. (23) with Theorem 3 leads to the corollary. O

Hence, we obtain that DICCG1 and DICCG2 give exactly the same convergence
results in exact arithmetics, since their preconditioned deflated systems M “1p.A
and M 1P, A are completely equal in these methods. In the next sections, we will
investigate whether DICCG1 and DICCG2 are also equal in practice.

We end this section with Corollary 3, which is a generalization of Theorem 2.10
of [6].

Corollary 3. Let A and M be matrices as defined above. Let V. € R"** and
W € R with rank V = s and rank W = t. Let Qy = I — AV(VTAV)-1vT
and Qw =1 — AWWTAW)'WT where (VT AV)~1 and (WTAW)~! denote the
pseudo-inverses of VT AV and WT AW, respectively. If Col (V) C Col (W), then

A77,(]\4_162\/14) Z )\n(M_lQWA)y

Asy1(M71QvA) < N1 (M'QwA). (24)

A

Moreover,
eff(MT'QuA) > kepr(M'QwA), (25)
where keyy denotes the effective condition number.

Proof. The corollary follows immediately from Theorem 2.12 of [6] and Corollary 2.
O

Corollary 3 states that the effective condition number of the deflated precon-
ditioned system corresponding to the singular matrix A decreases if we increase
the number of deflation vectors. This means that theoretically the more deflation
vectors are taken, the faster the convergence of the deflation method with respect
to the number of iterations, although more work is needed for solving the coarse
systems.

7. 2-D NUMERICAL EXPERIMENTS

In this section we present the results of some 2-D numerical experiments done
with FORTRAN. The computations are performed on a serial Pentium 4 (2.80
GHz) computer with a memory capacity of 1GB. Moreover, the code is compiled
with FORTRAN g77 on LINUX.

7.1. Test Problems. We apply the 2-D variant of the problem setting as given in
Section 2. These experiments will illustrate the theoretical results obtained in the
previous sections. We consider three test problems:

e (2D-TP1) no bubbles;
e (2D-TP2) one bubble;
e (2D-TP3) nine bubbles,

in the unit domain € filled with water. Moreover, we vary the contrast 6 := p1/po
between the phases: # = 102,106,108, Finally, various number of grid sizes N,
and N, and number of deflation vectors will be used.

We apply ICCG and DICCG1—£ to solve the linear system, where DICCG1—k&
denotes DICCG1 with %k deflation vectors. Note that for ICCG we consider the
singular system Az = b while we apply the invertible system Ax = b for DICCG1—k,
as mentioned before. In both methods, a random starting vector will be used and
we choose the relative termination criterion with tolerance e = 1078, At the end of
each test problem we compute the relative exact residuals, i.e.,

b= b — Az|]2
[[b— Azoll2’
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as a measure of the accuracy of the solutions.

7.2. Results with N, = N, = 100. We present the results of the three test
problems with grid sizes N, = N, = 100.

7.2.1. Table of the Results. The results considering the CPU time (in seconds), the
number of required iterations and the relative exact residuals for # = 10~2 are given
in Table 1.

Test Problem | Method | # Tter. CPU (sec) | ¢ (x1079)
ICCG 109 0.12 2.3
DICCG1-52 | 49 0.08 2.5
2D-TP1 DICCG1-10? | 32 0.06 2.0
(No Bubbles) | DICCG1-202 | 21 0.05 1.7
DICCG1—-252 | 19 0.06 0.8
DICCG1-50? | 12 0.11 0.5
ICCG 128 0.14 0.3
DICCG1-52 | 51 0.08 0.4
2D-TP2 DICCG1-102 | 34 0.07 0.3
(One Bubble) DICCG1—202% | 22 0.06 0.6
DICCG1—-252 | 20 0.06 0.4
DICCG1-502% | 13 0.11 0.1
ICCG 247 0.26 0.2
DICCG1-52 | 70 0.11 0.4
2D-TP3 DICCG1-102 | 44 0.08 0.4
(Nine Bubbles) DICCG1—202 | 27 0.07 0.4
DICCG1—-252 | 23 0.06 0.5
DICCG1-502 | 14 0.11 0.1

TABLE 1. Convergence Results of ICCG and DICCG—k for all test
problems with N, = N, = 100.

Considering Table 1 we can make the following observations.

e In all test problems it is obvious that DICCG1—k reduces the number of
iterations. The larger k the smaller the required number of iterations of
DICCG1—k to converge.

e Besides the number of iterations, the CPU times decreases as well for
larger k, except for the case DICCG1—-50%. The optimal choices are k =
202,252 in the most cases.

e The more bubbles the worse the performance of ICCG and the larger the
differences between ICCG and DICCG1—k becomes in favor of DICCG—k.

e The relative exact residuals ¢ are comparable with the relative update resid-
uals, since they are both of the same order.

7.2.2. Visualization of the Results. To visualize the results in Table 1, we present
those of Test Problem 2D-TP3 in Figure 3.
Figure 3 can be interpreted as follows:

e Subfigure 3(a): When £ is increased, the number of iterations of DICCG1—k
decreases significantly in the beginning of the curve. For large k, the benefit
is smaller.

e Subfigure 3(b): The required CPU time for DICCG1—k decreases until
k = 253. Thereafter, the CPU time increases and the DICCG1—k is less
efficient.
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Test Problem 2D-TP3 with N =N, =100 Test Problem 2D-TP3 with N =N, =100
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(a) The number of iterations versus the (b) The CPU time versus the number of de-
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(c) The ratio of the number of ICCG and (d) The ratio of the CPU time required in
DICCG1—k iterations versus the number of ICCG and DICCG1—k versus the number
deflation vectors versus . of deflation vectors.

FIGURE 3. Visualization of the results of Test Problem 2D-TP3.

e Subfigure 3(c): The benefit factor considering the number of iterations is de-
picted for each k. Obviously, the larger k the larger the profit of DICCG1—k.
For example, in the case of k = 502, DICCG1—k requires almost 18 times
less iterations compared to ICCG, which is a relatively huge gain.

e Subfigure 3(d): The benefit factor considering the CPU time is depicted for
each k. The maximum benefit factor is around 4.3, which means that in
that case DICCG1—k is 4.3 times faster than ICCG.

7.2.3. Update Residual Plots. To see the development of the update residuals dur-
ing the iterates of DICCG1—k for all k, the corresponding plots of ICCG and
DICCG1—k can be found in Figure 4.

From Figure 4, we see that the residuals of ICCG show a lot of wiggles, possibly
caused by the relatively high number of bubbles in the domain. The wiggles dis-
appeared completely in DICCG1—k. Apparently, the piecewise constant deflation
vectors represent the eigenvectors corresponding to the small eigenvalues of A very
well.

7.2.4. Solution Plots. We have seen above that ICCG and DICCG1—k have compa-
rable small relative exact residuals ¢ at the end of the iterates of each test case. How-
ever, it is not always guaranteed that the relative exact errors are sufficiently small
if ¢ is small. Hence, we consider the solution plots of both ICCG and DICCG1—k
for Test Problem 2D-TP3 to check those exact errors, see Figure 5.

From Figure 5 we see obviously the nine bubbles, since in these regions the
solution is constant. Moreover, a vertical shift can be observed by comparing the
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FiGURE 4. Update Residual plots of ICCG and DICCG1—k for
Test Problem 2D-TP3 with k = 52,102,202, 252, 502.

solutions of ICCG and DICCG1. This has been caused by the fact that we have
solved a singular system in ICCG, whereas an invertible system has been solved
in DICCG. Therefore, in the case of ICCG, z is not unique, since = + ¢ - 1,, with
¢ € R is also a solution. The vertical shift between Subfigures 5(a) and 5(b) is
approximately ¢ = 0.6.

7.3. Results for Test Problem 2D-TP3 with varying grid sizes. The results
for Test Problem 2D-TP3 with varying grid sizes are given in Table 2.

N, =N, =100 N, =N, =250 N,=N, =500

Method # Iter. CPU || # Iter. CPU || # Iter. CPU
ICCG 247 0.26 466 3.56 1027 34.4
DICCG1-5? 70 0.11 143 1.39 237 9.32
DICCG1-10% | 44 0.08 88 0.89 150 6.09
DICCG1-252 || 23 0.06 45 0.52 82 3.55
DICCG1-502 14 0.11 26 0.41 43 2.14
DICCG1-100? || — — — — 27 3.12

TABLE 2. Results of 2D-TP3 (nine bubbles) for varying grid sizes

N, and Ny.

From the table, one observes immediately that for larger grid sizes, the differences
in performance between ICCG and DICCG1—k becomes significantly large. For
instance, in the case of N, = N, = 500, ICCG does not converge within 1000
iterations and 30 seconds, while DICCG1—502 finds the solution within 43 iterations
in just 2.14 seconds.

The residual plots corresponding to these results are omitted here, but they
have the same behavior as in Subsection 7.2. Moreover, observe that if we take k
more or less proportional to the grid sizes then the number of iterations remains
approximately the same. Equivalently, if we compare DICCG1—k for varying grid
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Solution of Test Problem 2D-TP3 with Nx=Ny=100
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(a) Solution z using ICCG.
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(b) Solution z using DICCG1—102.

F1GURE 5. Solution plot of ICCG and DICCG1—k for Test Prob-
lem 2D-TP3.

sizes satisfying

o ¥, YeN,
where 1 is fixed, then the number of iterations are approximately equal for all
DICCG—E. This can also be observed in Figure 6, which is a visualization of
Table 2 by taking ¢ = 10 and ¢ = 4.

In Subfigure 6(a) we see that the number of ICCG iterates grows, while the
number of iterations for DICCG—E for both ¥ = 4 and @ = 10 remains constant.
With respect to the CPU time, we conclude from Subfigure 6(b) that this grows
more or less exponentially for ICCG, whereas the CPU time grows approximately
linearly for DICCG—k. Finally, note that although DICCG—E for ¥ = 4 requires
less iterations compared to DICCG—k for ¢) = 10, it is not more efficient considering
the CPU time.

7.4. Results for Test Problem 2D-TP3 with varying contrasts. After vary-
ing the grid sizes, the grid sizes are fixed to N, = IV, = 100 and now we vary the
contrast 6 between the phases. In practice this means that we consider other phases
instead of only the combination of water and air. The results considering the CPU
time and the number of iterations of Test Problem 2D-TP3 are given in Table 3.
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FIGURE 6. Visualization of the results of Test Problem 2D-TP3
with varying grid sizes. ICCG and DICCG—k with both 3 = 10

and ¢ = 4 are used.

=103 6=10"° =108
Method # Iter. CPU || # Iter. CPU || # Iter. CPU
ICCG 247 0.26 [ 352 0.34 ][ 381 0.37
DICCG1-5% || 70 0.11 || 71 0.10 [| 72 0.10
DICCG1—10? || 44 0.08 | 46 0.08 || 47 0.08
DICCG1—252 || 23 0.06 | 25 0.06 || 26 0.06
DICCG1-507 || 14 0.11 | 15 0.11 || 15 0.11

TABLE 3. Results of 2D-TP3 (nine bubbles) for varying contrast 6.

From the table we see that DICCG1—k depends hardly on the contrast 6, while
obviously ICCG becomes worse by decreasing 6. This observation can also be
seen in Figure 7. DICCG—k is insensitive for the contrast 6 considering both the

number of iterations and the CPU time. This is an important advantage in favor
of DICCG1—k.

Test Problem 2D-TP3 with varying contrastd Test Problem 2D-TP3 with varying contrastd

= =
= = DICCG1-5° - - DICCG1-5°
sol — picce1-10% | — DICCG1-107
- DICCG1-257 035 - DICCG1-257
— DICCG1-50% — DICCG1-50%

CPU Time (seconds)

(a) The number of iterations versus the con-
trast between the phases.

Contrast

(b) The CPU time versus the contrast be-
tween the phases.

FIGURE 7. Visualization of the results of Test Problem 2D-TP3
with varying contrast §. Comparison of ICCG and DICCG—k are
given for all k.



EFFICIENT DEFLATION METHOD APPLIED ON BUBBLY FLOW PROBLEMS 23

Again, the residual plots corresponding to these results are omitted, but they
have the same behavior as in Subsection 7.2.

8. 3-D NUMERICAL EXPERIMENTS

Similar to the previous section, we present the results of some 3-D numerical
experiments in this section. In fact, this is a generalization of the previous section
to the 3-D case.

8.1. Test Problems. We apply the 3-D variant of the problem setting as given in
Section 2. The following test problems will be considered:

(3D-TP1) no bubbles;
(3D-TP2) one bubble;
(3D-TP3) eight bubbles;
(3D-TP4) 27 bubbles,

in 2. Moreover, we will vary again 6, n and k. We apply both ICCG and DICCG1—k
to solve the resulting linear systems. Finally, in the last subsection we will compare
DICCG1—k and DICCG2—k.

8.2. Results with NV, = N, = N, = 100. We present the results of the test
problems with grid sizes N, = N, = N, = 100.

8.2.1. Table of the Results. The results considering the CPU time, the number of
iterations and the relative exact residuals ¢ of the test problems with § = 1072 are
given in Table 4.

Test Problem | Method | # Tter. CPU (sec) | ¢ (x1079)
ICCG 170 25.2 2.9
3D-TP1 DICCG1-2% | 109 20.2 2.9
(No Bubbles) | DICCG1-53 | 56 11.3 2.3
DICCG1-10% | 35 8.0 1.8
DICCG1-203 | 22 26.5 1.1
ICCG 211 31.1 14
3D-TP2 DICCG1-23 | 206 37.5 1.3
(One Bubble) | DICCG1-53 | 58 11.5 1.5
DICCG1-10% | 36 8.5 1.2
DICCG1-202 | 25 27.6 1.5
ICCG 291 43.0 1.1
3D-TP3 DICCG1-23 | 160 29.1 1.1
(8 Bubbles) | DICCG1-5% |72 14.2 1.2
DICCG1-10% | 36 8.2 0.7
DICCG1-203 | 22 27.2 0.9
ICCG 310 46.0 1.3
3D-TP3 DICCG1-23 | 275 50.4 1.3
(27 Bubbles) | DICCG1-53% | 97 19.0 1.2
DICCG1-103 | 60 13.0 1.2
DICCG1-203 | 31 29.3 1.2

TABLE 4. Convergence Results of ICCG and DICCG—k for all test
problems with N, = N, = N, = 100.

Considering Table 4 we can note the following.

e DICCGI1—k requires always less iterations compared to ICCG. It can be
observed that for larger k, DICCG1—k requires less iterations.
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e Considering the CPU time we have found that the optimal choice is k = 103,
i.e., in all test cases DICCG1—10? converges the fastest. The benefit of CPU
time is relatively large compared to ICCG.

e The relative exact residuals of both ICCG and DICCG1—k are comparable
in all test cases and they are of the same order as the relative update
residuals.

e The more bubbles in the test problem, the more iterations and therefore
the more CPU time both ICCG and DICCG—k require to converge.

e For large k, DICCG1—Fk shows difficulties with respect to the computations
with E. Therefore, for k& > 10> DICCG1—k converges in a low number of
iterations, but it requires a lot of CPU time in each iterate.

8.2.2. Visualization of the Results. To visualize the results in Table 4, we present
those of Test Problem 3D-TP4 in Figure 8.

Test Problem 3D~TP4 with N =N =N, =100 Test Problem 3D-TP4 with N=N, =N, =100

CPU Time (sec)

Number of lterations

0 1000 2000 3000 4000 5000 6000 7000 8000 o 1000 2000 3000 4000 5000 6000 7000 8000
K K

(a) The number of iterations versus the (b) The CPU time versus the number of de-
number of deflation vectors. flation vectors.

Test Problem 3D~TP4 with N=N =N =100 Test Problem 3D-TP4 with N.=N =N =100

CPU Time ICCG / CPU Time DICCG1-k

Number of lterations ICCG / Number of Iterations DICCG1-k

1

0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
k k

(c) The ratio of the number of ICCG and (d) The ratio of the CPU time required in
DICCG1—k iterations versus the number of ICCG and DICCG1—k versus the number
deflation vectors. of deflation vectors.

FIGURE 8. Visualization of the results of Test Problem 3D-TP4.

Figure 8 can be interpreted as follows.

e Subfigure 8(a): Similar to the 2D case, if k is increased, the number of iter-
ations of DICCG1—k decreases significantly in the beginning of the curve.
For large k, the benefit is smaller.

e Subfigure 8(b): The required CPU time for DICCG1—Fk decreases until k =
103. Thereafter, the CPU time increases and DICCG1—k is less efficient.

e Subfigure 8(c): The benefit factor considering the number of iterations is de-
picted for each k. Obviously, the larger k the larger the profit of DICCG1—k.
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For example, in the case of k = 202, DICCG1—k requires almost 10 times
less iterations compared to ICCG.
e Subfigure 8(d): The benefit factor considering the CPU time is depicted for
each k. For k = 103, the maximum benefit factor has been achieved. In
this case, DICCG1—10? is 3.5 times faster than ICCG.

8.2.3. Update Residual Plots. For all cases of Test Problem 4, the plots of the resid-
uals of both ICCG and DICCG can be found in Figure 9.

Update Residuals

10°E -

' DICCG1-10°

ICCG
pIccG1-2°
pIcCcG1-5° |

DICCG1-20°

L
150
Iterate

L L
200 250

L
300

F1cure 9. Update residual plots of ICCG and DICCG1—k for Test

Problem 3D-TP4 with k& = 23,5%,103, 203.

Note that the behavior of the residuals of ICCG are somewhat irregular due to
the presence of the bubbles. For DICCG1—k we can conclude that the larger k the
more linear the residual plot is. Apparently, the larger k the better the deflation
vectors resemble the eigenvectors corresponding to the smallest eigenvalues of the
linear system.

8.3. Results for Test Problem 3D-TP4 with varying grid sizes. The results
for Test Problem 3D-TP4 with varying grid sizes are given in Table 5.

n = 503 n = 100° n = 1203
Method #1It. CPU[#1It. CPU[#1t. CPU
ICCG 199 3.6 310 46.0 [ 363 90.5
DICCG1-2% [[179 4.1 275  50.4 [[291  90.2
DICCG1-53 || 57 1.5 97 19.0 || 111 35.9
DICCG1-103 || 39 1.3 60 13.0 || 68 24.1
DICCG1-123 || - —~ - - 50 18.9
DICCG1-203 || - - 31 29.3 || 33 35.9
DICCG1—-243 || — - - - 24 245.2

TABLE 5. Results of 3D-TP4 (27 bubbles) for varying grid sizes
Ny, Ny and N..
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From the table, one observes immediately that for larger grid sizes, the differences
in performance between ICCG and DICCG1—k becomes significantly larger. For
instance, in the case of N, = N, = N, = 120, ICCG does not converge within 350
iterations and 90 seconds, while DICCG1—10? finds the solution within 68 iterations
in just 35.9 seconds.

Similar to the previous section we use N,/k, = 1. In the 2-D case, we have
concluded that the number of iterations are approximately equal for all DICCG—k
with fixed 1. In the 3D case, this observation holds to some extent. This can also
be observed in Figure 10, which is a visualization of Table 5 by taking ¢ = 10 and
P = 5.

Test Problem 3D-TP4 with varying grid sizes Test Problem 3D-TP4 with varying grid sizes
T T T T T T T

— Icce "
- DICCG1-kwith N, /K = 10

—icce "
- DICCGL-kwith N, /K = 10
L| — oiccor-kwith N /K2 =5

— DICCGL-kwith N, /K" =5

s

CPU Time (seconds)

50+

_______________

80 %0
Nx.NyNz NxNy

(a) The number of iterations versus the grid  (b) The CPU time versus the grid size per
size per direction. direction.

FIGURE 10. Visualization of the results of Test Problem 3D-TP4
with varying grid sizes. DICCG—k with both ¢ = 10 and ¢ = 5
are given.

In Subfigure 10(a) we see that the number of ICCG iterates grows, while the
number of iterations for DICCG—k for both ¥ = 4 and ¢ = 10 remains more
or less constant. With respect to the CPU time, we have seen in the previous
section that this grows more or less exponentially for ICCG, whereas the CPU time
increases approximately linear for DICCG—E. In the 3D case, DICCG1—k grows
also exponentially, due to the expensive computations with E. In Subsection 8.5,
we will remedy this by using DICCG2 instead of DICCGI.

Finally, note that although DICCG—F for ¢ = 5 requires less iterations compared
to DICCG—k for v = 10, due to the increased costs per iteration it is not more
efficient considering the CPU time.

8.4. Results for Test Problem 3D-TP4 with varying contrasts. Now, the
grid sizes are fixed to n = 1003 and we vary the contrast § between the phases. The
results considering the CPU time and the number of iterations of Test Problem
3D-TP4 are given in Table 6.

From the table we see that DICCG1—k with k& > 23 depends hardly on the con-
trast 6, while obviously ICCG becomes worse by enlarging #. This observation can
also be seen in Figure 11. DICCG—k is insensitive for the contrast § by considering
both the number of iterations and the CPU time.

8.5. Comparison of DICCG1 and DICCG?2. In the previous sections we have
seen that DICCG1—k is very efficient as long as k < 203. From k = 202 DICCG1—k
requires too many computational costs per iterate, although only a relatively low
number of iterations is needed. The bottleneck for k& > 102 is the expensive construc-
tion of the banded Cholesky decomposition of E. We have seen that the bandwidth
of E is k2 and for the band Cholesky matrix all k2 + 1 bands are filled resulting in
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=103 =100 =108
Method # Iter. CPU || # Iter. CPU || # Iter. CPU
1CCG 310 46.0 || 503 71.8 || 532 77.5
DICCG1-23 | 275 50.4 || 428 75.9 || 416 73.7
DICCG1-5% | 97 19.0 || 99 18.8 || 100 19.1
DICCG1-10% | 60 13.0 || 62 13.2 || 63 14.1
DICCG1-202 || 31 29.3 || 33 29.6 || 34 29.9

TABLE 6. Results of 3D-TP4 (27 bubbles) for varying contrast 6.

Test Problem 3D-TP4 with vaying conlrastd Test Problem 30-TP4 with varying contrastd

e

—————— ~o - - picce1-2*
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--oiccer2 || pe==-
— DIcce1-5°
- picce1-10° ||
111 Dicce1-20°

CPU Time (seconds)

(a) The number of iterations versus the con-  (b) The CPU time versus the contrast be-
trast between the phases. tween the phases.

FIGURE 11. Visualization of the results of Test Problem 3D-TP4
with varying contrast §. Comparison of ICCG and DICCG—k is
made for all k.

an inefficient method for large k. Direct computations considering E can be avoided
by using DICCG2—k, as mentioned in Section 5. In this subsection, a comparison
between DICCG1—k and DICCG2—k will be made.

Since we have applied €,,; = 1078 in all test cases, we need the stopping tolerance
€in = 10710 for the inner iterations, also mentioned in Section 5.

Some results of Test Problem 3D-TP4 for varying grid sizes can be found in
Table 7. Similar results have been found for the other test problems. It appears
that the number of iterations of both DICCG1 and DICCG2 are equal in almost all
test cases. Therefore, the common number of iterations are given for both DICCG1
and DICCG2, whereas rarely an asterisk (*) is put behind the number when there
are slight differences. Moreover, since it appears that the relative exact residuals
are comparable for the two methods, those are omitted in the table.

From Table 7, we conclude that for sufficiently small problems or for a small
number of deflation vectors, DICCG1—k is the fastest method, but for large prob-
lems or for problems with relatively large k, DICCG2—k is clearly more efficient.
The differences between the two variants of DICCG becomes significantly large from
k =202 in all test cases.

The visualization of the last test case with n = 1202 can be found in Figure 9.
From this figure we observe immediately that in all cases DICCG1—k achieves its
optimum if £ = 103. For k& > 103 DICCG1—k is not efficient anymore. On the other
hand, it can be noticed that in all cases the optimum of DICCG2—k is achieved if
k > 10% and these optima are somewhat lower than the optima of DICCG1—F for
both n = 100% and n = 1203, In these cases, DICCG2—k has been proven to be the
most efficient method.
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n = 603 n = 1003 n = 1203
k #1t. CPU-1 CPU-2[[#1It. CPU-1 CPU-2[#It. CPU-1 CPU-2
23 T166* 6.5 6.5 275  50.4 48.8 291% 90.5 101.0
5% | 63 2.8 2.8 97 19.0 18.7 111 35.9 36.8
10 || 42¢ 2.3 2.5 60 13.0 13.0 68 24.1 24.8
203 || 22 22.3 3.8 31 29.3 11.0 33 35.9 19.3
253 || - — - 26 300 14.2 — — —
30 || 12 >300 8.1 - - - 19 >300 19.9
408 || - - - - - 21 >300 52.1

TABLE 7. Results of Test Problem 3D-TP4 (27 bubbles) for vary-
ing grid sizes n = N, - Ny - N.. The CPU time (in seconds) with
DICCG1 is denoted by CPU-1, while the CPU time with DICCG2
is denoted by CPU-2.

Test Problem 3D-TP4 with varying grid sizes
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Ficurge 12. CPU Time of DICCG1—k and DICCG2—Fk for Test
Problem 3D-TP4 with various grid sizes.

9. 3-D REALISTIC SIMULATIONS

In the previous two sections we have consider test problems with fixed geometries,
i.e., the bubbles are chosen to be fixed in the computational domain and they do
not evolve in time. In this section, we apply a 3D realistic simulations of 250 time
steps. We adopt the mass-conserving level-set method [8] but it could be replaced
by any operator-splitting method in general. At each time step a Poisson equation
has to be solved which is the most time-consuming part of the whole simulation.

9.1. Simulation 1: Rising Air Bubble in Water. We consider a test problem
with a rising air bubble in water without surface tension. The exact material con-
stants and other relevant conditions can be found in [8, Sect. 8.3.2]. The starting
position of the bubble in the domain and the evolution of the movement during the
250 time steps can be seen in Figure 13.
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FI1GURE 13. Evolution of the rising bubble in water without surface
tension in the first 250 time steps.

In [8] the Poisson solver is based on ICCG. In this section we will compare this
method with DICCG1—102 for both n = 60% and n = 1003. In future, k can be
adapted or DICCG2—k can be applied to obtain a more efficient method.

9.1.1. Results with N, = Ny, = N, = 60. We present the results with grid sizes
N, = Ny = N, =60 in Figure 14.
From Figure 14 we can make the following observations.

e Subfigure 14(a): Similar to previous sections, we notice that the number
of iterations is strongly reduced by the deflation method. DICCG1-103
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(c) Results considering the relative exact residuals.

FIGURE 14. Results with N, = N, = N, = 60 of Simulation 1.
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requires more or less 30 iterations, while ICCG converges between 120 and
140 iterations in the most time steps. Moreover, observe the erratic behavior
of ICCG, whereas DICCG—10? seems to be less sensitive of the geometries
during the evolution of the simulation.

e Subfigure 14(b): Also considering the CPU time, DICCG1—10% shows very
good performance. In most time steps ICCG requires 4 seconds to converge,
whereas DICCG1—103 needs only around 2 seconds which is a benefit of
approximately 50%.

e Subfigure 14(c): Obviously, the relative exact residuals are comparable and
are of the same order for both ICCG and DICCG—103.

The main conclusion is however that it appears that DICCG—10? shows good per-
formance for all time steps. This is rather unexpected, since the deflation vectors are
fixed beforehand, i.e., they are chosen independent of the geometry of the problem.

In Figure 15 one can find the gain factors considering both the ratio’s of the
iterations and the CPU time between ICCG and DICCG1—-103. From the figure,
we conclude that DICCG1—-10% needs approximately 3.5-5 times less iterations.
More important, at all time steps DICCG1—10> converges more or less 2-2.5 times
faster to the solution compared to ICCG.
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FIGURE 15. Visualization of the results of the realistic test problem
with NV, = Ny = N, = 60 of Simulation 1.

9.1.2. Results with N, = Ny = N, = 100. Next, we present the results with grid
sizes n = 1003 in Figure 16.
From Figure 16 we can make the following observSations.

e Subfigure 16(a): Similar to the case of n = 60, we notice that the number
of iterations is strongly reduced by the deflation method. DICCG1-103
requires more or less 60 iterations, while ICCG converges between 200 and
300 iterations in the most time steps. Moreover, observe again the erratic
behavior of ICCG, whereas DICCG—103 seems to be less sensitive of the
geometries during the evolution of the simulation.

e Subfigure 16(b): Also considering the CPU time, DICCG1—10% shows very
good performance. In most time steps ICCG requires 2545 seconds to
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(a) Results considering the number of iterations.
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(b) Results considering the CPU time.
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(c) Results considering the relative exact residuals.

FIGURE 16. Results with N, = N, = N, = 100 of Simulation 1.
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converge, whereas DICCG1—10? needs only around 11-14 seconds which is
a relatively large benefit.

e Subfigure 16(c): Obviously, the relative exact residuals are comparable
for both ICCG and DICCG—103, where we can note that in the case of
DICCG1-10? those residuals are almost constant while the residuals for
ICCG shows a rather erratic behavior.

We can note that for larger problems the DICCG1—10% becomes more favorable
compared to ICCG. Also in these larger problems, DICCG1—103 depends hardly
on the geometry of the problem in each time step.

In Figure 17 one can find the gain factors considering both the ratio’s of the it-
erations and the CPU time between ICCG and DICCG1-103. From the figure, we
conclude that DICCG1—102 needs approximately 4-8 times less iterations, depend-
ing on the time step. More important, at all time steps DICCG1—102 converges
more or less 2—4 times faster to the solution compared to ICCG. Compared to the
case of n = 602 the gain is larger. Hence, the larger the problem the more favorable
DICCG1-10? becomes.

8 T T T
= = Iterations ICCG / Iterations DICCG1-10° n
— CPU Time ICCG / CPU Time DICCG1-10° n

Factor Gains

1 1 1
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Time Step

FIGURE 17. Visualization of the results of the realistic test problem
with N, = Ny, = N, = 100 of Simulation 1.

9.2. Simulation 2: Falling Water Droplet in Air. Similar to the previous
subsection, we consider a test problem with a falling water droplet in air without
surface tension. The exact material constants and other relevant conditions can be
found in [8, Sect. 8.3.4]. The starting position of the bubble in the domain and the
evolution of the movement during the 250 time steps can be observed in Figure 18.

9.2.1. Results with N, = Ny, = N, = 60. We present the results with grid sizes
N, = Ny = N, =60 in Figure 19.
From Figure 19 we can make the following observations.
e Subfigure 19(a): Similar to previous sections, we notice that the number of
iterations is strongly reduced by the deflation method.
e Subfigure 19(b): Also considering the CPU time, DICCG1—103 shows very
good performance. Observe the two high peaks around time steps 30 and
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FI1GURE 18. Evolution of the falling droplet in air without surface
tension in the first 250 time steps.

245 which are caused by external factors. They should be omitted in the
results.

e Subfigure 19(c): Obviously, the relative exact residuals are comparable for
both ICCG and DICCG—103.

When we compare the results of Simulation 1 and 2 we see that they are more or
less comparable. DICCG1—103 is very efficient in both simulations.

In Figure 20 one can find the factor gains considering both the ratio’s of the
iterations and the CPU time between ICCG and DICCG1—-103. From the figure,
we conclude that DICCG1—102 needs approximately 3.5-4.5 times less iterations.
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FIGURE 19. Results with N, = Ny, = N, = 60 of Simulation 2.

250

250

ICCG
— DpiccG1-10°
120
100
o
s
& 80f B
]
s
5
€ eof g
£
2
a0+ g
20 —
o ; ; ; ;
0 50 100 150 200
Time Step
(a) Results considering the number of iterations.
9
— DICCG1-10°
8 d
7 J
6 J
s 1
P
£
=
240 b
8]
3 i
2r ‘N
1 i
o i i i i
0 50 100 150 200
Time Step
(b) Results considering the CPU time.
x10°
— ICCG
— DICCG1-10°
2
S 10f ,
3 i |
g
: w | Ur , b \
g | ‘ b
g
K
&
5 4
i i i i
0 50 100 150 200 250

Time Step

(c) Results considering the relative exact residuals.

3



36 J.M. TANG AND C. VUIK

More important, at all time steps DICCG1—102 converges more or less 1.5-2.5 times
faster to the solution compared to ICCG.
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FI1GURE 20. Visualization of the results of the realistic test problem
with NV, = N, = N, = 60 of Simulation 2.

9.2.2. Results with N = Ny = N, = 100. Next, we present the results with grid
sizes n = 100% in Figure 21.
From Figure 21 we can make the following observations.

e Subfigure 21(a): Similar to the case of n = 603, we notice that the number
of iterations is strongly reduced by the deflation method.

e Subfigure 21(b): Also considering the CPU time, DICCG1—103 shows very
good performance.

e Subfigure 21(c): Obviously, the relative exact residuals are comparable for
both ICCG and DICCG—103.

We can note that for larger problems the DICCG1—10? becomes more favorable
compared to ICCG. Also in these larger problems, DICCG1—10? depends hardly
on the geometry of the problem in each time step.

In Figure 22 one can find the factor gains considering both the ratio’s of the it-
erations and the CPU time between ICCG and DICCG1—-103. From the figure, we
conclude that DICCG1—102 needs approximately 3-5 times less iterations, depend-
ing on the time step. More important, at all time steps DICCG1—10% converges
more or less 2-3 times faster to the solution compared to ICCG. Compared to the
case of n = 603 the gain is larger. Hence, the larger the problem the more favorable
DICCG1—-102 becomes.

10. CONCLUSIONS

In [14] it has been concluded that the deflation method DICCG is very efficient
in bubbly flow problems by considering the number of iterations. In this paper, we
have shown that DICCG is even efficient by considering the CPU time.

We have considered two variants of DICCG: one with a direct solver (DICCG1)
and one with an iterative solver (DICCG2) for the coarse systems within the
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FIGURE 21. Results with N, = N, = N, = 100 of Simulation 2.
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FIGURE 22. Visualization of the results of the realistic test problem
with N, = Ny, = N, = 100 of Simulation 2.

DICCG. Some theoretical properties considering these coarse systems have been
derived which are of importance for DICCG2. Moreover, we have proven that the
two variants DICCG1 and DICCG2 give the same convergence results in exact
arithmetics.

Several 2-D and 3-D numerical experiments have been performed to check the ef-
ficiency of both variants of DICCG. For relatively small number of deflation vectors,
DICCGI1 performs very well but for a larger number DICCG2 is more efficient. With
respect to ICCG, both variants reduce the computational costs significantly for all
test cases of multi-phase flows, especially in relatively large problems. Moreover,
DICCG is insensitive for the contrasts between the phases, while ICCG gives diffi-
culties for large contrasts. Finally, by considering the number of iterations, DICCG
seems also to be insensitive for the grid sizes, where the number of deflation vectors
have to be taken proportional to these grid sizes.

The success of the deflation method has also been emphasized in 3-D realistic
simulations, where 250 time steps have been carried out in the cases of a falling
droplet in air and a rising bubble in water. The larger (i.e., the more grid points)
the problems, the larger the benefit of the deflation method DICCG1 compared to
ICCG.
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APPENDIX A. EFFICIENT CONSTRUCTION OF S4z AND Sg IN 2-D

A.1. Geometry and Terminology. Sparse matrix S4z consists of three columns,
while the number of rows is equal to the number of non-zeros, denoted by =y, in the
full matrix AZ. The first column consists of the row number of AZ. The second
column is the corresponding subdomain, which is the column number of AZ, and
the third column is the corresponding value of AZ.

Each deflation vector in Z corresponds to one subdomain in 2. If we assume 2
to be a square, then these subdomains can be divided into nine different groups, as
depicted in Figure 23. Note that all groups (except for the corner groups 1, 3, 7,
9) may consist of more subdomains. For instance, for r = 25 Group 5 consists of
exactly 16 subdomains, while Group 2, 4, 6 and 8 consist of 4 subdomains each.
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FIGURE 23. Square domain € divided in nine subdomains (k = 9).
In this situation each subdomain correspond to exactly one group.

In Figure 24, we can see the grid points which are concerned in the computation
of Saz. Moreover, one can find the different cases concerning these grid points.
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FI1GURE 24. Cases of grid points concerned in AZ.

Next, the variables used in this appendix are explained in the Table 8. Note that
in the case of Figure 24, subdomains 1, 3, 7, 9 represent all corner s4, subdomains
2, 4, 6, 8 represent all boundary sy and, finally, subdomain 5 is the only interior sg.

A.2. Number of Elements . The number of elements « can be computed easily.
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Variable | Meaning

Sd Subdomain

k Number of sq4

k. Number of s4 in each direction (= \/E)

ng Number of grid points in each direction of each sy

¥ Total number of non-zeros of AZ

Ye Number of non-zeros of AZ coming from all corner sq4

Vb Number of non-zeros of AZ coming from all boundary sy
i Number of non-zeros of AZ coming from all interior sy

TABLE 8. Explanations of the variables.

o Corner Subdomains. For the corner subdomains, which are Group 1, 3, 7,
9 as can be observed in Figure 23, we have 4n;, — 1 elements of fill-in for
each subdomain. In total, there are four corner subdomains. Hence,

Ye = 4(4np — 1)

elements belongs to all corner subdomains.

e Boundary Subdomains. For the boundary subdomains (Group 2, 4, 6, 8)
we have 6n, — 2 elements of non-zeros for each subdomain. In total, there
are 4(k; — 2) boundary subdomains. Therefore,

Y = 8(3ny — 1) (ke — 2).

e [Interior Subdomains. For the interior subdomains which is Group 5 we have
8ny, — 4 non-zero elements for each subdomain. Since there are (k, — 2)?
interior subdomains, this implies

vi = 4(2ny — 1) (kg — 2)°.

We sum up all elements of the corner, boundary and interior subdomains to obtain
the total number of non-zeros ~:

Y=Y+ + 7 = 4(4ny — 1) 4+ 8(3ny — 1) (ky — 2) +4(2np — 1)(k, — 2)%. (26)
Obviously, if k is large then ~; is the dominant term in Eq. (26).

A.3. Treatment of the Cases. Each case, as can be observed in Figure 24, will
be considered separately.

A3.1. Case 1 (1R, 1L, 1M). We distinguish the cases ‘left’ (1), ‘right’ (r) or ‘middle’
(m) variant of Case 1. Then for each row of the domain we add the elements
corresponding to the concerned grid points to S 4z, where we use the fact that

—i = Zam Vi, (27)
=y
since from Assumption 1 we know that A1, = 0,. For instance, for the case
left’ we add two elements to S4z in each row: for the first element z, we add the
corresponding right element of A with a negative sign in front and for the second
element = 4+ 1 we add the corresponding left element of A to Saz.
Note further that for variant ‘middle’ the required work is twice as much com-
pared to ‘left’ or ‘right’.

A.3.2. Case 2 (2U, 2D). Two variants ‘upper’ (u) and ‘down’ (d) are distinguished
in this case. The corresponding elements of S4z can be easily computed: for
‘upper’ we add the corresponding under element of A and for ‘down’ we add the
corresponding upper element of A to Saz.



42 J.M. TANG AND C. VUIK

A.3.3. Case 8 (3LU, 3LD, 3RU, 3RD, 3MU, 8MD). This case requires six different
variants. Each variant takes a few steps, since the ‘corner’ points have to be treated
differently compared by the ‘boundary’ points. For instance, in variant 3LU we
first compute the elements for the boundary points using Eq. (27). Then, the two
corner points are treated separately, using again (27).

A.3.4. Case 4 (4D, 4U). We distinguish the variants 4D and 4U. The procedure of
each variant resembles strongly the procedure of the variants in Case 3. Instead of
two corner points, now we have 4 corner points which has to be dealt with.

A.4. Constructing S4z. Since all cases are considered, computing S 4 7 is straight-
forward. Each subdomain will be treated during the process by computing the com-
ponents belonging to each case. For the case of k = 4, it consists of four subdomains
with three cases each. In the case of k > 4, we note that Group 2 (or 4, 6, 8) in
Figure 2 appears k, —2 times in the general case. Similarly, we deduce that Group 5
appear (k; — 2)? times in these computations.

Note further that in the case that A is forced to be invertible, we have to correct
Saz by noting that

(AZ)n,n = 0Gn,n, Gpn = 00n,n,

)

and hence,
o

(AZ)pp = = Uan,n.
A.5. Constructing Sg. After constructing Sz, we continue with efficiently con-
structing of F := ZTAZ € R¥**. E is a small and sparse SPD matrix with the
same nonzero pattern as A. Earlier we have seen the different cases in the computa-
tions of S4z. Now, these cases will again be the basis of our method. Obviously, to
compute Sg we need all non-zero non-zeros of AZ exactly one time. The geometry
of the method is given in Figure 25.
Some remarks can be made about this figure.

e [ is symmetric and therefore not all non-zero elements in AZ are needed
in the computation of E.

o Sp will be stored efficiently in a matrix with three columns (k elements
each): Sg := [E1 E2 E3|, where F1 is the main diagonal, E2 the first
subdiagonal and E3 the second subdiagonal of matrix E. All indicated
interior points contribute to E1, while all right and top elements besides
the interior are contributions to E2 and E3, respectively. Later on, zero
columns can be put between E2 and E3 which can be filled during the
Cholesky decomposition.

e The construction of Sg can be implemented in the existing code for com-
puting S 4z, which is rather straightforward.

APPENDIX B. EFFICIENT CONSTRUCTION OF Ssz AND Sg IN 3-D

In 2-D we have used Figure 24, where the possible groups and cases have been
distinguished. We can also generalize this idea to the 3-D case, where each sub-
domain is a block now. First we start with the case of eight blocks, thereafter we
consider the case of 28 blocks and finally we consider S4z with various number of
blocks.

B.1. Matrix S,z with Eight Blocks (k = 23 = 8). We first start with consider-
ing eight blocks in 3-D. This means that from Figure 24 we need only Blocks 1, 3,
7 and 9. The other blocks can be omitted for the time being. The geometry of the
eight blocks in 3-D can be found in Figure 26. We will treat Block 1 extensively.
The remaining blocks can be treated similarly and this will be done shortly in this
appendix.
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FIGURE 25. Cases of grid points concerned in E := ZT AZ which
are indicated with E1, E2 and E3.
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FIGURE 26. Geometry of the blocks in 3-D (eight blocks).

B.1.1. Treatment of Block 1. Block 1 is virtually divided into layers. Each layer

corresponds to one z—position. It appears that the layers of z = 1,...,n — 1 are
all the same, see also Figure 27. In other words, for the layers z = 1,...,np — 1,
2=1,..,Nb-1
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FIGURE 27. Treatment of Block 1 in 3D.

they are the same as Block 1 in the 2-D case. For layer z = n; each element of
the block counts an extra element (at z = ny + 1). Therefore, we introduce Case 6
which encounters these elements. Cases 1 and 3 are not required anymore. For
layer z = ny + 1, each interior point of the block has a contribution which is treated
in Case 5.
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B.1.2. Blocks 1-8. The treatment of the remaining blocks is similar to the above
analysis of Block 1. In Table 9 it has been summarized which cases are involved in
these blocks.

Subdomain z | Cases

1 1,...,np—1 1R, 3LU, 2U
g 6LUp, 2U
ny + 1 5D

2 1,...,n,—1 1L, 3RU, 2U
np 6RUp, 2U
ny + 1 5D

3 1,...,n—1 2U, 3LD, 1R
np 2U,6LDp
ny + 1 5D

4 1,...,np—1 2D, 3RD, 1L
np 2D, 6RDp
ny + 1 5D

5 np 5U
ny+ 1 6RUn, 2U
ny+2,...,2n | 1L, 3RU, 2U

6 np 5U
np+1 6RUn, 2U
ny+2,...,2n | 1L, 3RU, 2U

7 ny 5U
ny + 1 2D
ny+2,...,2n, | 6LDn

8 np 5U
np+1 2D, 6RDn
ny+2,...,2np | 2D, 3RD, 1L

TABLE 9. Treatment of the Blocks for k = 8.

B.2. Matrix Sz with 27 Blocks (k = 3% = 27). In the case of r = 27, the
constructed eight blocks in the previous section are the eight corner blocks. The
remaining 19 blocks can be constructed in a similar way. To do so, we start with
the lower nine blocks.

B.2.1. Blocks 1-9. The treatment of the blocks are given in Table 10.

B.2.2. Blocks 10-18. The implementation of blocks 10-18 follows from the first
nine blocks. Now, there are five groups for z instead of three, namely, z = ng, z =
npy+1,z=np+2,...,2np — 1,2 = 2np, 2 = 2np + 1. The last three groups are the
same as the block below, and the first two follows immediately from the last two.
For example, Block 10 consists of

z=mnyp:5U;

z=mnp+1:6LUn;

z=np+2,...,2n, —1: 1R, 3LU,2U;

z=2ny:6LUp,2U;

z=2n,+1:5D.

In this case, z =np+2,...,2ny, — 1 : 1R, 3LU,2U,z = 2ny : 6LUp,2U, z = 2np + 1 :
5D are exactly the same as Block 1. Moreover, z = ny, : 5U,z =n, + 1 : 6LUn are
almost the same as z = 2ny, : 6LUp, 2U, z = 2np + 1 : 5D, where only 'p’ is replaced
by 'n’ in Case 6. This same pattern holds for all Blocks 10-18.
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Block =z | Cases
1 1,...,n, — 1| 1R, 3LU, 2U
np 6LUp, 2U
ny + 1 5D
2 1,...,np — 1| 1M, 4U, 2U
ny 6MUp, 2U
ny + 1 5D
3 1,...,n, — 1| 2U, 3LD, 1R
Ny 2U,6LDp
ny +1 5D
4 1,...,n, — 1| 2D, 3LD, 1R, 3LU, 2U
g 2D, 6LMp, 2U
ny + 1 5D
5 1,...,n, — 1| 2D, 4D, 1M, 4U,2U
g 2D, 6MMp, 2U
ny+ 1 5D
6 1,...,n, — 1| 2D, 3RD, 1L, 3RU, 2U
g 2D, 6MMp, 2U
ny + 1 5D
7 1,...,n, — 1| 20U, 3LD, 1R
Ny 2U,6LDp
ny + 1 5D
8 1,...,ny — 1| 2D, 4D, 1M
Ny 2D, 6MDp
ny + 1 5D
9 1,...,n, — 1| 2D, 3RD, 1L
Ny 2D, 6RDP
ny + 1 5D

TABLE 10. Treatment of Blocks 1-9 for k = 27.

B.2.3. Blocks 19-27. Also Blocks 19-27 follow from Blocks 1-9.

The different

groups of Blocks 1-9 have to be reversed and moreover, 'p’ has to be replaced
by ‘n’ in Case 6 and ’D’ has to be replaced by ‘n’ in Case 5. For instance, Block 20

consists of

e z=2ny:5U,;
e z=2n,+1:6MUn;20

e z=2ny+2,...,3np: 1M, 4U,2U0
This is exactly the reverse treatment of Block 2, where now 5D and 6LUp are 5U
and 6LUn, respectively. This same pattern holds for all Blocks 19-27.

B.3. Matrix S,z with Variable Number of Blocks. Implementing matrix S4z
with variable number of blocks is a straightforward generalization of the case with
27 blocks. Each of the 27 blocks should be considered to be a class in this case,
where all new blocks will be covered.

B.4. Constructing Sg. In similar way as for the 2-D case, Sg can be constructed.
Instead of Sg = [F1 E2 E3], now we have S = [E1 E2 E3 E4].

B.5. Number of Elements . Similar to the 2-D case, we compute ~ which is
required to construct Saz.

e Corner Blocks. We need (np — 1) times 4n, — 1 and one time 2n§ + 2n,, for
each corner block. So, 6n2 —3n,+ 1 elements per corner block are required.
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In total we have 8 corner blocks. Hence,
Ve =8+ (6nF —3ny +1).

e Interior Blocks. (n, — 2) times 8n, — 4 and two times 2n§ + 4ny, for each
interior block are required. Therefore, 12n§ —12np+ 8 elements are required
for each interior block. There are (k, — 2)? interior blocks. Hence,

vi = (ky —2)% - (12n7 — 12ny + 8).

e Boundary Blocks. We divide the boundary blocks into two parts: (i) the
‘real’ boundary blocks and the ‘boundary-interior’ blocks.

(i) We need (n, — 1) times 6n; — 2 and one time 2n} + 3n; for each real
boundary block. So in total: 8n? — 5ny, + 2 elements are required for each
real boundary block. There are exactly 12(k, — 2) real boundary blocks.

(ii) We need (n, — 1) times 8n, — 4 and one time 2n? + 4n; for each
boundary-interior block. Hence, 10n§ — 8np + 4 elements are required for
each boundary-interior block. In total, we have 6(k, —2)? boundary-interior
blocks.

Hence,

Yo = 12(ky — 2) - 803 — 5np + 2 + 6(ky — 2)% - 1007 — 8ny, + 4.
Subsequently, the total number v can be computed using

Y=+ + Y.

Note that if A is invertible, one extra element is required, similar to the 2-D case.

APPENDIX C. FLorP CoUNTING OF ICCG aAnND DICCG1 IN 2-D

A comparison of flops between ICCG and DICCG1 has been performed in [13,
Appendix B]. However, AZ and E have not been computed efficiently in that
paper. We will revise it based on Saz and Sg in this and the next appendix. In
this appendix, the 2-D case will be considered shortly where we compare ICCG and
DICCGI1. For more details we refer to [13, Appendix B].

C.1. Assumptions. To compare the number of flops between DICCG1 and ICCG
in the 2-D case, we assume that

e A has size n x n and consists of 5 non-zero diagonals;

o AZ is computed and stored efficiently using Saz;

e F has size k x k and has bandwidth vk. E is computed and stored efficiently

using Sg.
Compared to [13, Appendix B], Z and AZ will not explicitly be formed, which
restrict the number of flops.
We make some assumptions with respect to the (approximated) number of flops

in Table 11, where x,y are vectors of length n and v,w are vector of length k. In
the analysis, we shall neglect O(1) terms.

Notation | Operation | # Flops

F(ac,y) ({E, y) 2n

Foyy x4y n

Fay Ax In

Fonoi(a) Making C' from A | 8n

Fag—y Solving x from 11n
CCTxr =y

TABLE 11. Assumptions of flop counts in standard operations of
both ICCG and DICCGI1.
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C.2. Flop Counts of Main Operations of DICCG1. In this subsection, we
compute the number of flops required to construct Saz, Sg, (AZ)ze, Z 9, (AZ) 2y,
Zx1, solving Ev = w and computing Pz and PAx.

C.2.1. Computations Saz and Sg. From Appendix A, the number of rows of Sz
is given by
v o= 4(4np —1) +8(3np — 1)(ky — 2) +4(2np — 1) (ke — 2)?
16np — 4 + (24ny — 8)(ky — 2) + (81 — 4) (k2 — 4k, +4)
8nyk? — 8npk, — 4k2 + 8k, — 4,

where
ny =/n/k, ky= Vk.

Subsituting the latter expression into ~y yields

v = 8ky/n/k—8\/n/kvk — 4k +8Vk — 4
= 8Vnk—8yn—4k+8Vk —4.

Almost each element of S4z has exactly one contribution from A. Only the corner
points of each subdomain have more contributions from A. The flops of these extra
contributions can be neglected since n > k. The number of flops F4z to create AZ
efficiently is (neglecting O(1) terms):

Faz = 8Vnk — 8y/n — 4k + 8Vk = O(Vnk).

Next, F'g can be computed easily. This is equal to v, because each non-zero element
of AZ has a contribution once to E. This leads to

Fg ~ Faz = 8Vnk — 8/n — 4k + 8Vk = O(Vnk).

C.2.2. Computations (AZ)xy, ZTxs, (AZ) 21 and Zx,. The number of flops for
the matrix-vector computation (AZ)zs can be computed easily, since AZ is stored
as Saz. A loop is required to explore S4z. In each iterate of this loop, we need
two flops: the value of the element multiplied by the corresponding element from
o and the addition to the previous value of the element of the new vector. Based
on this idea, we find the same number of flops for (AZ)Tz;. In other words,

Fazs, = Flagyra, = 27 = 16Vnk — 16y/n — 8k + 16Vk = O(Vnk).

Moreover, matrix Z is not formed explicitly, since Z7 x5 en Zz; can be constructed
directly from x5 en x1. Here, 1 and zo are vectors of length k and n, respectively.
Each element of the vectors has exactly one contribution to the new vectors. A
loop is again required, where in each iterate one flop are needed: element from zo
added to the corresponding element in the new vector. In a similar way we obtain
that both Zz, and Z7 z» require the same number of flops. Therefore,

FZII,'Q = FZTII,'l =n= O(n)
Note that constructing Zx, is more expensive than constructing AZxs by assuming

that Saz is already formed.

C.2.3. Computations for Solving Fv = w directly. Solving Ev = w will be per-
formed by first constructing the band-Cholesky decomposition L from F and there-
after solving v from LLTv = w. As described in [13, Appendix B,

Fchol(E) = kQ + 8k\/E+ k= O(kQ)

is needed to compute the band-Cholesky decomposition of E. Then the number of
flops to solve Ev = w with the backward- and forward substitution is exactly

FEv:w = Qk\/E‘F k= O(k\/E)
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C.2.4. Computations Pr and PAx. To compute Pz we assume that chol(E) and
Saz are known. Note that F,_,, =n and Fa, = 9n from Table 11. Then we have

FZT:EI + FEU:U} + FAZ.’L‘Q + F’L‘—fl‘g

n+ 2kVE + k4 16v/nk — 16y/n — 8k + 16vVEk 4+ n
2n 4 16v/nk — 16y/n + 2kVk — Tk + 167k

= 0O(n),
and moreover, we obtain immediately
FPAfI: = FP.’L‘ + FA.’L‘
= 1ln+16vnk — 16y/n + 2kvVk — Tk + 16Vk
= O(n).

C.2.5. Summary. For convenience, we summarize the flop counting results of this
subsection in Table 12.

Notation | Operation | # Flops

Faz Saz 8vVnk — 8y/n — 4k + 8Vk

Fg Sg 8v/nk — 8y/n — 4k + 8Vk

FAZz, AZxy 16vnk — 16y/n — 8k + 16k

Fapre, | (AZ) Tz 16v/nk — 16y/n — 8k + 16k

Fng ZZ‘Q n

Fyr,, AR n

Fenot(g) | chol(E) k2 + 8kvEk + k

Fro—u Ev=w 2kVk + k

Fpy Px 2n 4 16v/nk — 16y/n + 2kvVk — Tk + 16Vk
Fpag PAg 11n + 16vVnk — 16y/n + 2kvVk — Tk + 16VEk

TABLE 12. Flops required to compute the main steps in DICCGI.

C.3. Flop Counts in ICCG and DICCG1. We divide this subsection into two
parts. The first part computes the number of flops required prior to and after the
ICCG and DICCG1 loops. The second part determines the number of flops required
in both loops.

C.3.1. Computations before and after the ICCG and DICCG1 loops. DICCGI re-
quires more prior and post computations compared to [CCG. These extra computa-
tions are determined below and they are denoted by Fjrior and Fgfier. The results
are based on computations done in [13, Appendix BJ.

For Fior, we obtain

Faz + Fg + Fepop)

16vVnk — 16y/n — 8k + 16vVk + k2 + 8kvVk + k
16v/nk — 16/n + k? + 8kvk — Tk + 16Vk
O(Vnk).

To compute F,rier we have to determine the number of flops F,, and Fj, needed
foru=ZE"'ZTb and v = u+ PT3;:

Fpm’m’

F, FZTml +FEv:w+FZw2
3n+2kvVk + k

O(n),
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and
F, = n+Fp,=
= 3n+16vVnk — 16y/n + 2kvVE — Tk + 16Vk
= O(n).
Hence,
Fafter = E:, + Fr

An + 2kvVE + k + 4n + 16Vnk — 16y/n + 2kvVE — Tk + 16VE
6n + 4k\Vk — 6k + 16v/nk — 16y/n + 16Vk
= O(n).

Next, ICCG and DICCG1 have several common computations which leads to

Fpriorfcom = 31n.

C.3.2. Computations during the ICCG and DICCG1I loops. In the iterates, ICCG
and DICCGI1 have also common operations which results in (see [13, Appendix B])
Feom = 27Tn.

Moreover, the difference between ICCG and DICCGI in the iterates is comput-
ing w;. In DICCG1, we compute w; = PAp;, while in ICCG we have w; = Ap;.
This gives us

Fpap = Fpay = 11n+ 16vnk — 163/n + 2kVk — 7k + 16Vk

and
FAp = FAm =9n.

C.3.3. Summary. The results of this subsection are summarized in Table 13.

Notation | Operation | # Flops
Fprior Steps before the DICCG1 loop 16v/nk — 16y/n+
k2 + 8kvVk — Tk + 16Vk
Fofter Steps after the DICCG1 loop 6n + 4kvVk — 6k+
16v/nk — 16y/n + 16Vk
Fprior—com | Common steps prior and 31n
after the ICCG and DICCGI1 loops
Feoom Common steps during 2Tn
the ICCG and DICCGT1 loops
Fpap Computing PAp in DICCG1 11n + 16v/nk — 16/n+
2k — Tk +16Vk
Fap Computing Ap in ICCG 9In

TABLE 13. Flops required to compute the steps in ICCG and DICCGI.

C.4. Total Number of Flops for ICCG and DICCG1. Now we can compute
the number of flops required in ICCG and DICCG. We denote the number of re-
quired iterations of ICCG and DICCGI1 with I;ccq and Iprcca. Then,

FICCG = Fpriorfcom + IICCG ' (Fcom + FAp)
3In+ Ircca - (27TL + 9TL)
31ln+ Ircea - (36n)
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and

Fprecce = Fprior + Fprior—com + Fafter + Iniccc - (Feom + Fpap)
= 16vnk — 16\/n + k? + 8kvVk — Tk + 16Vk + 31n+
6n + 4kVk — 6k + 16v/nk — 16/n + 16vk+
Iprecca - (27Tn 4+ 11n + 16vnk — 164/n + 2kVk — Tk + 16Vk)
= 37n+32vnk — 32y/n + k> + 12kVEk — 13k + 32Vk
Ipreca - (38n 4+ 16v/nk — 16y/n + 2kvVk — 7k + 16Vk).
To compare Froog and Fproog in the numerical experiments, it is convenient to

define
_ Fprcca

fF = Ia .
ICCG
If £ < 1, then DICCGI is more efficient than ICCG. For instance, if £ = 0.25,
then ICCG requires 4 times as much flops as DICCG. In the numerical experiments
we will also compare £ with £&py which is defined by
¢ __ CPU Time of DICCG

“PUT "CPU Time of ICCG -

The parameters {r and {cpy should resemble each other.

C.5. Example: Flop Counts for Test Problem 2D-TP3 with n = 1002. We
consider Test Problem 2D-TP3 which is a 2-D test problem with nine bubbles and
grid sizes n = 1002, see also Section 7. The results considering this test problem
can be found in Table 14.

Method | # Iter. | CPU (sec) Ecpu | # Flops (x10°)  &p

ICCG 247 0.26 - 89.2 —

DICCG1-52 | 70 0.11 0.42 | 28.2 0.32
DICCG1—102 | 44 0.08 0.31 |18.2 0.21
DICCG1-20% | 27 0.07 0.27 |12.1 0.14
DICCG1-252 | 23 0.06 0.23 |11.5 0.13
DICCG1-50% | 14 0.11 0.42 |18.1 0.20

TABLE 14. CPU time and flop counting results of ICCG and
DICCG—k for Test Problem 2D-TP3 (nine bubbles) with N, =
N, = 100.

Considering both the CPU time and the ratio’s £ and o py, we see that k = 252
is optimal and leads to the most efficient method in this test problem. Note that
there are clear differences between {cpy and &g in absolute sense, since the CPU
time does not only depend on the number of required flops, but also on for instance
memory and other implementation aspects which are not considered in this paper.

APPENDIX D. FLor CouNTING OF ICCG anD DICCG2 IN 3-D

The flop counts performed for the 2-D case can be generalized for the 3-D case,
where we distinguish the two variants DICCG1 and DICCG2.

D.1. Assumptions. To compare the number of flops between DICCG1/DICCG2
and ICCG in the 3-D case, we assume that

e A has size n x n and consists of 7 non-zero diagonals;

o AZ is computed and stored efficiently using Saz;

e F has size k x k and has bandwidth k2 + k, = k%/3 + /3. E is computed
and stored efficiently using Sg.

This leads to the assumptions as given in Table 15.
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Notation | Operation | # Flops

Flay) (z,y) 2n

Fery x + Yy n

Fenota Making C' from A | 12n

Fpp—y Solving x from 15n
CCTxr =y

TABLE 15. Assumptions of flop counts in standard operations of
both ICCG and DICCG1/DICCG2 in 3-D.

Computations Saz and Sg. From Appendix B, the number of rows of S4z

in the 3-D case is given by

where

and

Y=+ + Y,

Yo = 8-(6nf—3n,+1),
v = (ks —2)% (1207 — 12n, + 8),
v = 12(ky —2)-8n2 — 5np + 2 + 6(ky — 2)% - 10n2 — 8y, + 4

n, = v/n/k, ky = Vk.

This can be rewritten into

Ve

T

8- (6n2 —3np +1)

48n§ — 24ny + 8

= 48(/n/k)? —24(¥/n/k) + 8
48(n/k)?/® — 24(n/k)*/3 + 8
48(n/k)?/3;

Q

(ky —2)3 - (12n7 — 12n; + 8)

(Vk) = 2)% - (12(/n/k)* = 12(3/n/k) +8)

(K3 = 2) (k¥ — 4k'/3 4 4) - (12(n/k)?/3 — 12(n/k)*/3 4 8)
(k — 6k%/3 + 12KY/3 — 8) - (12(n/k)*/3 —12(n/k)/3 4 8)

= 120233 — 12n1/3K2/3 4 8k — 72n%/3 + 72(nk)/3 — 48k2/3

+144n?/3E71/3 — 14401/ 4 96k/% — 96(n/k)*/3 + 96(n/k)"/® — 64

12n2/3kY3 4 8k;

Q

12(ky — 2) - 8n2 — 5np + 2 + 6(ky, — 2)% - 1007 — 8ny, + 4
12((VE) — 2) - 8(/n/k)* — 5(/n/k) + 2+
6((Vk) —2)%-10({/n/k)* — 8(3/n/k) +4;
= (12k'/3 —24) - 8(n/k)*/3 = 5(n/k)'/3 + 6+
60(k%/3 — 4K/ 4+ 4)((n/k)*/® — 8(n/k)/3)

= 96n%/3k=1/3 —192(n/k)?/® — 5(n/k)Y/? 4+ 6 + 60n2/3 — 480(nk)"/?

—240n%/3k=1/3 4 960n/3240(n/k)?/® — 960(n/k)'/3
= 60n%/3 4+ 48(n/k)?/3 — 144n2/3k=1/3 — 480(nk)'/3+
960n'/3 — 965(n/k)'/3 + 6
60n2/3.

Q

Subsituting these approximations into ~y yields

v~ 120233 4+ 60n%/3 + 48(n/k)?/® + 8k.
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Since again almost each element of S4z has exactly one contribution from A, the
number of flops Faz and Fg to create AZ and E efficiently is approximately

Fp~Faz ~ 1205 6003 1 48(n/k)*/® + 8k

~  12n2/3kY3 = O(n?/3k1/3).
Note that the latter expression can also easily be obtained by observing that ; >
b + 7. for sufficiently large k and therefore the contributions of v, and ~. could be
omitted.

Obviously, in the 3-D case, the construction of S4z and Sg is more expensive
(O(n?/3k'/3)) than in the 2-D case (O(n'/3)).

D.1.2. Computations (AZ)xy, Z xs, (AZ) 2y en Zxy, We compute easily

Faze, = Flagpre, = 29
24n?/3E1 3 1 120n%/% + 96(n/k)?/3 + 16k
2402313 = O(n2/3k1/3).

~
~
~
~

Moreover, the costs for Fz,, and Fyr,, are the same in 2-D and 3-D, i.e.,
FZQE2 = FZTl.l =n= O(n)

Note that in 2-D constructing Zxzs is more expensive than constructing AZxo
(O(n) > O(y/n)), but in 3-D these costs are almost the same (O(n?/3k/3) ~ O(n)).

D.1.3. Computations for Solving Ev = w. Solving EFv = w is done differently in
DICCG1 and DICGG2. We consider both cases below.

e DICCG1: Solving Ev = w directly. First the band-Cholesky decomposition
L is constructed from E and thereafter v is solved from LLTv = w. Since
in 3-D the bandwidth of F is k%/3 + k'/3 instead of k'/2, we obtain (cf. [13,
Appendix B])

Fonomy = k(K3 +EY3)2+3(k%% +kY3) +k
k(kY3 + 2k + 4Kk%/3 + 3k1/3) + k
= k7% 42k + 4k5/3 + 3KY3 1+ k

~ O(k™?)
and
Fpo—wpiccct = k2K + k%) +1)
= 2kP/3 4 okA/3 4k
~ O(k/3).

Obviously, solving Ev = w directly in 3-D is less attractive than in the 2-D
case.

o DICCG2: Solving Ev = w iteratively. The system Ev = w is solved us-
ing ICCG. These inner iterations are denoted by ICCG2. In the previous
appendix we have seen that

FEv:w,DIC’CG? = Fpriorfcom + IICCGQ : (Fcom + FAp)
= 3lk+ I;coce - (36k)
by replacing n by k.

Clearly, it depends on k and on I;ccge whether DICCG1 or DICCG?2 is the most
efficient method.
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D.1.4. Computations Px and PAz. To compute Px we assume again that Sz is
known and in DICCGI also chol(E) should be known. Obviously, Fp, and Fpa,
depend on the choice of DICCG1 and DICCG2. We obtain

and

Fpe. prccar

Fp. prcca2

FZTwl + FEv:w,DlCCGl =+ FAng + waxg
n 4 2k5/3 4 2k4/3 4 | 4 24n2/3k1 /3 4
120n2/3 +96(n/k)%/? + 16k +n

2n + 24n?/3EY3 £ 120023 4+ 96(n/k)?/3
+2K5/3 4 2kY3 4 17k

O(n),

FZTzrl + FEv:w,DICCGQ + FAZ.’L‘Q + EL‘—.’L‘3
n+ 31k + Ircogs - (36k) + 24n2/3k1 /34
120023 4 96(n/k)?/3 + 16k +n

2n + 24n?/3kY3 £ 120n%/% 4+ ATk+
Iiccas - (36]6) + 96(n/k‘)2/3

O(n).

Moreover, we obtain immediately

and

Fpaez.prccai

Fpaz,prcca

Fpy preccci + Fax

150 + 24n2/3k1/3 4 120n2/3 4 96(n/k)2/3
+2K5/3 4+ 2k4/3 4 17Tk

O(n),

Fpz,prcca2 + Fag
15n 4 24n?/3k1/3 +120n%/° 4 47k
+I1ccGe - (36k) 4+ 96(n/k)%/3

= O(n).
D.1.5. Summary. In Table 16, we summarize the flop counting results of this sub-
section.
Notation | Operation | # Flops
Faz Saz 12n2/3k1/3 4 60n2/3 4- 48(n/k)?/3 + 8k
Fg Sk 12027313 + 60n?/3 4 48(n/k)*/3 + 8k
Faze, AZxy 2402313 11200273 4 96(n/k)?/3 + 16k
Flaz)ra, (AZ)Txy 24n2/3k13 + 1200273 4+ 96(n/k)*/3 + 16k
FZ:rz Z{EQ 2n
FZTml ZTl‘l 2n
Fenol(p) chol(E) k773 4 2k% 4+ 4K5/3 + 3K + K
Fgv—w,.prccc1 | Ev=w 2k°/3 4 2k4/3 4 k
Fgy=w,prccaz | Ev=w 31k + Irccac - (36k)
FPm,DlCCGl Px 2n + 24n2/3k1/3 + 120n2/3 =+ 96(77,/]6)2 3—|—
25/ + 2143 4 17k
FPz-7D[CCG2 Px 2n + 24n? 3]61/3 + 120n2/3 + 47k
Irccas - (36k) + 96(n/k)?/3
Fpazpiccat | PAx 15m + 24n%/3kY3 + 120n%/3 4 96(n/k)?/3+
2k5/3 4+ 2k4/3 417k
Fpas,prcca: | PAx 15n + 24n?/3k1/3 41200273 + 4Tk+

Iicogs - (36k) + 96(n/k)*/?

TABLE 16. Flops required to compute the main steps in DICCG1
and DICCG?2 in the 3-D case.
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D.2. Flop Counts in ICCG and DICCG1/DICCG2. We divide this subsec-
tion into two parts. The first part computes the number of flops required prior to
and after the ICCG and DICCG1/DICCG?2 loops. The second part determines the
number of flops required in both loops.

D.2.1. Computations before and after the ICCG and DICCG1/DICCG2 loops. The
extra computations required in DICCG1 and DICCG2 are determined below.
For Fprior,DIC’C’Gl and Fprior,DIC’C’G27 we obtain

Fprior,piccar = Faz +Fg+ Fchol(E)
= 240?33 +120n*/° 4+ 96(n/k)*/3 + 16k
+ET/3 4 2k% 4 4K5/% 4 3k 4 k
= 24n?/3kY3 £120n%/3 + 96(n/k)?/3 + k73 +
2k? + 4k5/3 4+ 3KY3 4 17k
_ O(n2/3k1/3),
and
Fyrior.picca2 = Faz + Fg
= 24n?/3EY3 £ 120n%/3 4 96(n/k)?/3 + 16k
= On*3EY3).
To compute Fytter,prccet and Fyfeer preca2, we have to determine the number
of flops Fyu prccci1 and Fy prccaz and also F, prcccei and Fi precasz:

Fuprccat = Fyry + Fpo—w,piccet + Fzz,
= 24 2k5/3 4 2kY3 + k
= O(n),

Fuprccc2 = Fgzry + Fev=wpICcCG2 + F22,
2n+ 31k + Itccae - (36k)
= O(n),

and
n+ Fpy prccet =
3n + 24n?/3EY3 £ 120023 4+ 96(n/k)?/3
+2K5/3 4 2k4/3 £ 17K

= O(n),
Fy prcca2 = n+Fpyprcca2 =

= 16n+ 24n2/3kY/3 £ 120n2/3 + 47k

+Irccas - (36k) + 96(n/k)?/3
O(n).

Fy preccat

Hence, this implies
Fatter,piccar = Fuprccer + Frprccat
= 204 2k5/3 £ 2kY3 4 Kk + 2n + 24n2/3k1/3 4 120n2/3
+96(n/k)2/3 4+ 2k5/3 4 2k4/3 + 17k
= dn+ 24n?/3k1/3 4120023 + 96(n/k)2/3+
AKS/3 4 4kY3 4 18k
= 0O(n),

Fapter,piccaz = Fuprccaz + Frprcca2

= 2n+31k+ Ircogs - (36k) + 16n + 24n2/3k1/3
+120n%/3 + 47k + I1coqe - (36k) 4 96(n/k)?/3

= 18n + 58k + 24n>/3k"/3 4 96(n/k)?*/3+
1200273 + I1ccae - (T2k)

= O(n).

Next, similar to 2-D, ICCG and DICCG1/DICCG?2 have several common com-
putations which gives
Fpriorfcom = 39n.
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D.2.2. Computations during the ICCG and DICCG1/DICCG2 loops. In the iter-
ates, ICCG and DICCG1/DICCG2 have also common operations which results in

Feom = 31n.

Moreover, the difference between ICCG and DICCG1/DICCG2 in the iterates is
computing w;. In DICCG1 and DICCG2, we compute w; = PAp; while in ICCG
we have w; = Ap;. This gives
Fpappiccar = Fpaz,piccel
= 150+ 24n?/3kY/3 +120n%/3 4 96(n/k)?/3+
2k5/3 4+ 2k4/3 + 17k
= O(n),

Fpappicca2 = Fpazpiccaz
= 15n + 24n?/3kY3 4 120n%/3 + 47k
+Icces - (36k) + 96(n/k)*/3
= O(n)

and

Fap.prccet = Faz,precci = 13n = O(n).

D.2.3. Summary. The results of this subsection are summarized in Table 17.

Notation | Operation | # Flops

Fyprior,p1ccc1 | Steps before DICCG1 loop 24n23 K3 41200273 + 96(n/k)?/3+
K7/ 4 2k2  4k5/3 4 3k4/3 + 17k
Forior,p1ccaz | Steps before DICCG2 loop 24n2/3k1/3 4 120n2/3+

96(n/k)?/3 + 16k

Fafter,n1ccc | Steps after DICCGI loop An + 24n>/3E/3 +120n2/3+
96(n/k)%/3 4 4k5/3 4 4k*/3 + 18k
Fufter,piccG2 | Steps after DICCG2 loop 18n + 58k + 24n2/3k1/3 4
96(n/k)?/® + 1200273 + Irccas - (T2k)
Forior—com Common steps prior and after | 39n
ICCG and DICCG1/2 loops
Foom Common steps during 31ln

ICCG and DICCG1/2 loops

Fpap.picccr | Computing PAp in DICCG1 | 15n + 24n?/3k1/3 4 120n%/3+
96(n/k)?/3 + 2k5/3 + 2k4/3 + 17k
Fpap.piccge | Computing PAp in DICCG2 | 15n + 24n?/3kY/3 4 120n%/3+
ATk + Itccas - (36k) + 96(n/k)?/3

Fap Computing Ap in ICCG 13n

TABLE 17. Flops required to compute the steps in ICCG and DICCG1/DICCG2.

D.3. Flops for ICCG and DICCG1/DICCG2. Now we can easily compute
the number of flops required in ICCG and DICCG1 / DICCG2, namely

FICCG = Fpriorfcom + IICCG : (Fcom + FAp)
39+ Ircca - (31n + 13TL)
3+ Ircce - (44n),
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and

Fprccar = Fprior,p1ccc1 + Fprior—com + Fafter,p1cca1+
Ipiccar  (Feom + Fpap.prccai)
= 43n +4Tn?/3KY3 4 240n%/3 4 192(n/k)?/ 3+
K7/3 4+ 2k2 + 8k5/3 4 TEY/3 4 25k+
Iprecat - (46n + 24n2/3kY3 4 120n%/3 + 96(n/k)?/3
+2k5/3 4 2k4/3 4 17k),
Fprccaz = Fprior,p1ccc2 + Fprior—com + Fafter,Diccaa+
Iprccaz - (Feom + Frap.piccae)
= 5Tn+ 58k + 48n2/3k/3 + 240n2/3 + 192(n/k)?/3 + 16k+
Iiccas - (72k) + Iprccgs - (46n + 24n2/31/3
+12012/3 + 47k + Ircoqs - (36k) 4 96(n/k)%/3).

Next, to compare Frocg and Fprooa1 or Fprooage in the numerical experiments,
we consider

Epy = Fpreca ¢ _ CPU Time of DICCG1
U TFece . S9PYY T TCPU Time of ICCG

and
L FD[CCGQ CPU Time of DICCG2

§r2 = Froce Scpuz = CPU Time of ICCG

D.4. Example: Flop Counts for Test Problem 3D-TP4 with n = 1003. We
consider Test Problem 3D-TP4, which is a 3-D test problem with 27 bubbles and
grid sizes n = 1002, see also Section 8. The results considering this test problem
can be found in Table 18.

DICCG1 DICCG2 DICCG1 DICCG2
Method | # It. | CPU fCPUl | CPU fchQ | # FL fpl | # FL €F2
ICCG 310 46.0 - 46.0 - 13.7 - 13.7 -
DICCG1/2-23 | 275 (5) |50.4 1.1 48.8 1.1 135 1.0 | 135 1.0
DICCG1/2—5% |97 (16) |19.0 0.4 18.7 0.4 48 04 |48 04
DICCG1/2—-10% | 60 (43) |13.0 0.3 13.0 0.3 31 02132 02
DICCG1/2-20% | 31 (115) | 29.3 0.6 11.0 0.2 3.5 0.3 |28 0.2
DICCG1/2—25% | 26 (146) | >300 >6.0 |14.2 0.3 92 07|38 03

TABLE 18. Iterations (in brackets the required inner iterations in
DICCG2), CPU time (in seconds) and flop counting (x10?) results
of ICCG, DICCG1—k and DICCG2—k for Test Problem 3D-TP4
(27 bubbles) with N, = N, = N, = 100.

Although there are differences between {1 (§r2) and Ecpyr (opuz), the ten-
dencies of these two parameters resemble each other. Considering these parameters,
DICCG1 is optimal around k£ = 10® and DICCG2 is optimal around k = 103 — 253,



