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NEW VARIANTS OF DEFLATION TECHNIQUES
FOR BUBBLY FLOW PROBLEMS

J.M. TANG AND C. VUIK

ABSTRACT. For various applications, it is well-known that deflated ICCG is
an efficient method for solving linear systems with invertible and singular co-
efficient matrix. This deflated ICCG with subdomain deflation vectors is used
by us to solve linear systems with singular coefficient matrix, arising from a
discretization of the Poisson equation with Neumann boundary conditions and
discontinuous coefficients. However, we have not explained the fact that the
use of subdomain deflation vectors is effective. In this paper, we investigate
this by doing some perturbed eigenvector analysis and we make it plausible
that the use of subdomain deflation vectors is beneficial for the number of
iterations and the amount of computational time.

Moreover, we introduce new variants of the deflation technique which can
deal with bubbly flow problems and with two-phase flow problems in general.
The most simple variant is the so-called levelset deflation technique which
chooses deflation vectors corresponding to the bubbles in the domain. Another
variant is to combine the subdomain and levelset deflation technique which
makes profit of the advantages of the original subdomain deflation and the
levelset deflation. Numerical experiments show the good performance of these
new deflation variants.

Finally, the undeflated and deflated MICCG and RICCG methods are also
investigated, which apply the modified and relaxed IC preconditioners instead
of the original IC preconditioner, respectively. We show that the extension of
the deflation technique to these methods is only beneficial for test problems
with smooth coefficients. In our bubbly flow problems, the original ICCG and
DICCG appear to be the most efficient methods.

Keywords. deflation, conjugate gradient method, preconditioning, Poisson equa-
tion, symmetric positive semi-definite matrices, bubbly flow problems.
AMS subject classifications. 65F10, 65F50, 656N22.
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1. INTRODUCTION

Simulating two-phase flows and in particular bubbly flows is a very popular
topic in CFD. These bubbly flows are governed by the Navier-Stokes equations. In
many popular operator splitting formulations for these equations, solving the linear
system coming from the Poisson equation with discontinuous coefficients takes the
most computational time, despite of its elliptic nature. ICCG is widely used for
this purpose, but for complex bubbly flows this method shows slow convergence. As
alternative for ICCG, we apply a deflated variant of ICCG which is called DICCG.
This method incorporates the eigenmodes corresponding to the components which
caused the slow convergence of ICCG.

FIGURE 1. An example of a bubbly flow problem: domain of water
with a lot of bubbles.

Recently, DICCG applied on bubbly flows has been studied by the authors [11,
12,15]. In [11], a literature overview has been given with respect to bubbly flow
problems and various deflation variants which may be applied on these problems.
In [12], theoretical considerations of DICCG with subdomain deflation vectors are
given with respect to the singularity of the linear system. Moreover, some 3-D nu-
merical experiments have been performed in that paper, where ICCG and DICCG
have been compared by considering the number of iterations required for conver-
gence to the solution. Furthermore, in [15] some implementation issues of DICCG
have been discussed and some more considerations about the singularity are made.
In addition, efficient methods to solve coarse linear systems within DICCG have
been given including some theoretical analysis in order to compare these methods.
Finally, in the same paper it has been shown that the proposed DICCG approaches
are very efficient by using numerical experiments. Compared to ICCG, DICCG de-
creased significantly the number of iterations and the computational time as well,
which are required for solving Poisson equation in applications of 2-D and 3-D
bubbly flows.

However, in [11,12,15] it has not been shown why the approach of DICCG with
the subdomain deflation vectors is successful. We have assumed that the small
eigenvalues of the preconditioned coefficient matrix have been projected to zero,
leading to fast convergence of DICCG. In this paper, we show that this is indeed
the case, by doing some spectral analysis with 1-D and 2-D numerical experiments.

Furthermore, the subdomain deflation vectors are chosen in such a way that
they do not depend on the geometry of the bubbly flow. The advantage is that
this approach is a black-box method. Independent of the structure of the bubbles,
DICCG with the same deflation vectors can be used. The drawback is that relevant
information which can improve DICCG significantly has been omitted. Therefore,
in this paper we will give two new variants of DICCG, where the deflation vectors
associate to the bubbles.
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In addition, in previous works we have only considered DICCG with the standard
IC preconditioner. There are also other IC-like preconditioners available like mod-
ified and relaxed IC preconditioners [1] with different spectral properties. In this
paper we will investigate these preconditioners, also in combination with deflation.

The outline of this paper is as follows. Section 2 will be devoted to the problem
setting of the bubbly flow problems and to the definition of the test problems.
The deflation technique with general deflation vectors is introduced in Section 3.
In Section 4, we give the existing eigenvector deflation method. Subsequently,
in Section 5, we investigate perturbations in eigenvectors and their consequences
to the eigenvector deflation, resulting in the perturbed eigenvector deflation. In
Section 6 we introduce the so-called levelset deflation approach, where the choice of
deflation vectors is strongly related to the bubbles. Related to the levelset deflation,
we obtain the original subdomain deflation method as used in [11,12,15] which will
shortly be discussed in Section 7. Next, Section 8 is devoted to the so-called levelset-
subdomain deflation approach, which combines both the original subdomain and the
new levelset deflation approaches. Subsequently, in Section 9 we deal with various
IC-like preconditioners in combination with deflation. Some numerical experiments
will be done in Section 10, where the various variants of deflation will be compared.
Finally, the conclusions will be drawn in Section 11.

2. DEFINITION OF THE PROBLEM

The problem setting of the bubbly flows and some test problems will be defined
in this section.

2.1. Problem Setting. We consider the singular SPSD (symmetric and positive
semi-definite) linear system

Az =b, AeR™™ (1)

The linear system (1) is derived after a second-order finite-difference discretization
of the 1-D, 2-D or 3-D Poisson equation with Neumann boundary conditions, which
is

{_v.(ﬁvap(x)) = f(x), xeq, (2)
gap(x) = (), x€ o9,

where p, p,x and n denote the pressure, density, spatial coordinates and the unit
normal vector to the boundary 0f, respectively. In the 2-D case, domain § is
chosen to be a unit square. We apply the computations on a uniform Cartesian
grid, so that n = ngn, in 2-D, where n, and n, are the grid sizes in each spatial
direction. Furthermore, we consider two-phase bubbly flows with for instance air
and water. In this case, p is piecewise constant with a relatively high contrast:

_ POZL XEAO?
p_{p1:e<<1, x € Aq. (3)

In this paper we use € = 1072 and ¢ = 1076.

2.2. Test Problems. In this paper we consider two test problems: one 1-D test
problem with three bubbles (T1) and one 2-D test problem with five bubbles (T2).
The geometry of the problems can be found in Figure 2. Moreover, we define P1
and P2 to be the same as T1 and T2 but without the bubbles. In other words,
test problems P1 and P2 correspond to the Laplace problems, since the density is
constant in the whole domain.
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(a) Test problem T1: 1-D problem with 3 bubbles. (b) Test problem T2: 2-D problem
with 5 bubbles.

FIGURE 2. Geometry of the two test problems T1 and T2.

3. DEFLATION TECHNIQUE

For a given deflation subspace matrix Z € R"**, the deflation matrix P is defined
as follows [6]:

P:=1-AZE'ZT ¢ R™", FE:.=7TAZ ¢ RF**, (4)
Now, in DICCG we have to solve the resulting linear system
M~'PA: = M~1Pb,

where M is the Incomplete Cholesky or another preconditioner. From & we can find
solution x using the following expression (see e.g. [5]):

x=ZE'Z"h+ PT;.

More details of DICCG can be found in e.g. [11,12,15].
If Z is full-ranked, then Theorem 1 ensures that M ~'PA has a more favorable
spectrum compared to M 1 A.

Theorem 1. Let A\ < Ag < ... < X\, be the eigenvalues of M—1A € R™*™. Let
Z € R™* be a full-ranked deflation subspace matriz. Then,

spectrum(M T PA) = {0,...,0, ftks1, - - -, fin }» (5)
with A1 < p; < Ay for all i > k.

The theorem is an immediate consequence of Theorem 4.2 of [12]. Obviously,
the success of DICCG depends on the choice of the deflation subspace matrix Z.
Below, we discuss some choices for Z resulting in different deflation techniques.

4. EIGENVECTOR DEFLATION

In our bubbly flow applications, we have some small eigenvalues of O(e) in the
spectrum of M ~' A due to the presence of bubbles. The most straightforward choice
for the columns of Z is the set of eigenvectors associated to those small eigenvalues.
In this case, the corresponding eigenvalues are projected out of the spectrum of
M~1PA, see Theorem 2.

Theorem 2 (Th. 2.2, [5]). Let A\y < Xa < ... <\, be the eigenvalues of M~1A.
Let Z = [v1 va --- v be the deflation subspace matriz with v; eigenvectors of
M~YA. Then,

spectrum(M T PA) = {0,...,0, \gs1, .-, An ). (6)
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From Theorem 2 we see that applying eigenvectors as deflation vectors is a good
strategy to obtain a better condition number of M~'A, which will improve the
convergence of the iterative process. Comparing Theorem 2 to Theorem 1, we see
that p; =\ fori =k +1,...,n. Hence, A\gy1 < g < Ay, for all i > k.

5. PERTURBED EIGENVECTOR DEFLATION

In practice it is too expensive or it is even not possible to find exact eigenvectors
of M~1A. Instead, we could use approximated or perturbed eigenvectors, denoted
as v;. Of course, we would like to have v; such that the corresponding non-zero
eigenvalues \; of M ~'PA satisfy

M1 <A < Ay (7)

for all ¢ > k, similar to the eigenvector deflation given in the previous section.
However, there are no many strategies known in literature in which way v; can be
perturbed so that it indeed satisfies (7).

We first start with the following definition and assumption.

Definition 1. We define P;, := I —A%;(3] A%;) "0} and P,, = I— Av,;(v] Av;) 1ol
where 7; := v; + 0 with v;,6 € R™ and fixed i =1,2,...,n.

Assumption 1. Let 0 = \; < Ao < ... < )\, be the eigenvalues of M—1A € R™X"
with va to be the eigenvector corresponding to the small eigenvalue Ao of O(€). Then,
we assume that Ps, A = P,, A+ Q with |Q| = O(e).

From numerical experiments it appears that Assumption 1 is fullfilled in our bubbly
flow applications. Then the next theorem can be easily proved.

Theorem 3. If § € R™ is chosen such that Ad = O(e) is satisfied, then we have

1A (P, A) = Aj(Po, A)| <,y = O(e) (8)
Proof. Since Py, A = P,, A+ @ with @ = O(e) holds, the theorem follows immedi-
ately by applying Corollary 8.1.6 of [3]. O

As a consequence, since v is relatively small, an ‘appropriate’ perturbation of the
eigenvector vy does not significantly influence the spectrum of the deflated system
which is a favorable result.

Unfortunately, the theorem can not be generalized to the preconditioned deflated
systems. It appears from numerical experiments that Inequality (8) does not hold
for M—1P;,A and M~'P,, A instead of P;,A and P,,A. In order to show this
theoretically, note that the eigenvalues of M *1Pv2A and M *1P@2A are the same as
the eigenvalues of 1311,22 and 13“;2 2, respectively, where we apply the transformations
A\ = Mﬁl/zAMfl/z, ﬁwz =1 ng(wggwg)’lwg, Wy = Ml/zvg,’ajg = M1/2U2 =
wy+6 and § = M'/25. Then, if Ad = O(e), Theorem 8 can be generalized. However,
after the transformation we have M/2A45 = O(e), so in general A5 # O(e).

In the next subsection we will do some simple 1-D numerical experiments to get
more insight into the consequences to the spectrum of M ~!P;, A with varying v;
and perturbations 9.

5.1. Perturbing Eigenvectors in Test Problem T1. We consider Test Prob-
lem T1 in a domain with n = 16 grid points and we restrict ourselves to the diagonal
preconditioner D, since the Incomplete Cholesky preconditioner M is equal to the
exact Cholesky decomposition in the 1-D case. Now, we have two eigenvalues Ao
and Az of order e. The geometry and the two eigenvectors v, and vs associated to
the two smallest non-zero eigenvalues Ay and A3z can be found in Figure 3.

From the figure we see that the eigenvector and the solution are constant in the
bubbles, i.e., in the high-permeable layers. For the eigenvectors, it also holds that
the parts connected to the boundaries are also constant.
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FicURE 3. Eigenvectors vy and vs corresponding to the smallest
non-zero eigenvalues and solution of M~ Az = M ~1b in Test Prob-
lem T1.

5.1.1. Single Perturbations of the Figenvectors. We perturb ve so that the per-
turbed eigenvector is Us = vo + ae;, where e; is the i-th column of the identity
matrix and « is a constant. Then, we consider the second smallest non-zero eigen-
value of M _1]31—,214. The results are given in Table 1. Similar results hold if we
perturb vz instead of vs.

permeability i [a=10"1 a=10° a=10"
low 1 [29x1077 1.0x107T 1.3x10°3
2 [29x107! 58x1072 6.5x10°*
high 3 [1.6x107° 23x1077 1.8x10~"
4 [11x107°% 1.7x10°7 23x10°7
5 [1.6x107° 23x1077 1.8x 1077
low 6 [29x107T 59x107%2 6.5x 104
7 129%x107' 59x%x1072 6.5x 1074
high 8 [1.9x10™° 51x1077 21x10~7
9 |1.5x107° 59x1077 29x107
10/1.9%x107% 51x1077 21x1077
low 11]129%x107' 5.7x1072 6.5x107%
12 129x%x107" 1.0x10"! 1.3x1073
high 13]32x107% 46x1077 25x10°7
14 123%x107° 35x1077 2.8x 1077
1513.2%x107° 46x1077 25x1077
low 16 |29 x 107 98 x 1072 1.2x 1073
17129%x107! 1.5x107t 24x10°3

TABLE 1. Second smallest non-zero eigenvalue of M _1]31—)214 where
Ua = w9 + «e; is the perturbed eigenvector. Second smallest non-
zero eigenvalue Ay of the original deflation system M ~'P,, A is
2.9 x 107 L.

From Table 1 we can make the following important observations:

e the high permeable layers (the bubbles) are extremely sensitive for pertur-
bations. A small perturbation in these layers leads immediately to a bad
approximation of the eigenvector vs, since it can be noticed that Ay < Ag;
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e the interfaces between the phases should be treated as the interior of the
high permeable layers. Those are also extremely sensitive for perturbations;
e instead, the low permeable layers (region around the bubbles) are relatively
insensitive for perturbations, although these perturbations should not be
too large (a < 10°).
Similar results are known in literature with applications in porous media flows [16].
The main conclusion is that the perturbed vectors can approximate vy very well,
where only in the low permeable layers can be perturbed.

5.1.2. Multiple Perturbations of the Eigenvectors. We investigate whether the high
permeable layers (the bubbles) are also extremely sensitive if we perturb the whole
part of those layers. We first introduce e; ; which denotes the zero vector with ones
from element i to j. For example, we have e3 5 = (0,0,1,1,1,0,...,0)”. Then, we
perturb v as follows: 93 = vp + ce; ; with various a. Results of the perturbation
analysis can be found in Table 2, where the second smallest non-zero eigenvalue of
M~1P;, A is given for a couple of test cases with a fixed left point i and a varying

right point j.

e;; permeability of j [« =101 a=10! a=10°

es,3 high 88x107% 27x1077 2.6 x 107"
€3.4 1.0x107% 4.6 x 1077 4.4x10°7
e3s low 26x1071 6.8x1072 6.5x 1072
€3.6 2.9 x 1071 7.8x 1072 7.5x1072
esr 2.6 x 1071 6.8x 1072 6.5 x 1072
ess high LIx10™° 44x1077 42x1077
€3.9 L1x107° 44 x1077 42x1077
es10 low 2.6 x 10T 6.8x 1072 6.5 x 1072
€3.11 2.7x 1071 7.8x1072 7.5x1072
€3,12 2.6 x107' 6.8x1072 6.5x 1072
313 high 1.0x107% 4.6 x 1077 4.4x10°7
€314 88x107¢ 2.7x 1077 2.7x1077
e31s low 23x 1071 1.0x 1077 25x1077
€3,16 25x 1077 1.5x107% 2.5x 1077

TABLE 2. Second smallest non-zero eigenvalue Ay of M~!P;, A

where U = vp + ae; ;.

From Table 2 we can make the following important observations:

e we have earlier seen that the high permeable layers are extremely sensi-
tive for single perturbations. However, a perturbation in the whole layer
(called a ‘multiple perturbation’) still lead to a good approximation of the
eigenvector vo independent of the value of «, since it can be observed that
X2 ~ Xo. In other words, the eigenvector is insensitive for a shift of the
whole high permeable layer;

e the range of the multiple perturbation can be made larger by taking also
elements of the low permeable layers. In this case, we still have that the
eigenvector vo is well-approximated independent of the value of «, whereas
it depends on « for a single perturbation in the low permeable layers.

e The multiple perturbation can cover more than one high permeable layers
as long as the layers are captured completely. Note that for small « the
multiple perturbation can even cover all high permeable layers.

Similar results as in Table 2 hold if we take ¢ = 8,13 instead of ¢ = 3 and also if we
investigate vz instead of vs.
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In contrast to the results of Table 2, these results are not known in literature
with applications in porous media flows. The main conclusion is that the deflation
vectors in the perturbed eigenvector deflation can approximate the eigenvectors
corresponding to the small eigenvalues, by simply covering one or more bubbles in
the ‘interior’ of those deflation vectors. However, note that in general the perturbed
eigenspace (the space of the corresponding deflation vectors) does not resemble
the original eigenspace, i.e., span{vs, 03} % span{va,vs}. In other words, we have
||[M~1Av;|| = O(e) whereas in general ||[M~1A%;|| = O(1) for i = 2,3.

5.1.3. Extended Multiple Perturbations of the Eigenvectors. In Table 2 we can see
that relatively large perturbation a with the end point j in the low permeable
layers has a somewhat worse effect on the Ao, although it is still significantly larger
than e. For example, consider the results for perturbation ez 5. Then observe that if
a = 1071, then Ay = O(107!), whereas for larger a we have Ay > O(107!) This fact
is possibly caused by the fact that the bubbles are larger than depicted in Figure 3.
The interfaces are namely not in the grid points, but between the grid points in
general. Now, an idea is to assume that the neighbour points are in the interior of
the bubbles, in the sense that they should be treated equally as the interior points
in the perturbation analysis. We repeat some parts of the experiment as done in the
previous subsection. So, instead of investigating es j, we consider es ;, see Table 3.
In contrast to the previous results as mentioned in Table 3, we see that relatively

eij |a=10"1  a =101 a=103

€23 | 88x 1078 27x1077 2.6x 107"
e24 | 1.0x 1075 4.6x1077 44x1077
e25]29x107T 1.1x 1077 1.2x 1071
e26|29%x 1071 1.5x 107t 1.6x 107!
e27|29%x 1071 1.1x 107t 1.3x 107!
e2s | 11X 107" 44x1077 42x1077
e29 | L1 x 107 44 x1077 4.2x 1077

TABLE 3. Second smallest non-zero eigenvalue Ay of M~1P;, A
where U = v2 + ae; ;.

large perturbation « in the high permeable layers has more or less no worse effect on
the A\2. In other words, when we apply multiple perturbations to the eigenvectors,
then the neighbour points of the high pemeable layers should be taken into account.

5.2. Consequences for the Perturbed Eigenvector Deflation. After doing
some simple 1-D experiments, we notice that

e in contrast to high permeable layers, the low permeable layers are insensitive
for small single perturbations;

e the high (and also the low) permeable layers are insensitive for all kind of
multiple perturbations as long as the perturbation acts on the whole bubble
with their neighbour points.

It appears that similar observations also hold for other 1-D, 2-D and 3-D numerical
experiments with diagonal preconditioners and with more deflation vectors. The
consequences for the choice of the deflation vectors in the perturbed eigenvector
deflation are the following:

e parts of the eigenvectors associated to the small eigenvalues lying in the low
permeable layers can be chosen arbitrarily;

e whole parts of the eigenvectors associated to the small eigenvalues lying in
each of the high permeable layers with each neighbour points can be moved.

It appears that the above consequences is equivalent with Conjecture 1.
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Conjecture 1. Let \a,..., Ay, = O(€) correspond to eigenvectors va, ...,y and,
moreover let Apm+1, ..., A\n, = O(1). Additionally, assume that 0 = p1 = pe < ug <
... < pup are the eigenvalues of M~*P;. A € R"™"™. Then, for all i = 2,3,...,m we
have

Hm+2 =7, (9)
where
_ [ o), if |As|=0(e);
_{ Oe), if |43 #0e), (10)

and for the remaining eigenvalues p; it holds
M35y Im+1 = 0(6)7 Hm+435 -5 bn = 0(1) (11)

Note that from the conjecture it follows that the strategy of choosing right defla-
tion vectors for the system M ~'A depends on Ad rather than on M ~'A§. Hence, as
a rule of thumb in the perturbed eigenvector deflation technique, appropriate defla-
tion vectors v; = v;+9; from eigenvectors v; and perturbations d; withi =2,3,...,m
can be obtained by choosing ¢; such that Ad; = O(e).

Finally, we refer to [10] for more literature which is related to this subject. In
that paper two-level overlapping domain decomposition preconditioners with coarse
spaces obtained have been studied by smoothed aggregation in iterative solvers for
finite element discretizations of elliptic problems. Similar observations made in this
section have been proven in [10] using functional analysis.

6. LEVELSET DEFLATION

To project the smallest eigenvalues out of the spectrum of M~ A, we have seen
that we do not need exact eigenvectors. In the approach of perturbed eigenvector
deflation we use deflation vectors where parts of the eigenvectors associated to the
small eigenvalues lying in the low permeable layers can be chosen arbitrarily. To
obtain a sparse Z, it is convenient to choose them zero in these parts. Moreover,
since whole parts of the eigenvectors associated to the small eigenvalues lying in each
of the high permeable layers can be moved and they are constant in these layers,
we can move them to exactly one. In this way, we can obtain a deflation subspace
Z which is sparse and only consists of the values 0 and 1, while the eigenvectors
associated to the small eigenvalues are still well approximated. The new deflation
vectors are denoted by w;. Hence, in this new deflation variant, the idea to obtain
a sparse Z is to move the bubbles to exactly one, while the surroundings are taken
to be zero. In this case we have a kind of deflation technique with subdomains.
Note that in an efficient deflation method, such a subdomain deflation vector may
cover more than one bubble, as long as it captures them completely. This is in
contrast to the subdomain deflation vectors which do not have to cover all the
bubbles. Each bubble which can be covered by w; leads to a more favorable effective
condition number of M ~'PA as long as this w; does not cover all the bubbles or
parts of other bubbles. To illustrate this, we consider a 2-D application as drawn
in Figure 4, where two choices of subdomains are depicted. In the left subplot,
the middle bubble is divided into four subdomains, while in the right subplot each
bubble is captured by a subdomain. As a result, all four small eigenvalues of M 1A
remain in the spectrum of M~!1PA in the left situation, confirming the results
obtained in Table 2, whereas three of the four small eigenvalues are eliminated out
of spectrum of M ~'PA in the right subplot. Note that if there is only one bubble
in the domain, then both situations lead to the same results.

If the density field is known, then the new deflation variant can be simply ap-
plied by locating the bubbles. In our applications, the levelset approach is adopted
to describe the density fields, see e.g. [8,9]. More information about the levelset
methods can be found in for instance [4,7] . For each time step, the levelset function
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FIGURE 4. 2-D example of a bubbly flow problem where the choice
of the subdomains is crucial for an efficient deflation method. Left:
wrong choice of subdomains, since the middle bubble is not cap-
tured by one subdomain. Right: good choice of subdomains, since
each bubble is in the interior of a subdomain.

is known in the whole computational domain. Distinction of the bubbles from the
levelset function can be done using for example Algorithm 1. Applying Algorithm 1
to a 2-D example with three bubbles can be seen in Figure 5.

Algorithm 1 Algorithm: separating bubbles from the levelset function

1:73=1
2: for grid point 1 to n (from left to right and from bottom to top) do

3 if grid point is in a bubble then

4 if left and/or bottom neighbour grid point is not in a bubble then
5 give j to the grid point

6: j=J+1

7 else

8 take lowest value of the neighbour(s)

9 end if

10: end if

11: end for

12: for grid point n to 1 (from right to the left and from top to bottom) do
13:  if grid point is in a bubble then

14: if right and/or top neighbour grid point is not in a bubble then
15: give j to the grid point

16: j=7+1

17: else

18: take lowest value of the neighbour(s)

19: end if

20:  end if

21: end for

22: Renumber all grid points with number j
23: Include all neighbour grid points of each bubble j

In the algorithm, we need two loops through the domain to separate the bubbles,
requiring O(n) flops. Note further that in the case of deciding whether or not a
grid point of its neighbour is in a bubble, we simply look at the sign of the levelset
function in that point. If the value is positive the grid point is in the interior of
the bubble, if it is negative then it is outside the bubble and otherwise it is on
the interface. In this way, it is straightforward to distinguish the bubbles from
the levelset function and to obtain a code where each deflation vector corresponds
to one separate bubble. This new method is called ‘levelset deflation’, since the
deflation vectors are based on the levelset function.

In summary, each vector of the levelset deflation is sparse and corresponds to
one separate bubble associated to the eigenvalues of order O(e). These eigenvalues
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(c) After renumbering (Line 22). (d) After the algorithm (Line 23).

FIGURE 5. 2-D example to illustrate Algorithm 1.

are captured by this deflation method so that we do not have to compute the real
(perturbed) eigenvectors.

Finally, we note that if some bubbles in the domain are very close to each other,
then some grid points can belong to several bubbles leading to overlap. In other
words, the row sum of Z can be higher than one for some rows. This is no restriction
of the method. The reverse is true: if one excludes overlap between the bubbles,
then the bubbles appear to be approximated badly, leading to slower convergence
of the iterative process, see also Subsection 10.4.

7. SUBDOMAIN DEFLATION

In applications where a lot of bubbles are in the domain or where the levelset
function is unknown or too complex, we can choose for the original subdomain
deflation. The principle is the same as levelset deflation, but now the subdomains
are chosen fixed, independent of the locations of the bubbles. In [11,12,15] we used
cubes as subdomains in 3-D applications. We can define Z in the following formal
way.

Let the computational domain € be divided into open (equal) subdomains Q;, j =
1,2,...,k, such that Q = U?Zlﬁj and ﬂ?lej = (). The discretized domain and
subdomains are denoted by ; and €2j,, respectively. Then, for each €2, with

j=1,2,...,k, we introduce a deflation vector z; as follows:
(Z) — 0, xith\ﬁhj;
e 17 T € thv

where x; is a grid point in the discretized domain 2. Then we define
Z =1z 29 -+ 2k € R™*k,

This implies immediately Z1; = 1,,, which does not hold for the levelset deflation
vectors. Hence, Z consists of disjunct orthogonal piecewise-constant vectors. Note
that Z from subdomain deflation is obviously less sparse than matrix Z from the
levelset deflation. Moreover, Z1;, = 1, is a good property with respect to the
implementation and some proofs of theoretical results, but this can give difficulties
to approximate the bubbles well leading to a worse effective condition number.
This has already been noted in the previous section, where in the levelset deflation
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method, some row sums of Z should be larger than one to approximate the bubbles
optimal if they are very close to each other.

Subdomain deflation and levelset deflation are related to each other. In subdo-
main deflation, we can increase k until none of the subdomains consists of more than
one part of the bubbles. In this case, the eigenvectors associated to the smallest
eigenvalues are well approximated, as in levelset deflation. Moreover, the subdo-
main deflation vectors can also approximate other eigenvectors corresponding to
small eigenvalues of order O(1) associated to slow eigenmodes. This means that
subdomain deflation is more expensive in each iteration compared to levelset defla-
tion due to a less sparse deflation subspace matrix, but it may increase the conver-
gence behavior of the iterative process since more small eigenvalues of both O(e)
and O(1) can be projected out of the spectrum.

8. LEVELSET SUBDOMAIN DEFLATION

For density fields with a complex geometry, it is difficult to capture all parts of the
bubbles separately in subdomain deflation. In that case, the smallest eigenvalues can
not be projected out of the spectrum. However, this can be realized using levelset
deflation with the disadvantage that only the O(e) eigenvalues can be captured.
In other words, it can be beneficial to combine both deflation technique leading to
a new deflation method called ‘levelset-subdomain’ (LS) deflation. It will require
more deflation vectors than the original methods separately, but in the new method
we can make profit of the advantages of both deflation methods.

We define Z; as the deflation subspace matrix corresponding to subdomain defla-
tion and Z; as the deflation subspace matrix corresponding to the levelset method.
The new deflation subspace matrix is denoted as Zs and the corresponding defla-
tion matrix is denoted as Prg. Next, we define

Zy = Z;N(1-UZ);
{ Zoy = ZyNZs.

In the above definition, U acting on a matrix W means that a new vector is created
with the maximum element of each row of W. Moreover, N acting on two ma-
trices/vectors V' and W means that a new matrix/vector is created with columns
equal to all possible non-zero combinations between the columns of V' and W, where
the elements are multiplied with each other componentwise. The next example will
illustrate (12).

(12)

Example 1. Let

,_ [t 11100007 _[01
*“loo0oo0o0 111 1] 771000
Then this leads to

uZz=[0 11001 10]", 1=uZ=[1 001100 1],

This gives us Z1 and Zy:

—
o O
o O
—= O
=)
[enian}
—_

’ﬂ

o
(an)
= O
o
(an)
—= O
—_ 1
’ﬂ

o
o
O =

Z1 ::Zsm(1—uZl)=“)

and .
01100000]

ZQ::ZZQZS':{O 0000110

Hence, Z; consists of all original subdomain vectors except for the parts cor-
responding to the bubbles, whereas Zs consists of columns corresponding to the
bubbles divided by the original subdomains. Finally, the levelset subdomain defla-
tion subspace matrix is

Zrs = 21, Za].
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It is not difficult to show that

span Zg
span Z;

span Zrs;

c
C span Zpg.

Moreover, the row sum of Zp g is equal to one if there is no overlap in the levelset
deflation subspace matrix, for each row, i.e., Z;s1 = 1, which can be favorable
in the implementation of the method and in proving theoretical results as earlier
mentioned. Note that if there is overlap in the levelset deflation subspace matrix,
then ZLS]- 75 1.

Finally, the new method combines the advantages of both deflation approaches
with the only drawback that a larger number of deflation vectors are required com-
pared to one of these separate approaches, see also the example given in Figure 6.

3 6
ONROINIORNOINIORNO.
o | e
O OO O] 0,.®
(a) Levelset deflation. (b) Subdomain deflation. (c) Levelset subdomain de-

flation .

FIGURE 6. 2-D example to illustrate the levelset, subdomain and
levelset subdomain deflation techniques.

9. DEFLATION TECHNIQUE IN COMBINATION WITH OTHER IC-LIKE
PRECONDITIONERS

In DICCG the deflation method is used in combination with the standard Incom-
plete Cholesky (IC) preconditioner. In [11,12,15] we have seen that the small eigen-
values with associated slow eigenmodes corresponding to ICCG can be eliminated
while the largest eigenvalues are of order 1 so that they should not be eliminated
from the spectrum. In this section we investigate the deflation method in combi-
nation with other IC-like preconditioners, namely Modified IC (MIC) and Relaxed
IC (RIC) resulting in the methods MICCG and RICCG, see also [1]. These meth-
ods have spectra of other type, so the question is whether deflation still succeed in
combination with these methods.

After the definition of the preconditioners, we will perform some 2-D numerical
experiments with both Test Problems P2 and T2 in the next section. In this 2-D
case, matrix A consists of 5 diagonals. We assume that

B aq bl “e Cc1
bl a9 bg C2
A= | T € X X K. (13)
C1 bm Am+1 bm+1 Cm+1

If A is SPD then the full Cholesky decomposition exists, i.e., we can find a lower
triangular matrix L and diagonal matrix D such that A = LD~'LT. However, for
large A this decomposition is expensive to compute. In addition, L will become
dense due to fill-in, although A is sparse.
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9.1. IC-like Preconditioners. In the next subsections, we will define some vari-
ants of the Cholesky decomposition which can be used as preconditioners. The
main property of these preconditioners is that lower triangular matrix L have the
same sparsity pattern as A, i.e., the element of L are given by

dy

by dy

S .

C1

S

m m+1

9.1.1. IC preconditioner. In the standard IC preconditioner we use M;c = LD™'LT
where A = LD™'LT + R which satisfies the following rules:

o l;; =0 for all (4, j) where a;; = 0 with i > j;

o Ui =diy;

e (LD7LT);; = aj;; for all (i,5) where a;; # 0 for i > j.
It appears that although A can be singular, M is always invertible [2]. It can be
verified that the elements of L and D can be computed by

7 bi_ G
d; ai = i1 diem)
Ci = G,

foralli=1,...,n.
The resulting CG method has been denoted as ICCG and its deflated variant as
DICCG.

9.1.2. MIC preconditioner. In the modified IC (MIC) preconditioner we use M ;¢ =
LD~ 'LT where A = LD™'L” + R which satisfies the following rules:
l;; = 0 for all (¢,7) where a;; = 0 with ¢ > j;
lii = dis;
row sum (LD~'LT) = row sum (A) for all rows;

e (LD7'LT);; = a;j for all (4,5) where a;; # 0 for i > j.
Recall that in our applications the row sum of A is zero for each row. Therefore, A
is singular. As a consequence, M is also singular because the row sum of M is zero
for each row due to the third rule. In this case, the MIC preconditioner can not be
applied. It can be verified that the elements of L and D can be computed by

t

di = a;— (bi—1+ci—1) 2:11 — (biem + Ci—m)%;
bi = bi; (16)
Ei = G,

foralli =1,...,n. The resulting CG method is denoted as MICCG and its deflated
variant as DMICCG.

9.1.3. RIC preconditioner. In order to combine the advantages of both precondi-
tioners, the relaxed IC (RIC) preconditioner has been proposed, which is an aver-
age of the IC and MIC preconditioners. We only give the algorithm to compute
Mpgic = LD7LT. For a given average parameter a € [0, 1], the elements of L and
D can be computed by

= a;—(bi-1+ 0461‘71)2’;:11 — (abi—m + Cimm) =™
i = bi (17)

= G,

O o 8
&

RN
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(a) Case with k = 16 (15 iterations). (b) Case with k = 64 (10 iterations).
FIGURE 7. Eigenvalues of both M~'A and M~!PA with S-
DICCG—k for Test Problem P2 with n, = n, = 16.
for all i = 1,...,n. Obviously, if & = 0 then we obtain the original IC precondi-

tioner, whereas if @« = 1 we have the MIC preconditioner. Moreover, we note from
experiments that for a # 1 the RIC preconditioner is invertible if A is singular.

It appears that the choice of a = 0.95 is appropriate since it gives a good rate
of convergence for a wide range of problems. Finally, the resulting CG method is
denoted as RICCG and its deflated variant as DRICCG.

10. NUMERICAL EXPERIMENTS

In this section we perform some numerical experiments to test the levelset, sub-
domain en levelset-subdomain deflation in combination with ICCG, i.e., we apply

e L-DICCG—k: DICCG with k levelset deflation vectors;
e S-DICCG—E: DICCG with k subdomain deflation vectors;
e LS-DICCG—Fk: DICCG with k levelset-subdomain deflation vectors.

We do not consider eigenvector and perturbed eigenvector deflation since they are
too expensive in use.

After discussing the results for the Poisson equation without bubbles (Test Prob-
lem P2), we consider the same equation with bubbles (Test Problem T2). Recall
that the test problems used in this section have already been defined in Subsec-
tion 2.2.

During the experiments in the next subsection we take the jump e = 107% and
grid sizes n, = ny = 16. It appears that similar numerical results hold for other
choices of jumps and grid sizes, see also the last subsection. In addition, similar re-
sults can be seen by using the diagonal instead of the IC preconditioner. Finally, the
iterative processes converge if the relative update residuals are below the tolerance

1077,

10.1. Results Various Deflation Techniques for Test Problem P2. In the
case of Test Problem P2, only S-DICCG—Fk can be applied while the other deflation
variants are not defined since there are no bubbles in the domain.

It appears that ICCG converges within 23 iterations, whereas S-DICCG—16 and
S-DICCG—64 require only 15 and 10 iterations, respectively. The corresponding
eigenvalues of M~*A and M ~!PA can be found in Figure 7.

From both subfigures, we notice that the smallest eigenvalues of M ~! A are pro-
jected out of the spectrum of M~'PA, while the largest eigenvalues remain in
the spectrum. The more deflation vectors, the more small eigenvalues are elimi-
nated. To explain the first observation, three eigenvectors associated to the small
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(b) Three eigenvectors associated to random non-small eigen-
values.

FIGURE 8. Eigenvectors associated to the eigenvalues of M 1A for
Test Problem P2.

eigenvalues are depicted in Subfigure 8(a). From this subfigure we see that these
eigenvectors are relatively smooth. In some sense, the subdomain deflation vectors
approximate these smooth functions very well. Other eigenvectors corresponding to
larger eigenvalues of M~ A do not have a smooth behavior, see also Subfigure 8(b).
Therefore, these are difficult to approximate using the subdomain deflation vectors.
In the past we have seen that S-DICCG—k works very well in this case. This was
suprising because there are no very small eigenvalues corresponding to bubbles.
Now we know that the subdomain deflation vectors approach other eigenvectors of
the preconditioned system M ~'A very well, resulting in fast convergence.

10.2. Results Various Deflation Techniques for Test Problem T2. For Test
Problem T2, the location of the bubbles can be found in Figure 9. In this case,
ICCG converges within 39 iterations.

10 _C
;O

0.4

4 O O

FIGURE 9. Geometry of Test Problem T2 for the case of n, = n, = 16.

10.2.1. Subdomain Deflation. From the experiments, we see that S-DICCG—Ek with
k = 4,16 converges within 36 and 37 iterations, respectively. There is almost
no benefit compared to ICCG. To investigate this, we consider the spectra of the
deflated preconditioned system, see Figure 10.
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(c) Case with k = 64 (19 iterations).

FIGURE 10. Eigenvalues of M ~1PA with S-DICCG—Fk for Test
Problem T2 with n, = n, = 16.

Obviously, none of the smallest eigenvalues of M ~!A is eliminated after defla-
tion for both k¥ = 4 and k& = 16. In Subfigures 10(a) and 10(b), we see that the
smallest eigenvalues of order 10~® remain in the spectrum after deflation. Only for
larger k, each part of the bubbles will be captured by an independent subdomain
and therefore, the smallest eigenvalues can then be eliminated. For example, S-
DICCG—64 converges within 19 iterations since in this case the small eigenvalues
are projected out, see Subfigure 10(c). Hence, in contrast to the cases of k < 16,
the small eigenvalues of order 10~¢ are eliminated for the case of k = 64.

Finally, notice from Figure 10 that in the cases k = 4 and k = 16 the zero
eigenvalues are indicated as values of order 10~!% in MATLAB. However, in the
case of k = 64, these zero eigenvalues are of order 1071°, but fortunately these
values are known as zeros during the iterative process since the stopping tolerance
is of order 1077,

10.2.2. Lewvelset Deflation. After discussing S-DICCG—k, we consider L-DICCG—k
where we can note that it requires only £ = 5 vectors in Test Problem T2.
L-DICCG—5 converges within 17 iterations. We refer to Figure 11 which gives
the spectra of the corresponding deflated and undeflated systems. We see that all
smallest eigenvalues are eliminated out of the spectrum after deflation, while all
other eigenvalues are still of order 1. It appears that in the ideal case, using exact
eigenvectors to eliminate the smallest eigenvalues of order 107°, the deflated ICCG
(i.e., the eigenvector deflation variant) converges within 13 iterations. This means
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that the eigenvalues not corresponding to the bubbles become relatively favorable
after levelset deflation. !
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10 i i J ‘ ‘
0 50 100 150 200 250 300

FiGURE 11. Eigenvalues of both M~'A and M~'PA with L-
DICCG—5 for Test Problem T2 with n, = n, = 16.

10.2.3. Levelset Subdomain Deflation. After giving the results of S-DICCG—k and
L-DICCG—k, we apply the hybrid deflation method LS-DICCG—k to Test Prob-
lem T2.

From experiments, we see that LS-DICCG—12 (cf. Figure 6(c)) converges within
14 iterations and LS-DICCG—36 converges within 10 iterations. The spectra can
be found in Figure 12. Since the original S-DICCG—64 needs 19 iterations and
L-DICCG—5 needs 17 iterations, it is clear that the LS-DICCG—Fk can improve the
speed of convergence, although the differences are relatively small.

10 ; ; ; ‘ ; 10°
10° g 10° | gumem

-5 -5
10 B 10 B
10 107 10*10 nnmm

= o =
10 15 5#’ 10 15 M

o eigenvalues M2A o eigenvalues M2A

0 = eigenvalues M"1PA 0 = eigenvalues M"1PA

10 y . 10 y .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

(a) Case with 4 subdomains (k = 12; 14 itera- (b) Case with 16 subdomains (k = 36; 10 iter-
tions). ations).

FIGURE 12. Eigenvalues of both M~'A and M~!'PA with LS-
DICCG—k for Test Problem T2 with n, = n, = 16.

INote that if the neighbour points are not included in the deflation vectors then it requires 28
iteration, since it appears that it gives new small eigenvalues of a order between € and 1. In this
case, the smallest eigenvalues of order 106 are eliminated of M ~1A but we get new eigenvalues
of order 10~2 and 10~3.
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10.3. Results Various Deflation Techniques for Varying Grid Sizes, Den-
sities and Number of Bubbles. The results of Test Problem T2 of the previous
subsection, including the computational time in seconds are summarized in Table 4.
Moreover, results with other grid sizes are also given.

n =162 n = 322 n = 642
Deflation Method | &k | # It. CPU | # It. CPU | # It. CPU
ICCG - 139 0.04 | 82 0.53 | 159 10.92
S-DICCG—k 4 |37 0.12 | 80 0.67 | 194 14.01

16 | 36 0.07 |97 0.80 | 193  13.82
64 | 19 0.11 | 16 0.20 | 26 2.14
L-DICCG—k 5 |17 0.09 | 37 0.37 | 75 6.17
LS-DICCG—k 12 14 0.07 |30 0.29 | 54 4.08
36 | 10 0.08 |21 0.32 | 40 3.05
84 | — - 15 0.20 |25 2.05

TABLE 4. Results of Test Problem T2 for various n.

From Table 4, one observes that S-DICCG—Fk performs bad for £ = 4,16 in
all test cases. However, for ¥ = 64 the method is very efficient, since in this
case, each subdomain consists of maximum one part of a bubble. Moreover, L-
DICCG—k reduces the number of iterations significantly. It is an efficient method
since it requires only five deflation vectors. Finally, LS-DICCG—k performs very
well, but for sufficiently large k& we notice that S-DICCG—k and LS-DICCG—k are
comparable.

Notice further that in the case of n = 642, ICCG requires significantly less
iterations compared to S-DICCG-4 and S-DICCG-16. To investigate this, we con-
sider the exact residuals and the relative update preconditioned residuals of ICCG
and the relative update preconditioned-deflated residuals of S-DICCG-16, see Fig-
ure 13. Note that all relative residuals start from 1, except for the relative update
preconditioned-deflated residuals, since these are defined by

[M~1P(b — Ady)|l2
[M (b — Axo)[2

where one can observe that there is no deflation matrix P in the denominator.

Moreover, from Figure 13, it can be noted that when the relative update residuals
are below 1077, the relative exact residuals of ICCG are already of order 10710, In
the right subplot we see that the residuals require one extra ‘bump’ to converge. In
addition, we see that the accuracy of order 1070 has earlier been reached in the case
of the exact residuals of S-ICCG-16 (around 155 iterations), but due to the bump
S-DICCG-16 takes significantly more iterations to converge. The stopping criterion
of S-DICCG-16 is apparently more severe compared to ICCG. The relative exact
errors have also been compared and they are comparable and small (order between
10~7 and 10~8), although the error in the case of S-DICCG-16 is somewhat smaller.
Thus, the S-DICCG-16 requires more iterations but a somewhat higher accuracy of
the real solution has been achieved.

Next, results with various jumps in the density and n = 642 are given in Ta-
ble 5. From this table, we see that for larger contrasts between the density, ICCG
requires more iterations and CPU time. This does not hold for L-DICCG—k and
LS-DICCG—k, which is a favorable property of these methods. S-DICCG—k is also
insensitive for the contrasts in the density for sufficiently large k.

Moreover, notice that S-DICCG—k with k < 16 converges slower than the original
ICCG, but for larger k it appears that S-DICCG—k is very fast in convergence.
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(a) ICCG (159 iterations).
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(b) S-DICCG—16 (190 iterations).

FiGURE 13. Relative update and relative exact residuals in the
cases of ICCG and S-DICCG—16 for Test Problem T2 with n, =

n, = 64.
e=10"3 e=10"F
Deflation Method | k& | # It. CPU | # It. CPU
ICCG - 118 812 | 159 10.92
S-DICCG—k 4 | 134 979 | 194 14.01
16 | 131  9.60 | 193 13.82
64 | 26 2.31 |26 2.14
L-DICCG—k 5 | 74 5.44 | 75 6.17
LS-DICCG—k 12 | 54 4.05 | 54 4.08
36 | 40 3.08 |40 3.05
84| 25 2.46 | 25 2.05

TABLE 5. Results of Test Problem T2 for varying jumps in the
density with fixed n, = n, = 64.

Finally, we consider results with various number of bubbles and n = 642, see
Table 6. From this table, one observes that ICCG needs more iterations for problems
with more bubbles. For the methods L-DICCG—k, LS-DICCG-k and S-DICCG—k
with sufficiently large k, we see that the performance depends less on the number of
bubbles, which is also a favorable property. Moreover, we observe that L-DICCG—k
converges in less iterations for problems with more bubbles. We end with the remark
that S-DICCG—Fk with k < 16 converges again slower than the original ICCG.

1 bubble 2 bubbles 5 bubbles

Deflation Method | k& | # It. CPU | # It. CPU | # It. CPU
ICCG - 189 6.13 | 104 7.20 | 159 10.92
S-DICCG—k 4 |96 7.39 | 69 5.13 | 194 14.01
16 | 52 3.97 | 64 4.79 | 193 13.82

64 | 26 2.14 | 27 2.16 | 26 2.14

L-DICCG—k 5 | 84 6.18 | 79 5.79 | 75 6.17
LS-DICCG—k 12 | 67 5.30 | 65 5.11 | 54 4.08
36 | 41 3.14 |42 3.22 | 40 3.05

84 | 26 2.50 | 26 2.11 | 25 2.05

TABLE 6. Results of Test Problem T2 for various number of bubbles.
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(c) LS-DICCG-36 (10 iterations).

FIGURE 14. Eigenvalues of M 1A and M~'PA with the three
variants of deflation methods for Test Problem T2 with n, = n, =
16.

10.4. Discussion of Small Eigenvalues for all Deflation Variants. In the
theory we have mentioned that approximating the smallest eigenvalues correspond-
ing to the bubbles should be done carefully. In the case of Test Problem T2 with
ng = ny = 16, it appears that the bubbles are very close to each other. As a result,
some row sums of the levelset deflation subspace matrix are larger than zero in
order to obtain good approximations of the eigenvectors. However, in S-DICCG—k
non-overlapping deflation vectors have been used. In this subsection, we investigate
the consequences for all deflation variants for the smallest eigenvalues considering
Test Problem T2, see Figure 14. In contrast to previous spectra plots, these plots
are on normal scale so that the smallest eigenvalues can be observed more clearly.

From Subfigure 14(a) we notice that some small eigenvalues (around 0.1) remain
in the spectrum for the case of S-DICCG-64. In fact, the smallest eigenvalues of
order 1076 are replaced by small eigenvalues of order 10~!. This holds partly for
L-DICCG-5, see Subfigure 14(b). The only difference is that the small eigenvalues
of L-DICCG-5 are somewhat larger and are close to the tail of the remainder of the
cluster than the small eigenvalues of S-DICCG—64.

In the case of LS-DICCG—36 we see that the smallest eigenvalues are completely
eliminated of the spectrum, see Subfigure 14(c). This is the great advantage of
this levelset-subdomain method compared to the subdomain and levelset deflation
method. If the bubbles are very close to each other, than the LS-DICCG—k appear
to be the best method.
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10.5. Results Deflation with Different Preconditioners for Test Prob-
lem P2. In the previous section we have introduced the MIC and RIC precon-
ditioners as alternatives for the IC preconditoners. In this subsection, we will per-
form some 2-D numerical experiments using Test Problems P2 and T2 to test these
preconditioners in combination with deflation. In these experiments we only use
S-DICCG-64 (i.e., DICCG with 64 subdomain deflation vectors) and when there is
no ambiguity we denote it simply as DICCG. In similar way, we introduce DMICCG
and DRICCG.

10.5.1. Invertible A. We take grid sizes n, = n, = 16 in Test Problem P2. We force
A to be invertible by modifying the last element of the matrix. Then, the results
can be found in Table 7. We see that for all cases the deflated variant requires less

Method « Iterations
ICCG - 30
DICCG - 10
RICCG 0.5 |27
DRICCG 0.5 |11
RICCG 0.95 | 27
DRICCG 0.95| 15
MICCG - 30
DMICCG - 22

TABLE 7. Results of Test Problem P2 and invertible A with n =
162. In the deflation variants, k = 64 has been used.

iterations than the original methods. The largest difference in iterations has been
observed for ICCG and DICCG.

Next, we compare the spectra of MfclA and MfC}PA, M];fICA and M];fICPA
and finally Mg}cA and M}g}CPA, see Figure 15.

Obviously, in Subfigure 15(a) we observe that small eigenvalues corresponding
to ICCG are eliminated by deflation, which is in contrast to Subfigure 15(b) where
in MICCG the largest eigenvalues are eliminated by deflation. A more clear view
of the spectra can be found in Figure 16. The fact that the largest eigenvalues
have been eliminated looks contradictory. We know that small eigenvalues of ICCG
correspond to slow eigenmodes. However, it appears that the large eigenvalues of
MICCG also correspond to slow-varying eigenmodes and the other eigenvalues to
relatively fast-varying eigenmodes, see also Figure 17.

Moreover, in both Subfigures 15(c) and 15(d) we see that both small and large
eigenvalues are eliminated by deflation for ICCG and MICCG, respectively. Appar-
ently, both small and large eigenvalues associate to slow eigenmodes.

10.5.2. Singular A. Next we will do some experiments with the original singular A.
In this case MICCG and DMICCG are not defined. We also vary the number of
grid points. The results can be found in Table 8.

From Table 8 we see immediately that for all IC-variants the deflation method
improves again the original method. Moreover, note that an invertible A leads
to a slower original method ICCG and RICCG compared to the singular case (cf.
Table 7), but the deflation remedies this, i.e., there are no differences between
DICCG and DRICCG applied on singular and invertible A.

Additionally, for the cases of n = 642 and n = 80%, DRICCG with a = 0.5
converges most rapidly, although the differences with the other deflation variants
are small.
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FIGURE 16. Zoomed-in spectra of MJ;Ilch and M]T/[llcPA with an
invertible A in Test Problem P2 (cf. Subfigure 15(b)).

10.6. Results Deflation with Different Preconditioners for Test Prob-
lem T2. For Test Problem T2 with contrast e = 1073, the results are presented in
the next subsections.

10.6.1. Invertible A. The results with invertible matrix A can be found in Table 9.
In contrast to Test Problem P2 and to the case of ICCG, we now see that de-
flation does not help significantly in the case of MICCG. This can be explained by
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(b) Three eigenvectors associated to large eigenvalues.

FIGURE 17. Eigenvectors associated to the eigenvalues of M 1A

for MICCG.
n = 162 n = 642 n = 802
Method « Iterations Iterations Iterations
ICCG - 24 77 95
DICCG - 11 27 32
RICCG 0.5 |21 66 81
DRICCG 0.5 |11 26 30
RICCG 0.95 | 21 46 53
DRICCG 0.95| 15 30 34

TABLE 8. Results with singular A in Test Problem P2. In the
deflation variants, k = 64 has been used.

Method «@ Iterations
ICCG - 44
DICCG - 22
RICCG 0.5 |47
DRICCG 0.5 |24
RICCG 0.95 | 82
DRICCG 0.95 | 48

MICCG - 132
DMICCG - 112
TABLE 9. Results of Test Problem T2 using an invertible A with

n = 162.

considering the spectrum of MICCG, see also Figure 18. It can be noticed that
some large eigenvalues are eliminated, but small eigenvalues associated to the bub-
bles remain in the spectrum. That is the reason why DMICCG does not accelerate
the convergence compared to MICCG.

Moreover since DICCG performs well, also RICCG with o < 1 performs com-
parably. Finally, note that ICCG and its deflated variant are clearly the fastest
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FIGURE 18. Spectra of M~'A and M~!PA with an invertible A
for MICCG in Test Problem T2.

methods compared to MICCG and RICCG. This is caused by the fact that the
spectrum of ICCG consists of small eigenvalues which are eliminated by deflation,
while the largest eigenvalues in the spectrum of ICCG are of order 1 resulting in a
relatively small effective condition number after deflation.

10.6.2. Singular A. The results with singular A can be found in Table 10. We see
again that in all cases, the deflation variants requires significantly less iterations
than the original methods. DICCG and DRICCG with small « perform the best.
This is remarkable, since for the undeflated variants, RICCG with a = 0.95 is
obviously the fastest method.

In future, more experiments with larger grids will be done.

n = 162 n = 642 n = 802

Method o Iterations Iterations Iterations
ICCG - 31 126 150
DICCG - 23 28 33
RICCG 0.5 |37 111 136
DRICCG 0.5 |24 28 33
RICCG 0.95 | 66 93 115
DRICCG 0.95 | 49 44 51

TABLE 10. Results with a singular A in Test Problem T2. In the
deflation variants, k = 64 has been used.

10.7. Concluding Remarks. After presenting the numerical results, the following
conclusions can be drawn.

e Using subdomain deflation, the ‘small’ eigenvalues of Test Problem P2 are
eliminated since the corresponding eigenvectors are smooth.

e For Test Problem T2, subdomain deflation is only effective for sufficiently
large number of subdomains. In these cases, not only the smallest eigen-
values corresponding to the bubbles are eliminated but also other small
eigenvalues.

e The levelset deflation eliminates the smallest eigenvalues in Test Prob-
lem T2. To eliminate more small eigenvalues the levelset-subdomain de-
flation method can be applied. Both methods have proven to be effective.
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e All variants of the deflation methods are efficient for problems with varying
grid sizes. LS-DICCG—Fk and S-DICCG—Fk appear to be comparable for
sufficiently large k. For small k, L-DICCG—Fk should be chosen as deflation
method.

o All variants of the deflation method (except for S-DICCG—k with relatively
small k) are insensitive for the contrast in the densities, whereas the per-
formance of ICCG strongly depends on this contrast. This means that the
deflation method is not restricted to applications of bubbly flow problems,
but it can also be applied easily on various other multi-phase problems.

o All variants of the deflation method (except for S-DICCG—k with relatively
small k) depend hardly on the number of bubbles, in contrast to ICCG. This
means that in more complex problems, the deflation method can also be
efficient.

e If the bubbles are close to each other in the bubbly-flow problem, S-DICCG—k
can show difficulties to approximate the smallest eigenvalues and therefore
it can be slow in convergence. Fortunately, the LS-DICCG—k does not show
these difficulties. Hence, in these cases, LS-DICCG—k is the most favorable
method to apply.

e Adding the deflation technique to ICCG, RICCG and MICCG is in all cases
efficient for Test Problem P2. For Test Problem T2 it is only beneficial for
ICCG and RICCG. However, ICCG and its deflated variant DICCG remain
the best methods in the experiments.

11. CONCLUSIONS

In previous papers we have considered eigenvector and subdomain deflation tech-
niques. In this paper we have explained why subdomain deflation works well and we
have introduced several new variants of deflation: perturbed eigenvector, levelset
and levelset-subdomain deflation.

The perturbed eigenvector deflation has been introduced to get more feeling with
the choice of deflation vectors. The main result is that eigenvectors corresponding
to small eigenvalue can be perturbed in some sense while they remain very good
approximations so that they can be used as deflation vectors to project the smallest
eigenvalues to exactly zero.

In the 2-D numerical experiments we have compared the results of the subdo-
main, levelset and levelset-subdomain deflation techniques. The main conclusion
is that they all perform very well compared to ICCG. It depends on the geometry
of problem and on the number of deflation vectors, which variant of the deflation
method is the most effective one.

Finally, replacing the original IC preconditioners by the MIC or RIC precondi-
tioners in the experiments do not improve the convergence, although in some cases
extending the resulting methods MICCG and RICCG with the deflation technique
can accelerate the iterative process in simple test problems.
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