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THEORETICAL COMPARISON OF TWO-LEVEL
PRECONDITIONERS BASED ON MULTIGRID AND DEFLATION

J.M. TANG ∗, S.P. MACLACHLAN † , R. NABBEN ‡ , AND C. VUIK ∗

Abstract. It is well-known that two-level preconditioned conjugate gradient (PCG) methods
provide efficient techniques for solving large and sparse linear systems whose coefficient matrices are
symmetric and positive definite (SPD). A two-level PCG method combines traditional and projection-
type preconditioners to get rid of the effect of both small and large eigenvalues of the coefficient
matrix. In the literature, various two-level preconditioners are known, coming from the fields of
deflation, domain decomposition and multigrid. At first glance, these methods seem to be different;
however, from an abstract point of view, they are closely related. In [J.M. Tang, R. Nabben, C. Vuik
and Y.A. Erlangga, DUT Report 07-04, Delft University of Technology, Delft, 2007], a theoretical
and numerical comparison have been carried out for some of these two-level PCG methods. How-
ever, the standard multigrid V(1,1)-cycle preconditioner was excluded from that analysis, since this
preconditioner has different properties and requires a different treatment than methods discussed in
that paper.

The aim of this paper is to relate the two-level PCG method, with a standard multigrid V(1,1)-
cycle (MG) preconditioner in its abstract form, to the deflation and abstract balancing Neumann-
Neumann methods as analyzed in [J.M. Tang, R. Nabben, C. Vuik and Y.A. Erlangga, DUT Report
07-04, Delft University of Technology, Delft, 2007]. The MG preconditioner is expected to be more
effective than these two-level preconditioners, but we show that this is not always the case. For
common choices of the parameters, MG does lead to larger error reductions in each iteration, but the
work per iteration is much more expensive, which makes this comparison somewhat unfair. We show
that, for special choices of fine-level preconditioners in the deflation or abstract balancing Neumann-
Neumann methods, the work for each iteration with these preconditioners is approximately the same
as that for the MG preconditioner, and the convergence of the resulting two-level PCG methods
are also expected to be approximately the same. Numerical experiments are used to emphasize the
theoretical results.

Key words. deflation, domain decomposition, multigrid, conjugate gradients, two-grid schemes,
spd matrices, two-level preconditioning.

1. Introduction. The Conjugate Gradient (CG) method is a well-known itera-
tive method for solving large linear systems of equations,

Ax = b, A ∈ R
n×n, (1.1)

whose coefficient matrix, A, is sparse, symmetric, and positive definite (SPD). The
convergence rate of CG is naturally bounded in terms of the condition number of A;
after j iterations of CG,

||x − xj ||A ≤ 2||x − x0||A
(√

κ − 1√
κ + 1

)j

, (1.2)

where x0 is the starting vector and || · ||A is the A−norm of a vector. In addi-

tion, κ = κ(A) = λmax(A)
λmin(A) denotes the spectral (effective) condition number of A,
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where λmax(A) and λmin(A) are the largest and smallest nonzero eigenvalue of A,
respectively. If κ is large, it is often more favorable to solve a preconditioned sys-
tem instead of (1.1) directly, where the preconditioned system is defined as Âx̂ = b̂,

with Â = M−1/2AM−1/2, x̂ = M1/2x, b̂ = M−1/2b, and M−1 ∈ R
n×n is an SPD

preconditioner. This can be transformed into the system,

M−1Ax = M−1b, (1.3)

and the resulting method is called a preconditioned CG (PCG or PREC) method. The
preconditioner, M−1, should be chosen such that M−1A has a more clustered spec-
trum or a smaller condition number than A. Furthermore, systems My = z should
be cheap to solve, relative to the improvement that they provide in the convergence
rate. The design and analysis of such preconditioners for PCG are of great interest.
Traditional preconditioners, such as diagonal scaling, basic iterative methods, approx-
imate inverse preconditioning, and incomplete Cholesky preconditioners, are widely
used. These preconditioners, however, appear to be less effective for applications with
highly refined grids and problems with large coefficient ratios in the original PDEs.
In these applications, traditional PCG may suffer from slow convergence due to the
presence of relatively small or large eigenvalues, which have a harmful influence on
the condition number of the coefficient matrix.

1.1. Two-Level Preconditioning. In addition to traditional preconditioners,
a second kind of preconditioner can be incorporated to improve the performance of
PCG, so that the resulting approach gets rid of the effect of both small and large eigen-
values. This combined preconditioning is also known as ‘two-level preconditioning’,
and the resulting iterative method is called a ‘two-level PCG method’, abbreviated as
‘2L-PCG’. In this case, CG, in combination with a preconditioner based on multigrid,
domain decomposition, or deflation techniques, can be interpreted as examples of 2L-
PCG methods, since these methods rely on preconditioning on two levels, see [19] and
the references therein for more details. The general linear system that is the basis of
the 2L-PCG methods can be expressed as

PAx = Pb, P ∈ R
n×n, (1.4)

where P is the two-level preconditioner. If P = M−1 is taken, we simply obtain
the standard PCG method. At first glance, 2L-PCG methods with P derived from
deflation, domain decomposition and multigrid seem to be different. However, it has
been shown in [19] that some of these methods are closely related or even equivalent
in their abstract forms.

1.2. Aims of this Paper. In this paper, we focus on the comparison between
abstract balancing Neumann-Neumann (BNN) [12], deflation (DEF) [17], and multi-
grid (MG) [2,9,21,25] preconditioners. In [19], it has been shown that BNN and DEF
have almost the same spectral properties, and that these properties are quite similar
to those of the multigrid V(0,1)- and V(1,0)-cycle preconditioners, even though these
are typically not considered as allowable preconditioners for CG.

Here, DEF and BNN will be compared to the 2L-PCG method with a multigrid
V(1,1)-cycle preconditioner, denoted as the MG method. The MG method arises
from considering the acceleration of a stationary iteration, xj+1 := xj + M̄−1(b −
Axj), using a projection technique, where M̄−1 denotes a preconditioner that can
be possibly nonsymmetric. Typically, these methods are analyzed not as precondi-
tioners, but in terms of their error-propagation operators, which can be written as
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(I − M̄−T A)P T (I − M̄−1A), where P is a projection matrix that is based on Z con-
sisting of so-called projection vectors, see Section 2 for the exact definition. This MG
method is not analyzed and compared with the other methods in [19], since it has
completely different spectral properties and requires a different theoretical treatment,
because of the more general choice of traditional preconditioner allowed within MG.
The aim of this research is to fill this gap and compare the abstract versions of MG,
DEF and BNN.

Of course, the MG method [2, 9, 21, 25] and its properties [1, 5, 8, 13, 16] are well-
known. Our intention is not to reproduce these results (although some known results
needed for the comparison are briefly reviewed), but to compare and connect MG
to other well-known 2L-PCG methods. Intuitively, we expect MG to have better
convergence properties than the other 2L-PCG methods when M̄−1 = M−1, since it
is the only 2L-PCG method with two applications of the traditional preconditioners
(in the pre- and post-smoothing steps), in addition to a single coarse-grid correction
step within one iteration. DEF, on the other hand, has optimal convergence properties
in terms of its spectral properties compared with the other 2L-PCG methods (except
MG), see [19]. Therefore, it is sufficient for the comparison to show that MG has more
favorable spectral properties than DEF, if MG is indeed superior to DEF. Hence,
we will often base the analysis on the comparison of DEF and MG. However, the
comparison between MG and BNN is, in some cases, easier to perform, so BNN is
also used in the analysis.

The main questions of our research are the following.

• Is there an obvious relation between the eigenvalues of DEF and MG?
• Is it true, in general, that MG is expected to converge faster than DEF?
• Denoting the condition numbers of MG and DEF by κMG and κDEF, respec-

tively, for which parameters of M−1 and Z do we have κMG < κDEF uncondi-
tionally?

• For which parameters of M−1 and Z are MG and DEF expected to converge
in approximately the same way?

Note that while the condition number of preconditioned systems is an imperfect indi-
cator of the convergence properties of CG, it is the only analysis tool available with
sufficient generality to compare the techniques considered here.

Some spectral analysis for κMG has been carried out in [3]. In that paper, pro-
jection vectors are based on exact eigenvectors of M−1A and more pre- and post-
smoothing steps are allowed per iteration. The resulting two-level preconditioner is
called a ‘multiplicative two-grid spectral preconditioner’. It has been shown that this
preconditioner can be effective for many practical applications, where sequences of
linear systems have to be solved. In this paper, we restrict ourselves to the standard
multigrid V(1,1)-cycle preconditioner using a general matrix Z, while eigenvectors are
sometimes used to illustrate the theoretical results. Note that Z and ZT are known
as the prolongation and restriction operator, respectively, in the multigrid field.

This paper is organized as follows. In Section 2, DEF, BNN and MG are described.
Then, some spectral properties of MG are presented in Section 3. Thereafter, in
Section 4, MG and DEF will be compared by investigating their spectral properties
using the identity matrix as the preconditioner. This is then generalized for general
preconditioners in Section 5; it is shown there that MG can be less effective than
DEF. In Section 6, we show that MG is superior to DEF for more sophisticated
preconditioners. Subsequently, Section 7 is devoted to the comparison of MG, BNN
and DEF with the same cost per iteration. For special choices of preconditioners,
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we show that they are almost spectrally equivalent. Section 8 is devoted to some
numerical experiments in order to illustrate the theoretical results. Conclusions are
presented in Section 9.

2. Two-Level Preconditioned CG Methods (2L-PCG). In this section, we
describe the 2L-PCG methods that are examined in this paper. We start with the
following definition, which we assume to hold throughout this paper.

Definition 2.1. Suppose that an SPD coefficient matrix, A ∈ R
n×n, and a

deflation-subspace matrix, Z ∈ R
n×k, with full rank and k < n are given. Then, we

define the invertible Galerkin matrix, E ∈ R
k×k, the correction matrix, Q ∈ R

n×n,
and the deflation matrix, P ∈ R

n×n, as follows:

P := I − AQ, Q := ZE−1ZT , E := ZT AZ,

where I is the n × n identity matrix. In addition, M̄−1 ∈ R
n×n is an arbitrary

preconditioning matrix and M−1 ∈ R
n×n is an SPD preconditioning matrix.

Note that the difference between M−1 and M̄−1 is that M−1 is assumed to be
symmetric, positive definite and nonsingular, whereas M̄−1 might be nonsymmetric,
singular, or even indefinite, so that it is basically the pseudo-inverse of M̄ . Precon-
ditioner M−1 is applied in deflation-like methods, whereas the more general precon-
ditioner, M̄−1, is applied solely in multigrid methods, where a general smoothing
operator is allowable.

The following lemma will be frequently used, see [19, 24] for more details.
Lemma 2.2. Suppose that A ∈ R

n×n and Z ∈ R
n×k are given. Let Q and P be

as in Definition 2.1. Then,
• Q = QT ;
• (I − P T )x = Qb;
• AP T = PA;
• QAQ = Q;
• P T Z = PAZ = 0;
• QAZ = Z.

Proof. See, e.g., [19, 24].
The deflation method (DEF) can be described as follows. In order to solve Ax = b,

we decompose x as x = (I − P T )x + P T x, where (I − P T )x = Qb can be computed
immediately. For P T x, we solve the deflated system,

PAx̃ = Pb, (2.1)

where x̃ = x + y with y ∈ N (PA). Since P T x̃ = P T x follows from Lemma 2.2,
the unique solution, x, can be obtained via (2.1) and x = Qb + P T x̃. Moreover, the
deflated system can also be solved using a preconditioner, M−1, giving

M−1PAx̃ = M−1Pb, (2.2)

see [14, 24] for details. Hence, the two-level preconditioner corresponding to DEF is

PDEF = M−1P. (2.3)

In order to derive the BNN and MG preconditioners, we consider the multiplica-
tive combination of preconditioners. This combination can be explained by consider-
ing the stationary iterative methods induced by the preconditioner. Assuming that
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C1 and C2 are SPD preconditioners, we combine xj+ 1
2

:= xj + C1(b − Axj) and

xj+1 := xj+ 1
2

+ C2(b − Axj+ 1
2
) to obtain xj+1 = xj + Pm2

(b − Axj), with

Pm2
:= C1 + C2 − C2AC1, (2.4)

which is the multiplicative operator consisting of two preconditioners. In addition, C1

and C2 could be combined with another SPD preconditioner, C3, in a multiplicative
way, yielding

Pm3
= C1 + C2 + C3 − C2AC1 − C3AC2 − C3AC1 + C3AC2AC1. (2.5)

If one substitutes C1 = Q, C2 = M−1 and C3 = Q into (2.5), we obtain

PBNN = P T M−1P + Q, (2.6)

which is the two-level preconditioner corresponding to the abstract balancing Neumann-
Neumann (BNN) method. In [19], we have shown that BNN has the same spectral
properties as the 2L-PCG methods based on multigrid V(0,1)- and V(1,0)-cycle pre-
conditioners. In practice, BNN is always implemented based on these ‘reduced’ pre-
conditioners, so that the amount of work per iteration is comparable to that of DEF,
see also [12, 20].

On the other hand, we could also use M̄−1 twice instead of Q, i.e., C1 =
M̄−T , C2 = Q and C3 = M̄−1 in (2.5). We use the general preconditioner, M̄−1,
instead of M−1, because M̄−1 is not required to be symmetric nor invertible to define
Pm3

. The resulting two-level preconditioner, well-known as the multigrid V(1,1)-cycle
preconditioner, is then explicitly given by

PMG = M̄−T P + P T M̄−1 + Q − M̄−T PAM̄−1, (2.7)

and the resulting method is called MG, see [2,9,21,25]. Eq. (2.7) is only used for the
analysis of MG, but is never implemented using this explicit form as the action of
PMG can be computed with only a single multiplication, each involving M̄−1, M̄−T ,
and Q.

PMG is obviously symmetric, since

PT
MG

= (M̄−T P )T + (P T M̄−1)T + QT − (M̄−T PAM̄−1)T

= P T M̄−1 + M̄−1P + Q + M̄−T PAM̄−1

= PMG,

but it is not necessarily positive semi-definite, see Section 3.2. Another common and
equivalent way to derive PMG is to consider the error-propagation operator based on
the multigrid V(1,1)-cycle:

V := (I −PMGA) = (I − M̄−T A)P T (I − M̄−1A). (2.8)

This is often written as

V := S∗P T S, S := I − M̄−1A, (2.9)

where S∗ denotes the adjoint of S with respect to the A-inner product, i.e., (Sy1, y2)A =
(y1, S

∗y2)A for y1, y2 ∈ R
n. Matrices S and S∗ are known as the pre- and post-

smoothers, respectively, and P T is the MG coarse-grid correction operation. If (2.8)
is multiplied out, we obtain the explicit expression of PMG as given in (2.7).
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It can be observed that the two-level preconditioner corresponding to DEF is
included as a term in the two-level preconditioner of MG if M̄−1 = M−1 is taken
(cf. Eqs. (2.3) and (2.7)). Hence, we might expect that MG is always more effective
than DEF. For common choices of M , M̄ and Z, this is indeed the case, see, e.g.,
Section 8.2. However, it is not true in all cases, see Sections 4 and 5.

To summarize, the abbrevations and the two-level preconditioners corresponding
to the proposed 2L-PCG methods are presented in Table 2.1.

Name Method Two-level preconditioner, P
PREC Traditional Preconditioned CG M−1

DEF Deflation M−1P

BNN Abstract Balancing P T M−1P + Q

MG Multigrid V(1,1)-cycle M̄−1P + P T M̄−1 + Q − M̄−1PAM̄−1

Table 2.1

List of two-level PCG methods which will be compared in this paper.

Remark 2.3. We emphasize that the parameters of the two-level PCG methods
that will be compared can be arbitrary, so that the comparison between these methods
is based on their abstract versions. This means that the results of the comparison are
valid for any full-rank matrix Z, SPD matrices A, M−1, and matrix M̄−1.

3. Spectral Properties of MG. In this section, we present some results re-
lated to the spectral properties of the MG method. We first prove a result analogous
to [15, Thm. 2.5], demonstrating that the MG preconditioner also clusters a num-
ber of eigenvalues at 1. Thereafter, we discuss necessary and sufficient conditions
for the MG preconditioner to be SPD. Note that while these are natural concerns
from a preconditioning point of view, these questions are not commonly considered
for MG methods, which are often applied as stationary iterations and not used as
preconditioners in all cases, unlike DEF.

First, we present some notation in Definition 3.1.
Definition 3.1. Let B be an arbitrary matrix and S be a subspace. Then,
• the null space and column space of B are denoted by N (B) and R(B), re-

spectively;
• the spectrum of B is denoted by σ(B);
• dimS denotes the dimension of S;
• if B is SPD, then the SPD square root of B will be denoted by B1/2;
• B is called convergent in the A-norm (or A-norm convergent) if ||B||A < 1.

In addition, the eigenvalues of PMGA (or PMG) not treated by coarse-grid correction
are always sorted increasingly. In other words, if PMGA has k unit eigenvalues, then
the spectrum of PMGA is denoted by

{1, . . . , 1, µk+1, . . . , µn},

where µk+1 ≤ . . . ≤ µn.
The following lemma will be useful in this section.
Lemma 3.2. Let S := I − M̄−1A and S∗ := I − M̄−T A be as given in (2.9).

Then,

dimN (S) = dimN (S∗) .

6



Proof. Note first that S∗ is similar to ST , since S∗ = A−1ST A. Hence, the
eigenvalues of S∗ and ST are the same (including multiplicity), so that

dimN (S∗) = dimN
(
ST

)
.

The rank-nullity theorem says that

dimR (S) + dimN (S) = n.

On the other hand, the fundamental theorem of linear algebra (see, e.g., [18]) gives
an orthogonal decomposition of

R
n = R (S) ⊕N

(
ST

)
, (3.1)

implies that

dimN
(
ST

)
= n − dimR (S) = dimN (S) .

3.1. Unit Eigenvalues of PMGA. We first show that, if S is invertible, PMGA

has at least k unit eigenvalues. Then, a more general result is given without this
condition.

Theorem 3.3. Let PMG and S be as defined in (2.7) and (2.9), respectively. If
S is invertible, then PMGA has k unit eigenvalues.

Proof. It suffices to show that PMGAW = W for a full-rank matrix, W ∈ R
n×k.

Note first that

PMGA = (M̄−T P + P T M̄−1 + Q − M̄−T PAM̄−1)A
= M̄−T (I − AQ)A + (I − QA)M̄−1A + QA − M̄−T (I − AQ)AM̄−1A

= M̄−1A + M̄−T AS + S∗QAS.

Multiplying this by S−1Z leads to

PMGAS−1Z = M̄−1AS−1Z + M̄−T AZ + S∗QAZ

= M̄−1AS−1Z + Z

= S−1Z,

using the fact that QAZ = Z. Since Z has rank k and S−1 is invertible, W := S−1Z

also has rank k.
The condition that S is invertible is required by the proof of Theorem 3.3, but a

similar result holds without this condition, see Theorem 3.4.
Theorem 3.4. Let S and S∗ be as given in (2.9). Let PMG be as given in (2.7).

Suppose that

dimN (S) = dimN (S∗) = m, m ∈ N. (3.2)

Then, PMGA has one as an eigenvalue, with geometric multiplicity at least k and at
most k + 2m.

Proof. In the following, we use the factorization of I − PMGA = S∗P T S as given
in Eqs. (2.8) and (2.9). Considering Eq. (2.9), there are three ways for a vector, v 6= 0,
to be in N (I −PMGA):

(i) v ∈ N (S), so that Sv = 0;
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(ii) Sv ∈ N (P T ), yielding P T Sv = 0;
(iii) P T Sv ∈ N (S∗), so that S∗P T Sv = 0.

We treat each case separately.
(i) The geometric multiplicity of the zero eigenvalue of I −PMGA must be at least

m, due to Eq. (3.2). This accounts exactly for all contributions to N (I −PMGA) from
null space vectors of the first type.

(ii) Counting the geometric multiplicity of vectors of the second type is only
slightly more complicated. We can orthogonally partition R

n as (cf. Eq. 3.1)

R
n = R (S) ⊕N

(
ST

)
.

Since dimR (S) = n − m, it must be the case that

dimN
(
ST

)
= m. (3.3)

Now, consider the intersection of R (Z) with subspaces R (S) and N
(
ST

)
:

Z1 := R (Z) ∩ R (S) , Z2 := R (Z) ∩ N
(
ST

)
,

and let dimZ1 = k1 and dimZ2 = k2. Note that necessarily k1 + k2 = k, and that k2

is no bigger than m, because of (3.3). Since N (P T ) = R (Z), we have

dimN (S) = k1,

which is the contribution to the dimension of the null space by vectors of the second
type. Since k1 + k2 = k for k2 ≤ m, the total dimension of the null space arising from
vectors of the first and second type must satisfy

k ≤ k1 + m ≤ k + m.

(iii) Similarly, we can determine the dimension of the null space of the third type.
Note first that (cf. Eq. (3.1))

R
n = R

(
P T S

)
⊕N

(
ST P

)
.

Let M := N (S∗), and define

M1 = M∩R
(
P T S

)
, M2 = M∩N

(
ST P

)
.

Then, the number of unit eigenvalues of the third type is

m1 = dimM1 ≤ dimM = m.

Thus,

dimN (PMGA) = m + k1 + m1,

which can be bounded by

k ≤ m + k1 + m1 ≤ k + 2m.

Since counting the geometric multiplicity of zero eigenvalues of I −PMGA is trivially
equal to the geometric multiplicity of unit eigenvalues of PMGA, the proof is complete.
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Remark 3.5.

• If zero is not an eigenvalue of S, then it is also not an eigenvalue of S∗ (which
is similar to ST ). Thus, Theorem 3.4 then says that PMGA has exactly k unit
eigenvalues. This result is clearly stronger than Theorem 3.3, which states
that PMGA has at least k unit eigenvalues.

• Since M̄−1 is nonsymmetric, the geometric and algebraic multiplicity of the
zero eigenvalue of S (or, equivalently, the unit eigenvalues of M̄−1A) should
be distinguished, since they might differ. 1

• In a similar manner as Theorem 3.4, it can be shown that PBNNA has at least
k and at most 2k + m unit eigenvalues.

It has already been shown in [15,19] that DEF corresponds to a coefficient matrix
that has exactly k zero eigenvalues, whereas the matrix associated with BNN has at
least k unit eigenvalues. Theorem 3.4 shows that the matrix corresponding to MG
also has at least k unit eigenvalues.

3.2. Positive Definiteness of PMG. The 2L-PCG process is guaranteed to
converge if P , as given (1.4), is SPD or can be transformed into an SPD matrix, see,
e.g., [4] for more details. This is certainly satisfied for BNN and DEF, see [19]. Here,
we examine this issue for PMG.

It is easy to see that PMG (and, therefore, also PMGA) is not SPD for all choices
of Z and M̄−1, as in the next example.

Example 3.6. Suppose that M̄−1 = I and Z = [v1 · · · vk], where {vi} is the set
of orthonormal eigenvectors corresponding to eigenvalues {λi} of A. Then,

PMG = P + P T + Q − PA = 2I − 2ZZT + ZΛ−1ZT − A + ZZT A, (3.4)

where Λ = diag(λ1, . . . , λk). Multiplying (3.4) by vi gives us

PMGvi = 2vi − 2ZZT vi + ZΛ−1ZT vi − Avi + ZZT Avi

= 2vi − 2ZZT vi + ZΛ−1ZT vi − λivi + λiZZT vi.

This implies

PMGvi =

{
2vi − 2vi + 1

λi
vi − λivi + λivi = 1

λi
vi, for i = 1, . . . , k;

2vi − λivi, = (2 − λi)vi, for i = k + 1, . . . , n.

(3.5)
Hence, if A has eigenvalues {λi}, then the spectrum of PMG is given by

{
1

λ1
, . . . ,

1

λk
, 2− λk+1, . . . , 2 − λn

}
.

That means that this specific operator, PMG, is SPD if and only if λn < 2.
Example 3.6 shows that PMG can be indefinite for some Z and M̄−1. This high-

lights an important difference between MG and DEF. Indeed, many preconditioners,
M−1, that make sense with DEF lead to indefinite PMG, while choices of M̄−1 that
lead to SPD PMG might give nonsymmetric operators for PDEF.

A necessary and sufficient condition for PMG to be SPD is given in Theorem 3.7.

1A simple example is Gauss-Seidel for the 1D Poisson problem with homogeneous Dirichlet
boundary conditions. Take A = tridiag(−1, 2,−1) and M to be the lower-triangular part of A.
Then, S has eigenvalue 0 with algebraic multiplicity n

2
, assuming that n is even. Since there is only

one eigenvector corresponding to this eigenvalue, the geometric multiplicity is 1.
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Theorem 3.7. Let M̄−1 ∈ R
n×n and Z ∈ R

n×k be as defined in (2.1). Let PMG

be as given in (2.7). A necessary and sufficient condition for PMG to be SPD is that
Z and M̄−1 satisfy

min
w: w⊥AZy ∀y

wT
(
M̄−1 + M̄−T − M̄−1AM̄−T

)
w > 0. (3.6)

Proof. By definition, PMG is positive definite if and only if uTPMGu > 0 for all
vectors u 6= 0. Taking u := A1/2y, this means that PMG is SPD if and only if

yT A1/2PMGA1/2y > 0,

for all y, or that A1/2PMGA1/2 is positive definite. Moreover, A1/2PMGA1/2 is sym-
metric and, so, it is SPD if and only if its smallest eigenvalue is greater than 0. This,
in turn, is equivalent to requiring that I − A1/2PMGA1/2 has largest eigenvalue less
than 1. But I − A1/2PMGA1/2 is a similarity transformation of V ,

A1/2V A−1/2 = I − A1/2PMGA1/2,

which can be written as

A1/2V A−1/2 = (RS̃)T (RS̃),

for

R := I − A1/2QA1/2, S̃ := I − A1/2M̄−1A1/2.

Note that the eigenvalues of (RS̃)T (RS̃) are the singular values squared of RS̃ (see,

e.g., [7]), which are also the eigenvalues of (RS̃)(RS̃)T = RS̃S̃T R. So, the largest

eigenvalue of A1/2V A−1/2 is less than 1 if and only if the largest eigenvalue of RS̃S̃T R

is less than one. This happens if and only if

uT R(S̃S̃T )Ru

uT u
< 1, ∀u 6= 0. (3.7)

To maximize this ratio, we write

u = A1/2Zy1 + Ry2,

and note that R is the L2-orthogonal projection onto the orthogonal complement of
the range of A1/2Z 2. Then,

uT R(S̃S̃T )Ru = yT
2 R(S̃S̃T )Ry2,

and

uT u = yT
1 ZT AZy1 + yT

2 R2y2.

2Recall that the L2-orthogonal projection onto R(B) is B(BT B)−1BT , which follows from
the following. If we take v = By, then B(BT B)−1BT v = v. For v such that vT By = 0,
B(BT B)−1BT v = 0. The L2-orthogonal projection onto R(B)⊥ is I − B(BT B)−1BT , which acts
in the opposite way.
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So, maximizing the ratio over all choices of y1 means choosing y1 = 0, so that the
denominator of (3.7) is as small as possible. Therefore,

uT RS̃S̃T Ru

uT u
< 1 ∀u 6= 0 ⇔ yT

2 RS̃S̃T Ry2

yT
2 R2y2

< 1 ∀y2 6= 0. (3.8)

Notice that, for any choice of y1, the ratio in (3.7) is bounded by the ratio with y1 = 0.
Thus, if the ratio on the right of (3.8) is bounded below 1 for all y2, so must be the
ratio in Eq. (3.7). But, if the ratio in (3.7) is bounded below 1 for all x, then it is
bounded for x = Ry2, which gives the bound at the right-hand side of (3.8).

Equivalently, we can maximize the ratio over R(R) = R(A1/2Z)⊥ (i.e., the or-

thogonal complement of the range of A1/2Z). So, the largest eigenvalue of RS̃S̃T R is
less than 1 if and only if

max
x:x⊥A1/2Zy∀y

xT S̃S̃T x

xT x
< 1.

By computation, we have

S̃S̃T = I − A1/2
(
M̄−1 + M̄−T − M̄−1AM̄−T

)
A1/2.

Therefore, this bound is equivalent to requiring

min
x:x⊥A1/2Zy∀y

xT A1/2
(
M̄−1 + M̄−T − M̄−1AM̄−T

)
A1/2x

xT x
> 0.

Taking w = A1/2x, this is, in turn, equivalent to

min
w:w⊥AZy∀y

wT
(
M̄−1 + M̄−T − M̄−1AM̄−T

)
w

wT A−1w
> 0,

which is equivalent to

min
w:w⊥AZy∀y

wT
(
M̄−1 + M̄−T − M̄−1AM̄−T

)
w > 0,

because wT A−1w > 0 for all w.

Hence, a necessary and sufficient condition for PMG to be SPD is, thus, given by (3.6).
Intuitively, we expect the spectral properties of PMG to reflect those of M̄−1, with
some account for the coarse-grid correction. Eq. (3.6) is particularly interesting in
comparison with Theorem 3.8, which gives a necessary and sufficient condition for
M−1 to define a convergent smoother, see also [6, 26].

Theorem 3.8. Let M̄−1 ∈ R
n×n and Z ∈ R

n×k be as defined in (2.1). Let S be
as given in (2.9). A necessary and sufficient condition for S to be convergent in the
A-norm is

min
w

wT (M̄−1 + M̄−T − M̄−1AM̄−T )w > 0. (3.9)

11



Proof. The proof follows as

‖S‖A < 1 ⇔ ‖I − A1/2M̄−1A1/2‖2 < 1

⇔ λmax

(
(I − A1/2M̄−T A1/2)(I − A1/2M̄−1A1/2)

)
< 1

⇔ λmax

(
I − A1/2(M̄−1 + M̄−T − M̄−T AM̄−1)A1/2

)
< 1

⇔ λmin

(
A1/2(M̄−1 + M̄−T − M̄−T AM̄−1)A1/2

)
> 0

⇔ min
w

wT
(
M̄−1 + M̄−T − M̄−T AM̄−1

)
w > 0,

where we have used the definition of the A- and 2-norms 3, and the fact that the
maximum and minimum Rayleigh quotient are the largest and smallest eigenvalue,
respectively, for any symmetric operator.

Theorem 3.8 amounts to the conditions

‖S‖A < 1 ⇔ minw wT M̃−1w > 0

⇔ minw(M̄−T w)T (M̄ + M̄T − A)(M̄−T w) > 0

⇔ minv=M̄−T w vT (M̄ + M̄T − A)v > 0

⇔ λmin(M̄ + M̄T − A) > 0,

that can be found in [26, Thm. 5.3]. On the other hand, Theorem 3.7 gives

minw:w⊥AZy∀y wT M̃−1w > 0 ⇔ minw:w⊥AZy∀y(M̄
−T w)T (M̄ + M̄T − A)(M̄−T w) > 0

⇔ minv:v=M̄−T w,w⊥AZy∀y vT (M̄ + M̄T − A)v > 0,

where

M̃−1 := M̄−1 + M̄−T − M̄−T AM̄−1. (3.10)

Necessarily,

min
v:v=M̄−T w,w⊥AZy∀y

vT (M̄ + M̄T − A)v > min
y

yT M̃−1y = λmin(M̄ + M̄T − A) > 0,

so the condition for PMG to be SPD is weaker than the condition for a convergent S

in the A-norm. In other words, The A-norm convergence of S implies both
• convergence of I −PMGA, and
• PMG to be SPD,

but PMG can be SPD even if ||S||A ≥ 1, so long as coarse-grid correction effectively
treats amplified modes.

4. Comparison of a Special Case of MG and DEF. In this section, we
show that abstract preconditioners in the MG framework do not always lead to better
conditioned systems than DEF. Such problems can even be found in the case of
M−1 = M̄−1 = I . We start with some spectral bounds on MG and DEF under these

3Recall that, for any matrix B and SPD matrix A,

||B||2A = max
x

xT BT ABx

xT Ax
= max

w

wT A−1/2BT ABA−1/2w

wT w
= ||A1/2BA−1/2||22,

with w := A1/2x.
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assumptions. Thereafter, we perform a comparison between the condition numbers
for MG and DEF for simple parameters. Finally, some examples are given to illustrate
the difference between the condition numbers associated with MG and DEF.

We first show that if I − 2A is positive definite (i.e., if the eigenvalues of A are
in the interval (0, 0.5)), then the eigenvalues of MG are always larger than those of
DEF, see the next lemma.

Lemma 4.1. Suppose that M−1 = M̄−1 = I. If I − 2A is positive definite, then
λi(PMGA) > µi(PDEFA), where {λi} and {µi} are increasing sets of eigenvalues.

Proof. The proof is similar to [14, Thm. 2.6]. We can write

A1/2PMGA1/2 −PDEFA = A1/2(P + P T + Q − PA)A1/2 − PA

= A1/2(I − AQ + I − QA + Q − (I − AQ)A)A1/2 − (I − AQ)A

= A1/2
(
2I − 2A + (I − Q)A(I − Q) + AQA − I + A1/2QA1/2

)
A1/2

= A1/2
(
I − 2A + (I − Q)A(I − Q) + AQA + A1/2QA1/2

)
A1/2,

where we have used Lemma 2.2. All of (I − Q)A(I − Q), AQA and A1/2QA1/2 are
positive (semi-)definite. Since I − 2A is also positive definite, A1/2PMGA1/2 −PDEFA

is positive definite as well. Using [10, Cor. 7.7.4], we derive that

λi(A
1/2PMGA1/2) = λi(PMGA) > µi(PDEFA).

In particular, we have λmax(PMGA) > µmax(PDEFA) from Lemma 4.1. However, this
result does not say anything about the connection between the condition numbers as-
sociated with MG and DEF, since we cannot show that λmin(PMGA) < µmin(PDEFA),
where µmin(PDEFA) denotes the smallest nonzero eigenvalue of PDEFA. Lemma 4.1
only tells us that if all µi are below 0.5 (i.e., I − 2A is positive definite), then each
pair of λi and µi is nicely ordered.

4.1. Analysis using eigenvectors of A as projection vectors. We will show
that the comparison of MG and DEF is still not straightforward, although we take
‘simple’ parameters. Again, it suffices to restrict ourselves to M−1 = M̄−1 = I .
Moreover, we now assume that Z = [v1 · · · vk], where {vi} is the set of orthonormal
eigenvectors corresponding to the increasing set of eigenvalues {λi} of A. Then, we
know from Example 3.6 that the MG operator is only SPD if λi < 2.

Similarly to Example 3.6, we obtain

PMGAvi = 2Avi − 2ZZT Avi + ZΛ−1ZT Avi − A2vi + ZZT A2vi

= 2λivi − 2λiZZT vi + λiZΛ−1ZT vi − λ2
i vi + λ2

i ZZT vi,

where Λ = diag(λ1, . . . , λk). This implies

PMGAvi =

{
2λivi − 2λivi + vi − λ2

i vi + λ2
i vi = vi, for i = 1, . . . , k;

2λivi − λ2
i vi, = λi(2 − λi)vi for i = k + 1, . . . , n.

(4.1)
Hence, if A has eigenvalues {λi}, then the spectrum of PMGA is given by

{1, . . . , 1, λk+1(2 − λk+1), . . . , λn(2 − λn)}. (4.2)

We note that λi(2 − λi) ≤ 1 for all i = k + 1, . . . , n since 0 < λi < 2, see Figure 4.1.
Hence, the condition number of PMGA is given by

κMG =
1

min{λk+1(2 − λk+1), λn(2 − λn)} .
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On the other hand, for DEF, we know that (see [14])

PDEFAvi =

{
0, for i = 1, . . . , k;
λi, for i = k + 1, . . . , n.

(4.3)

Therefore,

κDEF =
λn

λk+1
.

It depends on eigenvalues λk+1 and λn of A whether κMG or κDEF is more favorable.
If λk+1, . . . , λn → 2, then obviously κDEF < κMG. In other words, M−1 and Z can be
chosen in such a way that MG with an SPD operator is expected to converge slower
than DEF, see also Example 4.2.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

λ
i

λ i(2
−λ

i)

Fig. 4.1. Function x(2 − x) for x ∈ [0, 2].

Example 4.2. We first construct a simple example to show that κMG < κDEF does
not hold in general, even if PMG is SPD.

Let us consider the SPD diagonal matrix, A, given by

A = diag(1, 1.25, 1.5, 1.75).

Then, the spectrum of A is given by σ = (1, 1.25, 1.5, 1.75), where the corresponding
eigenvectors are columns of I: I = [v1 v2 v3 v4]. Hence, PMG is SPD.

Choose now Z = [v1 v2] and M−1 = I. Then, the eigenvalues of PMGA are given
by Eq. (4.2):

σMG = {1, 1, λ3(2 − λ3), λ4(2 − λ4)} = {1, 1, 0.4375, 0.75},

whereas (cf. Eq. (4.3))

σDEF = {0, 0, λ3, λ4} = {0, 0, 1.5, 1.75}.

This leads immediately to the condition numbers

κMG =
1

min{λk+1(2 − λk+1), λn(2 − λn)} =
1

0.4375
= 2.2857, κDEF =

λn

λk+1
=

1.75

1.5
= 1.1667,

so that κMG > κDEF obviously holds in this case.
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Example 4.3. It is easy to construct examples showing that κMG < κDEF. For
instance, take

A = diag(0.5, 0.75, 1.0, 1.25),

with the same setting of the parameters of MG and DEF as in Example 4.2. Then,

σMG = {1, 1, 1, 0.9375}, σDEF = {0, 0, λ3, λ4} = {0, 0, 1.0, 1.25},

giving us

κMG =
1

0.9375
= 1.0667, κDEF =

λn

λk+1
=

1.25

1.0
= 1.25,

so that κMG < κDEF holds in this case.

5. Comparison of MG and DEF for general M−1. In this section, we allow
M−1 to be chosen arbitrarily, but require that M̄−1 = M−1 and that Z consist of
eigenvectors of M−1A. Then, some of the results given in the previous section can be
generalized as in the next theorem.

Theorem 5.1. Suppose that M−1 = M̄−1 is arbitrary and Z = [v1 · · · vk] consists
of eigenvectors corresponding to {λi} of M−1A. Let PDEF and PMG be as given in (2.3)
and (2.7), respectively. Then,

(i) PMGA has the following eigenvalues:

{
1, for i = 1, . . . , k;
λi(2 − λi), for i = k + 1, . . . , n,

(5.1)

(ii) PDEFA has the following eigenvalues:

{
0, for i = 1, . . . , k;
λi, for i = k + 1, . . . , n.

(5.2)

Proof. The proof follows from [3, Prop. 2] and [24, Sect. 4].
Note that Eqs. (5.1) and (5.2) are identical to Eqs. (4.2) and (4.3), respectively.

Hence, the results from the previous section, based on M−1 = M̄−1 = I and Z

consisting of eigenvectors of A, can be generalized to the case with arbitrary M−1 =
M̄−1 and Z consisting of eigenvectors of M−1A. The following example shows that
κMG < κDEF is not always satisfied (cf. Example 4.2).

Example 5.2. Choose M̄−1 = M−1 and A such that M−1A is a diagonal matrix
given by

M−1A = diag(1, 1.25, 1.5, 1.75). (5.3)

If Z = [v1 v2] with v1 and v2 to be eigenvectors corresponding to the two smallest
eigenvalues of M−1A, then the eigenvalues of PMGA and PDEFA are

σMG = (1, 1, 0.4375, 0.75), σDEF = (0, 0, 1.5, 1.75).

This leads immediately to the condition numbers

κMG =
1

min{λk+1(2 − λk+1), λn(2 − λn)} = 2.2857, κDEF =
λn

λk+1
= 1.1667.
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As in Example 4.2, we have κMG > κDEF for this choice of M̄−1, M−1 and A.
Example 5.3. It is easy to construct examples showing that κMG < κDEF. For

instance, take (cf. Example 4.3)

M−1A = diag(0.5, 0.75, 1.0, 1.25),

with the same setting of the parameters of MG and DEF as in Example 5.2. Then,
as in Example 4.3, we have

κMG = 1.0667 < 1.25 = κDEF.

5.1. Comparing MG and DEF. From Theorem 5.1, we know that

κMG =
1

min{λk+1(2 − λk+1), λn(2 − λn)} , κDEF =
λn

λk+1
, (5.4)

for any M−1 = M̄−1 when Z consists of eigenvectors of M−1A. Hence, determining
the method which yields the smallest condition number depends on the eigenvalues,
λk+1 and λn, of M−1A. In this subsection, we present Figure 5.1 from which the best
method can be easily determined for given λk+1 and λn.

Let {λi} be the eigenvalues of M−1A, and suppose that MG is convergent, so
that, 0 ≤ λj ≤ 2 holds for k < j ≤ n if Z is composed of eigenvectors v1, . . . , vk.
Furthermore, suppose that the eigenvalues are ordered so that 0 < λk+1 ≤ λj ≤ λn <

2 for all k < j ≤ n.
Note first that if λk+1 = λn, then PMG consists of at most two different eigenvalues

(including their multiplicity). In addition, if λk+1 = 2 − λn, then

κMG =
1

λk+1(2 − λk+1)
=

1

λn(2 − λn)
.

Next, the region, 0 < λk+1 ≤ λn ≤ 2, is naturally partitioned into two subdomains,
along the line where λk+1(2−λk+1) = λn(2−λn), which occurs when λk+1 = 2−λn:

• if λk+1(2 − λk+1) ≤ λn(2 − λn) (i.e., in the sector of the λk+1 − λn plane to
the left of the line λk+1(2 − λk+1) = λn(2 − λn)), then

κMG =
1

λk+1(2 − λk+1)
.

Thus, κMG < κDEF if and only if

1

2 − λk+1
< λn,

or, equivalently, λk+1 ≤ 2 − 1
λn

;
• if λk+1(2 − λk+1) ≥ λn(2 − λn) (i.e., in the sector of the λk+1 − λn plane to

the right of the line λk+1(2 − λk+1) = λn(2 − λn)), then

κMG =
1

λn(2 − λn)
.

Thus, κMG < κDEF if and only if

λk+1 ≤ λ2
n(2 − λn).
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Fig. 5.1. Regions of the most favorable condition numbers corresponding to MG and DEF for
arbitrary M−1 = M̄−1, when Z consists of eigenvectors of M−1A. κMG < κDEF holds in Regions
A1 and A2, whereas κDEF < κMG holds in Regions B1 and B2. The two condition numbers are equal
along the red (dotted) and green (dotted-dashed) lines.

Figure 5.1 depicts these regions graphically. For any given λk+1 and λn, the method
with smallest condition number follows immediately from this figure. Example 5.4
gives some consequences of Figure 5.1.

Example 5.4.

(a) If σ(M−1A) ⊆ (0, 0.5], then we deal with Region B1 and, hence, κDEF ≤ κMG.

(b) If σ(M−1A) ⊆ (0, 2) with λk+1 ≈ 2− λn, then we deal with either Region A1

or A2 and κDEF > κMG holds.
Case (a) says that if M−1 is a ‘bad’ smoother (no eigenvalues of I − M−1A are less
than 1

2), then MG is expected to converge worse than DEF. On the other hand, Case
(b) implies that if M−1 is a ‘good’ smoother (all eigenvalues that need to be handled
by relaxation are done so with eigenvalues of I − M−1A bounded in a neigbourhood
on both sides of the origin), then MG converges better than DEF.

6. Effect of Relaxation Parameters. In the previous section, we have seen
that DEF can be more favorable to use than MG in certain circumstances. In this
section, it will be shown that MG can always have a lower condition number than
DEF, in the case where M−1 = M̄−1 = αI is used with an optimal choice of α. The
relaxation scheme with this choice of M−1 is known as Richardson relaxation.

6.1. Analysis of Scaling Relaxation. Instead of considering the original linear
system (1.1), we now consider the scaled linear system:

αAx = αb, α > 0, (6.1)

with M−1 = M̄−1 = I . A subscript, α, will be added to the notation for operators
and matrices, if they are for (6.1). So, Pα and PMG,α denote the deflation matrix and
MG-preconditioner based on (6.1), respectively.
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Solving the scaled linear system (6.1) with M−1 = M̄−1 = I is equivalent to
solving the preconditioned linear system (1.3) with M−1 = M̄−1 = αI . This follows
from the error-propagation operator, Vα:

Vα := (I −PMG,ααA) = (I − IαA)P T
α (I − IαA)

= (I − (αI)A)P T (I − (αI)A)
= (I − M̄−T A)P T (I − M̄−1A)
= V,

(6.2)

with M̄−1 = αI . The parameter, α, can then be regarded as a parameter of the
relaxation instead of the linear system. Relaxation methods are typically given by
fixed formulas (e.g., M̄ = diag(A) is used in Jacobi iterations and Gauss-Seidel itera-
tions take the lower-triangular part of A), but these formulas are often not optimally
scaled. So, the relaxation processes are rescaled, whereas coarse-grid correction re-
mains untouched due to the fact that

Pα = I − (αA)Z(ZT (αA)Z)−1ZT = I − AZ(ZT AZ)−1ZT = P.

Therefore, DEF is scaling invariant:

κDEF,α =
λn(M−1PααA)

λk+1(M−1PααA)
=

λn(M−1PA)

λk+1(M−1PA)
= κDEF.

In contrast, MG is not scaling invariant, and the positive-definiteness property of
PMG,α depends strongly on α, see Theorem 6.1.

Theorem 6.1. Assume that M̄−1 = M−1 = I and Z = [v1 · · · vk], where {vi} is
the set of orthonormal eigenvectors corresponding to the increasing set of eigenvalues
{λi} of A. Then, PMG,αA is only SPD if

0 < α <
2

λmax(A)
=

2

||A||2
,

where λmax(A) is the largest eigenvalue of A not treated by coarse-grid correction.

Proof. We have

PMG,ααAvi = α
[
2λivi − 2λiZZT vi + λi

α ZΛ−1ZT vi − αλ2
i vi + αλ2

i ZZT vi

]
,

which is the same expression as given in [3, Prop. 2]. Hence,

PMGAvi =

{
vi, for i = 1, . . . , k;
α [λi(2 − αλi)] vi, for i = k + 1, . . . , n.

(6.3)

From (6.3), we derive that PMG,αA is only SPD if α [λi(2 − αλi)] > 0, i.e.,

0 < α <
2

λmax
=

2

||A||2
,

for λi not treated by coarse-grid correction (cf. Theorems 3.7 and 3.8).

Remark 6.2.

• Eq. (6.3) clearly shows that κMG,α 6= κMG.

• For any A, there exists an α such that PMG,α is SPD.
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• The function α [λi(2 − αλi)] has a maximum at α = 1
λi

, and

lim
α→0

κMG,α|Z⊥ =
maxk+1≤i≤n αλi(2 − αλi)

mink+1≤i≤n αλi(2 − αλi)
=

maxk+1≤i≤n λi

mink+1≤i≤n λi
=

λn

λk+1
= κDEF.

This means that, for α → 0, the condition number of PMGA restricted to the
complement of Z (i.e., omitting the unit eigenvalues) is equal to the condition
number of PDEFA.

Theorem 6.1 shows that the eigenvalue distribution of MG highly depends on the
choice of α. This is further illustrated in the following example.

Example 6.3. We consider the 1-D Laplace equation with the following natural
discretization matrix (multiplied by h2):

A =




2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2




, (6.4)

We take n = 10, M−1 = I and Z ∈ R
10×2 consisting of two independent random

vectors. The scaling parameter, α, will be varied. Note that the eigenvalues of A are
in the range of (0, 4] and ||A||2 = λmax ≈ 4. Therefore, we expect that α ≤ 1

2 gives
positive eigenvalues for MG and α ≈ 1

3 is optimal, which can be motivated as follows.
The spectrum of I − αA ranges from about 1 (for the smallest eigenvalue of A) to
approximately 1 − 4α (for the largest eigenvalue of A). With a classical MG choice
of coarse grid, we would expect the coarse-grid correction to accurately correct errors
associated with the eigenvectors of eigenvalues between 1 and 1 − 2α (the lower half
of the spectrum of A). So, α should be chosen so that convergence of relaxation is
as good as possible for the remaining eigenvectors. Since these are bounded between
1− 2α and 1− 4α, this can be accomplished by choosing α so that |1− 2α| = |1− 4α|,
which happens with α = 1

3 .
The spectra of DEF and MG are denoted by

σDEF = (0, 0, λ1, . . . , λ8), σMG = (1, 1, µ1, . . . , µ8).

For the sake of convenience, we scale the eigenvalues of DEF by µ8

λ8
. We do not lose

generality, since DEF is scaling invariant. We then get

σDEF = (0, 0,
λ1µ8

λ8
,
λ2µ8

λ8
, . . . , µ8), σMG = (1, 1, µ1, . . . , µ8).

Now, we plot the eigenvalues corresponding to the eigenvectors restricted to the com-
plement of Z (i.e., the zeros in DEF and ones in MG are omitted), see Figure 6.1.

Figure 6.1 shows that MG gives positive eigenvalues for α ≤ 1
2 . In this case,

MG is better conditioned, since its smallest eigenvalue is larger than the smallest
eigenvalue of DEF. Moreover, for α close to 1

2 , the eigenvalues of MG and DEF are
not obviously related. For smaller α, the eigenvalues of MG are located above those of
DEF. In addition, they converge to the eigenvalues of DEF (except for the zero and
unit eigenvalues).

Subsequently, the following lemma is useful for general Z and shows that Richard-
son relaxation is always convergent for a sufficiently small α. This result can also be
found in [26].
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(b) α = 0.5.
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(c) α = 0.25.
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(d) α = 0.125.

Fig. 6.1. Eigenvalues of DEF and MG corresponding to the eigenvectors restricted to the
complement of Z.

Lemma 6.4. Suppose that M−1 = M̄−1 = αI. Richardson relaxation is conver-
gent if

0 < α <
2

||A||2
.

Proof. If Richardson relaxation is convergent, then the equality

||I − αA||2 < 1

should be satisfied. Since I − αA is symmetric, we have

||I − αA||2 = max {|λmin(I − αA)|, |λmax(I − αA)|} .

This implies

−1 < λmin(I − αA) ≤ λmax(I − αA) < 1. (6.5)

Combining (6.5) with

λmin(I − αA) = 1 − αλmax(A), λmax(I − αA) = 1 − αλmin(A)

yields α < 2
||A||2

and α > 0, using the fact that ||A||2 = λmax(A) for an SPD matrix,

A.
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In Theorem 6.1, we have already seen that the above theorem holds if eigenvec-
tors are used in Z. Moreover, for multigrid, we typically try to choose α close to

1
||A||2

, which guarantees that the slow-to-converge modes of relaxation are only those

associated with the small eigenvalues of A. A better choice of α is possible if we
make assumptions on how the eigenvectors of A associated with small eigenvalues are
treated by coarse-grid correction. It is also be possible to get an explicit expression
for the optimal α, see the next subsection.

6.2. Optimal Choice of α. The best value of α depends on Z, so the optimal
α, denoted as αopt, can only be determined if the choice of Z is fixed. In this case,
the job of relaxation is specifically to reduce errors that are conjugate to the range of
Z. The best choice of α is the one that minimizes the ‘spectral radius’ of relaxation
over the complement of the range of interpolation, i.e.,

min
x,yT ZT Ax=0 ∀y

|xT (I − αA)x|
xT x

.

If we restrict ourselves to Z consisting of eigenvectors of A, parameter αopt is easily
determined such that it gives the most favorable condition number for MG, see the
next theorem.

Theorem 6.5. Suppose that M−1 = M̄−1 = αI and {λi} is the increasingly-
sorted set of eigenvalues of M−1A with corresponding eigenvectors {vi}. Let Z be
decomposed of k orthonormal eigenvectors from {vi}. Moreover, let PMG be as given
in (2.7) such that PMGA is SPD. Then, κ(PMG,αA) is minimized for

αopt =
2

λk+1 + λn
. (6.6)

Proof. Note first that, by choosing M̄−1 = M−1 = αI , the error-propagation
operator for MG can be written as (cf. Eq. (3.4)).

I −PMGA = (I − αA)P T (I − αA)
= I −

(
2αI + Q − αQA − αAQ − α2A + α2AQA

)
A

= 2αI + ZΛ−1ZT − 2αZZT − α2A + α2ZΛZT .

So, applying PMG to an eigenvector, vi, of A gives (cf. Eq. (3.5))

PMGvi =

{
1
λi

vi, for i = 1, . . . , k;

α(2 − αλi), for i = k + 1, . . . , n.

Thus, PMGA has eigenvalue 1 with algebraic multiplicity k, and n − k eigenvalues of
the form αλi(2 − αλi), for i = k + 1, . . . , n.

Let {σi} be the set of eigenvalues of PMGA, which are positive and sorted increas-
ingly, so that its condition number is given by σn

σ1
. By assumption, αλi(2 − αλi) > 0

for all i = k + 1, . . . , n and, by calculation, αλi(2 − αλi) < 1 for all α and λi. Thus,

σ1 = min
i∈[k+1,n]

{αλi(2 − αλi)}, σn = 1.

Now, assume that the eigenvalues, λi, for i = k + 1, . . . , n , are more-or-less evenly
distributed between λk+1 and λn (we do not lose generality by this assumption).
Then, we can approximate the best choice of α by doing a continuous optimization
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over α and λ ∈ [λk+1, λn]. For fixed α, the minimal value of αλ(2 − αλ) is obtained
either at one of the endpoints in λ or at the critical point, where d

dλ (αλ(2 − αλ)) = 0,
which occurs when λ = 1

α , when this is in the admissible range of λ’s. However, the

function is always concave down: d2

dλ2 (αλ(2 − αλ)) = −2α2 < 0, which implies that
the minimum must occur at an end point. So,

min
λ∈[λk+1,λn]

αλ(2 − αλ) = min {αλk+1(2 − αλk+1), αλn(2 − αλn)} . (6.7)

Subsequently, we want to maximize this minimum eigenvalue (since the minimum
eigenvalue should be as large as possible),

max
α

min {αλk+1(2 − αλk+1), αλn(2 − αλn)} .

This is achieved when we choose α so that

αλk+1(2 − αλk+1) = αλn(2 − αλn),

which occurs when α = 2
λk+1+λn

.

Corollary 6.6. Let the conditions of Theorem 6.5 be satisfied. For αopt, the
smallest eigenvalue of PMGA is equal to

4λk+1λn

(λk+1 + λn)2
. (6.8)

The condition number of PMGA is then given by

κMG =
1

4λk+1λn

(λk+1+λn)2

=
(λk+1 + λn)2

4λk+1λn
, (6.9)

so that κMG ≤ κDEF.

Proof. Eq. (6.8) follows by substituting the optimal weighting parameter, αopt,
into (6.7). Then, this implies Eq. (6.9). Finally, κMG ≤ κDEF follows from the fact
that

(λk+1 + λn)2

4λk+1λn
≤ λn

λk+1
⇔ (λk+1 + λn)2 ≤ (2λn)2,

which is always true, since λk+1 ≤ λn.

Remark 6.7.

• The condition numbers corresponding to MG and DEF are the same if the
spectrum of A is ‘flat’ (i.e., if λk+1 = λn). But, in general, MG gives a more
favorable condition number than deflation, using the optimal parameter, αopt.

• Examples 4.2 and 5.2 have shown that κMG ≥ κDEF can happen in general.
However, according to Theorem 6.5, these examples can never be constructed
if αopt is used.

• In practice, approximations to α are fairly easy to compute, although the
exact eigenvalue distribution is usually unknown. Eigenvalue λn can be ap-
proximated using Gershgorin’s theorem, while λk+1 can be taken to be approx-
imately λ1+λn

2 with λ1 ≈ 0, since k ≈ n
2 usually holds in multigrid.
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• An optimal weighting parameter, αopt, can also be considered for general pre-
conditioners, M̄−1; however, it is often much more difficult to express αopt

explicitly, as it depends on the spectral properties of M̄−1A, which may not be
known. In general, the optimal choice of α is such that relaxation converges
as quickly as possible on the modes that are not being treated by the coarse-
grid correction phase of the cycle. Thus, if the spectral picture of M̄−1A is
known well-enough to approximate the eigenvalues corresponding to λk+1 and
λn, a similar choice of αopt as in Eq. (6.8) may be possible.

7. Symmetrizing the Smoother. In the previous section, we have seen that
MG can be expected to converge in fewer iterations than DEF for simple choices of
M−1 and M̄−1. Numerical experiments show that MG also requires fewer iterations
than DEF for more sophisticated choices of preconditioners, see Section 8. However,
the fact that MG requires fewer iterations than DEF for many preconditioners does
not mean that it is more efficient, since each iteration of MG is more expensive, due to
the choice of two smoothing steps. In order to make a fairer comparison between DEF
and MG, we now consider DEF using the preconditioning version of the symmetrized
smoother:

S∗S = (I − M̄−T A)(I − M̄−1A)
= (I − M̄−T (M̄ + M̄T − A)M̄−1A)

= I − M̃−1A,

(7.1)

with

M̃−1 := M̄−T (M̄ + M̄T − A)M̄−1 = M̄−1 + M̄−T − M̄−T AM̄−1. (7.2)

Note that M̃−1, as defined here, is the same as in Eq. (3.10). Then, we use

M−1 := M̃−1 (7.3)

as the preconditioner in DEF, since this choice allows implementation in such a way
that each iteration of BNN, DEF and MG has similar cost. In this section, we will
compare the spectra associated with MG and DEF using (7.3). First, we show that
these spectra are almost equal for simple choices of M̄−1 with Z consisting of eigen-
vectors of A. Moreover, DEF gives a somewhat more favorable condition number than
MG in this setting. Thereafter, we will generalize this latter result for general M̄−1

and Z.

7.1. Spectral Analysis of MG and DEF. Assume that M̄−1 = αI and the
columns of Z are eigenvectors of A. Then, we can show that the spectra corresponding
to MG and DEF are almost the same if Eq. (7.3) is used, see the next theorem.

Theorem 7.1. Assume that M̄−1 = αI, Eqs. (7.2) and (7.3) hold and the
columns of Z are some eigenvectors corresponding to eigenvalues of A, which lie in the
interval (0, 2

α ). Let PDEF and PMG be as given in (2.3) and (2.7), respectively. Then,
the eigenvalues of PDEFA and PMGA are the same, except that the unit eigenvalues of
MG, corresponding to the columns of Z, are zero eigenvalues of DEF.

Proof. Substituting M̄−1 = αI into (7.2) yields

M̃−1
α := α2

(
2

α
I − A

)
.
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Because the eigenvalues of A lie in the interval (0, 2
α ), both DEF and MG are positive-

definite (cf. Theorem 6.1). This yields

PDEFA = M̃−1
α PA = α2

(
2

α
I − A

)
(I−ZZT )A = α2

(
2

α
A − 2

α
ZZT A − A2 + AZZT A

)
.

This implies

PDEFAvi = α2

(
2

α
λivi −

2

α
λiZZT vi − λ2

i vi + λiAZZT vi

)
.

Then, we derive

PDEFAvi =

{
α2

(
2
αλivi − 2

αλivi − λ2
i vi + λ2

i vi

)
= 0, for i = 1, . . . , k;

α2
(

2
αλivi − λ2

i vi

)
= α (λi(2 − αλi)) vi, for i = k + 1, . . . , n.

Recall that (see Eq. (6.3))

PMGAvi =

{
vi, for i = 1, . . . , k;
α (λi(2 − αλi)) vi, for i = k + 1, . . . , n,

which shows that the eigenvalues of PDEFA and PMGA are the same for i = k+1, . . . , n

and the theorem follows.
Surprisingly, the eigenvalues not treated by the coarse-grid correction or deflation

matrix in MG and DEF are identical. If one considers the condition numbers, then
we get

κDEF =
maxk+1≤i≤n {λi(2α − λi)}
mink+1≤i≤n {λi(2α − λi)}

≤ 1

mink+1≤i≤n {αλi(2 − αλi)}
= κMG,

since λi(2α − λi) ≤ 1 for all i = k + 1, . . . , n and 0 < α ≤ 1 is assumed. Therefore,
DEF has a better condition number than MG.

Remark 7.2. A ‘reasonable’ choice of α often leads to maxk+1≤i≤n {αλi(2α − λi)}
becoming quite close to 1. If this is the case, then the condition numbers for DEF and
MG are almost identical. Since we typically choose α to be close to the inverse of
the average of λk+1 and λn, we expect this to be the case. In other words, DEF is
guaranteed to be better conditioned than MG, but only slightly.

7.2. Spectral Analysis for General M̄−1 and Z. In the previous subsection,
we have shown that, for special choices of M̄−1 and Z, DEF with preconditioner M̃−1

and MG yield the same eigenvalues for those modes that are not treated by the coarse-
grid correction. From [19], it follows that the eigenvalue distributions of BNN with

M̃−1 and MG are exactly the same, resulting in the same condition numbers. Below,
we show that this result also holds for general Z and M̄−1 such that M̃−1 is SPD,
resulting in the fact that S is certainly convergent in the A-norm by Theorem 3.8.

Theorem 7.3. Let M̄−1 ∈ R
n×n be as given in (2.1) such that PMG is SPD. In

addition, let M−1 = M̃−1 be as defined in (7.2) such that PBNN is SPD. Then, the
eigenvalues of PMGA and PBNNA are equal.

Proof. We show the equivalence of κMG and κBNN, by examining the extreme
eigenvalues of their error propagation forms,

{
I −PMGA = S∗P T S;

I −PBNNA = P T (I − M̃−1A)P T .
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We examine both methods by making the same similarity transformation,

I −PA → A
1
2 (I −PA)A− 1

2 ,

where A1/2 is the symmetric square root of the SPD matrix, A. This allows us to
make use of the fact that I − A

1
2 QA

1
2 is an orthogonal projection in the L2-inner

product (i.e., (I −A
1
2 QA

1
2 )T (I −A

1
2 QA

1
2 ) = I −A

1
2 QA

1
2 ). Computing the similarity

transformed systems, we have
{

A
1
2 (I −PMGA)A− 1

2 = (I − A
1
2 M̄−T A

1
2 )(I − A

1
2 QA

1
2 )(I − A

1
2 M̄−1A

1
2 ),

A
1
2 (I −PBNNA)A− 1

2 = (I − A
1
2 QA

1
2 )(I − A

1
2 M̃−1A

1
2 )(I − A

1
2 QA

1
2 ).

We define

C := (I − A
1
2 QA

1
2 )(I − A

1
2 M−1A

1
2 ),

so that we can write
{

A
1
2 (I −PMGA)A− 1

2 = CT C;

A
1
2 (I −PBNNA)A− 1

2 = CCT ,

using the following the equalities:




(I − A
1
2 QA

1
2 )2 = I − A

1
2 QA

1
2 ;

(I − A
1
2 QA

1
2 )T = I − A

1
2 QA

1
2 ;

(I − A
1
2 M̄−1A

1
2 )T = I − A

1
2 M̄−T A

1
2 ;

I − A
1
2 M̃−1A

1
2 = (I − A

1
2 M̄−T A

1
2 )(I − A

1
2 M̄−1A

1
2 ).

Since A
1
2 (I − PMGA)A− 1

2 and A
1
2 (I − PBNNA)A− 1

2 are similar to I − PMGA and
I −PBNNA, respectively, and, σ(CT C) = σ(CCT ) (see, e.g., [19]), we obtain

σ(I −PMGA) = σ(CT C) = σ(I −PBNNA),

and the theorem follows immediately.
From Theorem 7.3, we obtain that MG and BNN with M̃−1 give exactly the same

condition number. This also implies that the condition number of MG is not smaller
than the condition number of DEF, see the next corollary.

Corollary 7.4. Let M̄−1 and M−1 = M̃−1 be as in Theorem 7.3 such that
PDEF is SPD. Then,

(i) κMG = κBNN;
(ii) κDEF ≤ κMG,

where κMG, κBNN and κDEF are the condition numbers corresponding to MG, BNN and
DEF, respectively.

Proof. (i) This is a trivial consequence of Theorem 7.3.
(ii) This result follows by combining Theorem 7.3 and [15, Thm. 2.7].
Remark 7.5.

• Ordering the smoothers in the opposite way might lead to a different definition
of M̃−1; this, in turn, could change the eigenvalues of MG and BNN, although
an analogous result to Theorem 7.3 still holds for the consistent choice of S

and M̃−1.
• Corollary 7.4 shows that BNN, DEF and MG are expected to show comparable

convergence behavior for special choices of traditional preconditioners. We
note that this result is only valid in exact arithmetic. If coarse-grid systems
are solved inaccurately, DEF might have convergence difficulties, while BNN
and MG are less sensitive to it, see, e.g., [19].
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8. Numerical Experiments. In this section, we present the results of some
numerical experiments, where PREC and the presented 2L-PCG methods (i.e., DEF,
BNN and MG) will be compared. We start with a 1-D Laplace-like problem to
illustrate the theory as obtained in Section 5. Then, a 2-D bubbly flow problem will
be considered to show the performance of DEF, BNN and MG in a more realistic
setting. We stress that these examples are chosen to highlight the presented theory
and not to present the efficiency of the solvers; in practice, very different choices of
M̄−1, M−1 and Z are used for each method, see [11, 23].

The starting vector for each iterative method will be arbitrary and the iterative

process will be terminated if the norm of the relative residual,
||rj+1||2
||r0||2

, falls below a

fixed tolerance, δ = 10−8.

8.1. 1-D Laplace-like Problem. Several 1-D Laplace-like problems are con-
sidered, with the matrices

A =




β γ ∅
γ β

. . .

. . .
. . . γ

∅ γ β




, β, γ ∈ R, (8.1)

where we vary the constants β and γ so that each test case corresponds to a different
region as shown in Figure 5.1, see Table 8.1. In addition, we choose M̄−1 = M−1 =
I and Z consisting of eigenvectors corresponding to the smallest eigenvalues of A.
Right-hand side, b, is chosen randomly. We take n = 100 (other values of n lead
to approximately the same results) and the number of projection vectors, k, will be
varied. The results of the experiment can be found in Table 8.2.

Test Problem β γ Range of λi Region Expected Fastest Method

(T1) 1.5 −0.125 [1.25, 1.75] B2 DEF
(T2) 1 −0.05 [0.9, 1.1] A1 / A2 MG
(T3) 0.25 −0.1 [0.05, 0.45] B1 DEF
(T4) 1.25 −0.125 [1.0, 1.5] A1 / A2 MG/DEF

Table 8.1

Test cases corresponding to different regions as presented in Figure 5.1.

From Table 8.2, the following observations can be made.
• Table 8.2(a): DEF yields a smaller condition number and is always faster

than MG in this case.
• Table 8.2(b): MG yields a smaller condition number and is always faster than

DEF.
• Table 8.2(c): Since the condition number associated with DEF is always

below that of MG, DEF is expected to be faster than MG. However, that is
not the case in this test problem. The two methods converge at the same rate
for large k, but MG is faster than DEF for small k. This can be explained
by the fact that the spectrum of eigenvalues of MG consists of two clusters,
see Figure 8.1(c). If the first cluster of ones is omitted (or are approximated
by a Ritz value), then the condition number of the remaining spectrum is
more favorable compared to the condition number associated with DEF. For
example, in the case of k = 2, we have κMG = 7.0 (instead of κMG = 10.1)
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(a) β = 1.5, γ = −0.125.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 11 1.4 11 1.4 11 1.4
DEF 11 1.4 10 1.3 8 1.1
BNN 11 1.7 10 1.7 8 1.7
MG 15 2.3 15 2.3 12 2.3

(b) β = 1, γ = −0.05.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 9 1.2 9 1.2 9 1.2
DEF 9 1.2 9 1.2 7 1.1
BNN 9 1.2 9 1.2 7 1.1
MG 5 1.01 5 1.01 5 1.01

(c) β = 0.25, γ = −0.1.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 34 9.0 34 9.0 34 9.0
DEF 34 8.8 24 4.9 11 1.4
BNN 34 19.6 25 11.0 11 3.2
MG 30 10.1 22 5.7 11 1.9

(d) β = 1.25, γ = −0.125.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 11 1.5 11 1.5 11 1.5
DEF 12 1.5 11 1.4 8 1.1
BNN 12 1.5 11 1.5 8 1.5
MG 10 1.3 10 1.3 9 1.3

Table 8.2

Results of the experiment with test cases as presented for the Laplace-like problem in Table 8.1.
The results are presented in terms of number of iterations, # It., and condition number, κ.

when the unit eigenvalues are omitted. Obviously, this would then be the
smallest condition number over all of the methods.

• Table 8.2(d): MG has a smaller condition number and is faster than DEF for
small k. On the other hand, for large k, DEF has a smaller condition number
than MG and performs somewhat better than MG. Indeed, the best method
depends on λk+1.

8.2. 2-D Bubbly Flow Problem. Using pressure-correction techniques for
solving the Navier-Stokes equations, the major computational bottleneck in modelling
the bubbly flow problem is the solution of the Poisson equation with a discontinuous
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(a) β = 1.5, γ = −0.125.
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(d) β = 1.25, γ = −0.125.

Fig. 8.1. Eigenvalues associated with DEF and MG for the test cases with k = 20 as presented
in Table 8.2.

coefficient,

−∇ ·
(

1

ρ(x)
∇p(x)

)
= 0, x = (x, y) ∈ Ω = (0, 1)2, (8.2)

where p denotes the pressure and ρ is a piecewise-constant density coefficient, see [11,
22] and the references therein. We consider circular air bubbles in Ω filled with water,
see Figure 8.2(a) for the geometry. Here, we consider the density contrast to be equal
to ε = 103. A standard second-order finite-difference scheme is applied to discretize
(8.2), where we use a uniform Cartesian grid. Nonhomogeneous Neumann boundary
conditions are imposed so that the resulting linear system (1.1) is still compatible.
Moreover, we choose as preconditioner, M−1, the Incomplete Cholesky decomposition
without fill-in, IC(0). We refer to [19] for more details about the setting of this
experiment.

Let the open domain, Ω, be divided into subdomains, Ωj , j = 1, 2, . . . , k + 1,
such that Ω = ∪k+1

j=1Ωj and Ωi ∩ Ωj = ∅ for all i 6= j. The discretized domain
and subdomains are denoted by Ωh and Ωhj , respectively. Then, for each Ωhj with
j = 1, 2, . . . , k + 1, a projection vector, zj , is defined as follows:

(zj)i :=

{
0, xi ∈ Ωh \ Ωhj ;
1, xi ∈ Ωhj ,

(8.3)

where xi is a grid point of Ωh. The subdomains are identical square domains, which
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Fig. 8.2. Settings for the bubbly flow problem.

are chosen independently of the bubbles and the number of them can be varied, see also
Figure 8.2(b). It can be shown that the projection vectors approximate slowly varying
eigenvectors corresponding to small eigenvalues. Then, we take Z := [z1 z2 · · · zk].
Hence, Z consists of orthogonal, disjoint and piecewise-constant vectors. We remark
that the projection vectors are not restricted to choices that are common in DDM
and deflation. Typical MG projection vectors could also be taken.

8.2.1. Experiment with M̄−1 = M−1. The results with M̄−1 = M−1 are
presented in Table 8.3.

From the table, it can be observed that, for all k, DEF and BNN require the same
number of iterations, whereas MG is the fastest method in terms of the number of
iterations, which is as expected. Recall that this does not necessarily mean that MG is
the fastest method with respect to computing time, since each iteration of MG is more
expensive than a iteration of DEF. Moreover, note that the difference in performance
between the cases with k = 22 and k = 42 is small. In these cases, the corresponding
projection vectors are bad approximations of the eigenvectors associated with the
smallest eigenvalues of A.

k = 22 − 1 k = 42 − 1 k = 82 − 1

Method # It. ||xit−x||2
||x||2

# It. ||xit−x||2
||x||2

# It. ||xit−x||2
||x||2

DEF 149 1.5× 10−8 144 3.1 × 10−8 42 1.8 × 10−8

BNN 149 1.5× 10−8 144 3.1 × 10−8 42 1.1 × 10−8

MG 86 1.0× 10−7 93 6.5 × 10−8 32 1.9 × 10−8

Table 8.3

Number of required iterations for convergence and the 2−norm of the relative errors of 2L-PCG
methods, for the bubbly flow problem with n = 642 and M̄−1 = M−1. PREC requires 137 iterations
and leads to a relative error of 4.6 × 10−7.

8.2.2. Experiment with Symmetrized Smoother. We perform the same
experiment as above, but taking M−1 = M̄−1 + M̄−T − M̄−T AM̄−1, while M̄−1 is
still the IC(0) preconditioner. In contrast to the previous experiment, the amount of
work for each iteration of BNN, MG and DEF is now approximately the same and
Theorem 7.3 holds. The results of this experiment are presented in Table 8.4.
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k = 22 − 1 k = 42 − 1 k = 82 − 1

Method # It. ||xit−x||2
||x||2

# It. ||xit−x||2
||x||2

# It. ||xit−x||2
||x||2

DEF 87 7.2× 10−8 94 1.3 × 10−8 34 7.6 × 10−9

BNN 87 7.2× 10−8 94 1.3 × 10−8 34 7.6 × 10−9

MG 86 1.0× 10−7 93 6.5 × 10−8 32 1.9 × 10−8

Table 8.4

Number of required iterations for convergence and the 2−norm of the relative errors of 2L-PCG
methods, for the bubbly flow problem with n = 642 and M−1 = M̄−1 + M̄−T − M̄−T AM̄−1. PREC
requires 137 iterations and leads to a relative error of 4.6 × 10−7.

As can be observed in Table 8.3, MG is now comparable with DEF and BNN, as
expected from the theory of Section 7. All methods require approximately the same
number of iterations and lead to the same accuracy.

9. Conclusions. We compare two-level PCG methods based on deflation (DEF),
balancing Neumann-Neumann(BNN) and multigrid V(1,1)-cycle (MG) precondition-
ers in their abstract forms, which all consist of combinations of traditional and
projection-type preconditioners. When simple choices are made for the algorithmic
components, each MG iteration is more expensive than a DEF or BNN iteration,
due to the more sophisticated form of the two-level preconditioner. At first glance,
we would expect MG to be the most effective method; however, we have shown that
there exist some traditional and projection preconditioners such that DEF is expected
to converge faster than MG.

If Richardson relaxation is used with an optimal weighting as a traditional pre-
conditioner, then it can be proven that MG always gives a more favorable condition
number than DEF or BNN. For more sophisticated and effective traditional precon-
ditioners, we still expect MG to be superior to DEF and BNN, although the work per
iteration of MG remains more than for the other methods.

For special choices of traditional preconditioners, it can be shown that BNN, DEF
and MG require the same amount of work per iteration and their spectra only differ
in one cluster of eigenvalues around 0 or 1. Hence, these methods are expected to
show comparable convergence behavior.

Numerical experiments with Laplace-like and bubbly flow problems emphasize
the theoretical results.
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