
International Journal for Multiscale Computational Engineering, 6(1)13–24(2008)

Fast Deflation Methods with Applications to
Two-Phase Flows

J. M. Tang & C. Vuik
Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Institute of Applied Mathematics, J. M. Burgerscentrum, Mekelweg 4, 2628 CD Delft, The Netherlands

ABSTRACT

Traditional Krylov iterative solvers, such as the preconditioned conjugate gradient method,
can be accelerated by incorporating a second-level preconditioner. We use deflation as a
second-level preconditioner, which is very efficient in many applications. In this paper, we
give some theoretical results for the general deflation method applied to singular matrices,
which provides us more insight into the properties and the behavior of the method. Moreover,
we discuss stability issues of the deflation method and consider some ideas for a more stable
method. In the numerical experiments, we apply the deflation method and its stabilized vari-
ant to singular linear systems derived from two-phase bubbly flow problems. Because of the
appearance of bubbles, those linear systems are ill-conditioned, and therefore, they are usually
hard to solve using traditional preconditioned Krylov iterative methods. We show that our
deflation methods can be very efficient to solve the linear systems. Finally, we also investi-
gate numerically the stability of these methods by examining the corresponding inner-outer
iterations in more detail.

KEYWORDS

deflation, inner-outer iterations, bubbly flows, poisson equation, discontinuous coefficients

*Address all correspondence to J.M.Tang@tudelft.nl

1543-1649/08/$35.00 c© 2008 by Begell House, Inc. 13

14 TANG AND VUIK

1. INTRODUCTION

Computation of two-phase flows, and in particu-
lar bubbly flows, is currently a very active research
topic in computational fluid dynamics (CFD); see,
for instance, [1–6]. Understanding the dynamics
and interaction of bubbles and droplets in a large
variety of industrial processes is crucial for eco-
nomically and ecologically optimized design. Two-
phase flows are complicated to simulate because the
geometry of the problem typically varies with time
and the fluids involved can have very different ma-
terial properties. A simple example is that of air
bubbles in water, where the densities vary by a fac-
tor of about 1000.

Mathematically, bubbly flows are governed by
the Navier-Stokes equations, which can be solved
numerically using an operator-splitting method,
where the velocity and pressure are solved sequen-
tially for each time step. In many of the popu-
lar operator-splitting methods, a linear system for
the pressure correction has to be solved for every
time step, which is a discretized version of a Pois-
son equation with discontinuous coefficients. This
consumes the bulk of the computing time, although
the coefficient matrix of the linear system is elliptic.
This is caused by the occurrence of strongly vary-
ing coefficients, arising from large jumps of the den-
sity. The appearance of bubbles in the domain has a
negative influence on the condition of the coefficient
matrix.

The pressure correction equation can be solved
in different ways. A Krylov iterative solver can
be adopted, such as the preconditioned conjugate
gradient (PCG) method. However, PCG with tra-
ditional preconditioners such as Jacobi, incomplete
Cholesky, and geometric multigrid preconditioners
often suffers from slow convergence because the
coefficient matrix remains ill-conditioned after pre-
conditioning. As an alternative for PCG, a deflated
variant of PCG, called DPCG, can be applied (see,
e.g., [7,8]). The incorporated deflation technique
removes the components of the eigenmodes that
cause the slow convergence of PCG. In many ap-
plications, DPCG has been proven to be an effi-
cient method, such as in porous media flows [9] and
ground water flows [10]. Recently, DPCG has also
been applied successfully to bubbly flows in [11,12].

The DPCG method can be seen as a two-grid
method because an additional coarse system has

to be solved in each iteration. If these coarse sys-
tems are solved recursively, then we would obtain
a method that is very close to multigrid methods
[13,14]. In this paper, we do not consider this class
of methods; we restrict ourselves to coarse systems
that are solved either in a direct or iterative way.

Although the DPCG method can be applied effec-
tively to various applications, there is a lack of the-
ory in the literature. For nonsingular linear systems,
some analysis can be found in [10,15,16], but for
singular linear systems, theoretical results are lack-
ing. Only for special cases, the deflation method has
been proven to be efficient (see, e.g., [11,17]). The
aim of this paper is to investigate theoretical prop-
erties of the general DPCG method applied to sin-
gular systems, including some insight into the sta-
bility and the difficulties in two-grid iteration pro-
cesses. This will provide us a better understanding
of the efficiency of the deflation method. Moreover,
to illustrate the theoretical results, we present some
numerical experiments, where the DPCG method
is applied to ill-conditioned linear systems derived
from two-phase bubbly flows.

In the two-phase flow applications we consider,
the multiphysics and multiscale aspects play an im-
portant role. The linear systems are hard to solve be-
cause (small) bubbles or droplets of one phase move
in a background of the other phase and relatively
high jumps appear in the density field.

This paper is organized as follows. We give the
deflation method in Section 2. Subsequently, the
theoretical properties and results considering the
deflation method are presented in Section 3. Sec-
tion 4 is devoted to the description of the bubbly
flow problem. In Section 5, the numerical experi-
ments considering the bubbly flows are carried out.
Then, conclusions are drawn.

2. DEFLATION METHOD

Suppose that the following SPSD linear system has
to be solved:

Ax = b, A ∈ Rn×n (1)

where A is singular and b ∈ Col(A) holds. A pop-
ular iterative method to solve (1) is PCG. In this
method, the resulting linear system to be solved is

M−1Ax = M−1b

International Journal for Multiscale Computational Engineering

FAST DEFLATION METHODS 15

where M denotes an SPD preconditioner. As men-
tioned in the introduction, the spectrum of M−1A,
denoted by σ

(
M−1A

)
, often consists of small eigen-

values, implying relatively slow convergence of
PCG. To accelerate the convergence of the iterative
process, the deflation method can be used, which is
described below.

We define the deflation matrix P as

P := I −AQ, Q = ZE+ZT , E := ZT AZ (2)

In Eq. (2), Z ∈ Rn×k with k ¿ n is the so-called
deflation subspace matrix whose k columns are the
deflation vectors, which remain unspecified for the
moment. In this paper, the following assumption is
always fullfilled.

Assumption 1. Z consists of linearly independent
columns, i.e., rank Z = k.

It depends on the choice of Z whether or not the
coarse matrix E ∈ Rk×k is singular. If E is singu-
lar, then the pseudoinverse is used, denoted as E+

in (2). Of course, if E is nonsingular, E+ is equal to
E−1.

Now, the following linear system has to be solved
in the resulting DPCG method:

M−1PAx̃ = M−1Pb (3)

Note that PA is again SPSD. To find solution x, it
can be proven that PT x̃ = PT x. This implies x =
Qb + PT x̃ (see, e.g., [8,10] for more details).

3. THEORETICAL PROPERTIES

In this section, we present some theoretical results
for the DPCG method. In contrast to the case with
a singular system (1), a lot is known about deflation
applied to a linear system with an invertible coeffi-
cient matrix (see, e.g., [10,16]). We aim at generaliz-
ing some theoretical results given in [10,16] so that
they can be applied to general singular matrices as
well. Note that a few results given in this section
have also been proven in [11], but that is only valid
for special choices of Z. We start the analysis for a
nonsingular matrix E, and thereafter, the case with a
singular E is considered. Subsequently, we analyze
the coarse matrix E in more detail and consider the
stability properties of DPCG.

Throughout this section, we denote by λi(C)
the ith eigenvalue of a symmetric matrix C,
where the sequence of λi(C) is ordered increas-
ingly. The condition number is given by κ(C) :=
λmax(C)/λmin(C), where λmax(C) and λmin(C) are
the largest and smallest eigenvalue of C, respec-
tively. Moreover, the effective condition number
is denoted by κeff(C) := λmax(C)/λ̄min(C), where
λ̄min(C) is the smallest nonzero eigenvalue of C. Fi-
nally, we define 1p and 0p as the all-one and all-zero
vector with p elements, respectively.

3.1 Deflation Properties with Nonsingular
Coarse Matrix

The following assumption holds throughout this
subsection.

Assumption 2. Suppose that A ∈ Rn×n is a singular
SPSD matrix and M ∈ Rn×n is a nonsingular SPD ma-
trix. Z is chosen in such a way that E is an invertible
SPD matrix.

Note that, from Assumption 2, it does not neces-
sarily follow that AZ has full rank, which is in con-
trast to the case that A is invertible. Next, we will
use the following notation throughout this subsec-
tion:

Pi := I −AQi, Qi := ZiE
−1
i ZT

i

Ei := ZT
i AZi, Zi ∈ Rn×ki

for i = 1, 2, where Assumption 2 holds. The follow-
ing results can now be proven.

Theorem 1. Let k1 = k2 = k. If Col(Z1) = Col(Z2),
then M−1P1A = M−1P2A, and in particular, Q1 =
Q2.
Proof. The proof is identical to the proof of [10]
(Lemma 2.9).

Theorem 2. Suppose that M−1P1A has k1 + 1 zero-
eigenvalues and M−1P2A has k2 + 1 zero-eigenvalues.
If Col(Z1) ⊆ Col(Z2), then

κeff(M−1P2A) ≤ κeff(M−1P1A) (4)

Proof. It is sufficient to show that κeff(P1A) ≤
κeff(P2A) because the proof of (4) is analogous to it.
In other words, we have to show that

Volume 6, Number 1, 2008

16 TANG AND VUIK

λn(P1A) ≥ λn(P2A)
λk1+2(P1A) ≤ λk2+2(P2A) (5)

Note first that (P1 − P2)A is PSD, which can be eas-
ily proved, by applying the same procedure as in
the proof of [9] (Lemma 2.8). By combining this
fact with [10] (Lemma 2.2), the first inequality of (5)
can be obtained. The proof of the second inequal-
ity of (5) is exactly the same as for the case that A is
invertible, see the proof of [10] (Theorem 2.10).

Theorem 3. The following inequality hold:

κeff(M−1PA) < κeff(M−1A) (6)

Proof. Note first that the columns of Z are no el-
ements of the null space of A, otherwise Assump-
tion 2 cannot be satisfied. Therefore, zi ∈ Rn \
Null(A) holds, where zi is a vector of Z. Now, the
proof of (6) is similar to the proof of [22] (Theo-
rem 2.2), which uses the unpreconditioned variant
of (6)

κeff(PA) < κeff(A) (7)

Inequality (7) can be shown similarly to the proof
of [16] (Theorem 2.1). One only needs to replace [16]
(Theorem 2.7, which is [10] Theorem 2.10) by The-
orem 2, and it has to be encountered that rank
AzzT A = 1 also holds if A is singular, for an arbi-
trary vector z ∈ Rn \Null(A).

Theorem 1 shows that P is determined by the
space spanned by the columns of Z rather than the
actual columns. This has consequences for con-
structing the deflation vectors (see Section 5.1). The-
orem 2 shows that the effective condition number
of M−1PA becomes more favorable by an increas-
ing number of vectors in Z; hence, a better conver-
gence of the iterative process is expected. Finally,
Theorem 3 shows that M−1PA is always better con-
ditioned than M−1A; therefore, the convergence of
DPCG is expected to be faster than the original PCG
method.

3.2 Deflation Properties with Singular Coarse
Matrix

Under certain circumstances, the results given in the
previous subsection also hold for the case with sin-
gular matrix E. We start with Assumption 3 that is
satisfied throughout this subsection.

Assumption 3. Suppose that Z = [Zk−1 zk] holds,
where Zk−1 is an n × (k − 1) matrix and zk is a vec-
tor. Let E := ZT AZ be a k × k singular SPSD matrix,
whose pseudoinverse E+ satisfies

E+ =

[
E−1

k−1 0k−1

0T
k−1 0

]
(8)

where Ek−1 := ZT
k−1AZk−1 is an invertible SPD ma-

trix.
Note that Ek−1 of Assumption 3 can be inter-

preted as the nonsingular matrix E from the previ-
ous subsection. Now, the next lemma can be easily
shown.

Lemma 1. (Theorem 4.3 of [11]) The equality
ZE+ZT = Zk−1E

−1
k−1Z

T
k−1 holds.

If we define Qk−1 := Zk−1E
−1
k−1Z

T
k−1 and Pk−1 :=

I − AQk−1, then Lemma 1 implies Q = Qk−1; and
therefore, this yields M−1PA = M−1Pk−1A. In
other words, the deflation method has two identi-
cal variants in exact arithmetic: one variant with the
invertible coarse matrix and the other variant with
the singular coarse matrix. Moreover, another con-
sequence of Lemma 1 is that all results given in the
previous subsection can be generalized for the case
with a singular E. Before we give these results, we
need the following assumption.

Assumption 4. Suppose that A ∈ Rn×n is a singular
SPSD matrix and M is a nonsingular SPD matrix. Z
is chosen in such a way that E is a singular SPD matrix
satisfying Assumption 3.

Throughout this subsection, we will use

Pi := I −AQi, Qi := ZiE
+
i ZT

i

Ei := ZT
i AZi, Zi ∈ Rn×ki (9)

for i = 3, 4, which should satisfy Assumption 4.
Now, the generalization of the results given in the
previous subsection can be found below.

Theorem 4. Let k3 = k4 = k. If Col(Z3) = Col(Z4),
then M−1P3A = M−1P4A, and in particular, Q3 =
Q4.

Theorem 5. Suppose that P3A has k3 + 1 zero-
eigenvalues and P4A has k4 + 1 zero-eigenvalues.

International Journal for Multiscale Computational Engineering

FAST DEFLATION METHODS 17

If Col(Z3) ⊆ Col(Z4), then κeff(M−1P4A) ≤
κeff(M−1P3A).

Theorem 6. The following inequality holds:
κeff(M−1P3A) < κeff(M−1A).

If Eq. (8) does not hold, then the above theorems
cannot proved in general. However, it turns out
that they are still satisfied in certain cases (see Sec-
tion 5.1).

3.3 Comparison of Nonsingular and Singular
Coarse Matrices

As concluded in the previous subsection, one can
use either the singular matrix E or nonsingular ma-
trix Ek−1 in the deflation method. If one solves the
corresponding coarse systems in a direct way, then
extra care is needed in the case of E, by generating a
solution up to the null space of E. The correspond-
ing coarse systems can also be solved iteratively. In
this subsection, we investigate the spectra and the
condition numbers of E or Ek−1, so that it can be de-
termined which case is expected to give the fastest
convergence.

If Assumption 3 is fullfilled, then it follows im-
mediately that the nonzero eigenvalue distributions
of E and Ek−1 are identical. In this case, the associ-
ated expected convergence behaviors are the same.

Assume now that Assumption 3 is satisfied with

E =
[

Ek−1 ×
× ×

]

instead of Eq. (8), where × means elements not all
equal to zero. Then, we can show that the eigenval-
ues of Ek and Ek−1 interlace, see Theorem 7.

Theorem 7. The following inequalities holds:

0 = λ1(E) ≤ λ1(Ek−1) ≤ λ2(E) ≤ . . .

≤ λk−1(E) ≤ λk−1(Ek−1) ≤ λk(E)

Proof. The theorem follows immediately from the
interlacing property (see, e.g., [18], p. 396].

In contrast to the case that A is invertible, it can
be noted that the spectrum of Ek−1 is not in the
range of the nonzero eigenvalues of E [i.e., κ(Ek−1)
is not smaller than κeff(E)]. But, in practice, we
often see that the largest eigenvalues of both ma-
trices are almost the same, whereas the smallest

nonzero eigenvalues differ significantly, [i.e., we
have λk−1(Ek−1) → λk(Ek) and λ1(Ek−1) ¿ λ2(Ek)
for large n or k]. Hence, this yields κeff(E) ≤
κ(Ek−1). Thus, the conclusion is that one should it-
erate with Ek rather than Ek−1, to obtain the fastest
convergence of the iterative coarse solves. This will
be done in Section 5.

3.4 Stabilization of Deflation Method

In practice, DPCG can be unstable for problems
with a large number of unknowns. This is caused
by the fact that coarse sytems involving E or Ek−1

might also become large and cannot be solved accu-
rately. To stabilize the method, we can choose for
the so-called adapted DPCG (ADPCG) method (see
also, e.g., [19], where ADPCG is known as the A-
DEF2 method). In this method, we have to solve

(PT M−1 + Q)Ax = (PT M−1 + Q)b (10)

with starting vector x0 = Qb + PT x̃0 and an arbi-
trary vector x̃0. Note that the operator PT M−1 + Q
in Eq. (10) cannot be replaced by M−1P + Q, be-
cause it has been shown in [19] that the resulting
method suffers from instability in some cases. Fur-
thermore, note that the solution x in (10) is the same
as the solution given in (1). It has also been shown
in [19] that ADPCG can be derived from the well-
known balancing Neumann-Neumann method [20]
and ADPCG has the same stability properties as this
method. Finally, the reason that ADPCG is more sta-
ble than DPCG follows from the following theorem.

Theorem 8.(Theorem 3.1 of [19]) Let the spectra of
DPCG and ADPCG be given by

σ(M−1PA) = {λ1, . . . , λn}
σ(PT M−1A + QA) = {µ1, . . . , µn}

respectively. Then, the numbering of the eigenvalues
within these spectra can be such that the following state-
ments hold:

{
λi = 0, µi = 1, for i = 1, . . . , k
λi = µi, for i = k + 1, . . . , n

The eigenvalues λi = 0 associated with DPCG be-
come nearly zero, if coarse systems with E or Ek−1

Volume 6, Number 1, 2008

18 TANG AND VUIK

are solved inaccurately. Therefore, DPCG leads to
an unstable method. On the other hand, we do not
have this phenomenon in the ADPCG method, be-
cause the corresponding eigenvalues of M−1A are
projected to 1 instead of 0 (see [19] for more details).
It follows that if coarse systems Ev = w are solved
iteratively, then this can be done with a lower ac-
curacy for ADPCG, compared to DPCG. Let us de-
note the stopping tolerance of PCG by εouter and the
stopping tolerance of the coarse systems Ev = w by
εinner. Suppose that

εinner = ωεouter, ω > 0 (11)

Then, ω ≤ 10−2 is a safe choice in the DPCG method
for many test problems (see [11], Section 4.1). In-
deed, the coarse systems should be solved very ac-
curately. Following the discussion above, the expec-
tation is that a larger ω can be taken in the AD-
PCG method. In the numerical experiments (see
Section 5), we will investigate the choice of ω for
both DPCG and ADPCG in more detail.

We remark that if coarse systems Ev = w
are solved inaccurately, the resulting operator
PT M−1 + Q is varying at each iteration, while a
fixed operator is expected in the CG iteration. In
other words, the step y2 = (PT M−1 + Q)−1y1 seen
by the outer process turns out to be y2 = P(y1),
where P is a nonlinear mapping from Rn to Rn.
If the inner tolerance is too loose, then the opti-
mal convergence property of CG can only be pre-
served if one performs a full orthogonalization of
the search direction vectors that can be extended
with truncation and restart strategies. This results
in a GMRES-like method, namely the flexible CG
method (see [21]). We will also consider this variant
in Section 5. However, note that it is possible to use
the original CG method with inexact precondition-
ing because it can be shown that the convergence
rate of the outer CG process can be maintained up
to a certain accuracy for the inner iterations (see,
e.g., [22,23]).

4. BUBBLY FLOWS

Bubbly flows are governed by the incompressible
Navier-Stokes equations which read

∂u
∂t

+u ·∇u = −1
ρ
∇p+

1
ρ
∇·µ (∇u +∇uT

)
+f (12)

subjected to the incompressibility constraint

∇ · u = 0 (13)

where u = (u, v, w)T is the velocity vector and ρ,
p, µ, and f are the density, pressure, viscosity, and
source vector (consisting of gravity and interface
tension forces), respectively. We assume the density
and viscosity to be constant within each fluid.

Equations (12) and (13) can be solved on a Carte-
sian grid in a rectangular domain by, e.g., the
pressure-correction method [24]. These equations
are discretized using finite differences on a stag-
gered grid. In the pressure-correction method, first
a tentative velocity vector u is computed by

u∗ − un

∆t
= −∇·unun+

1
ρ
∇·µ [∇u∗ + (∇un)T

]
(14)

where un denotes the velocity at time step n. The
resulting system of equations with unknown vector
u∗ is solved by, for example, the PCG method. The
velocities at the new time step n + 1 are determined
by

un+1 − u∗

∆t
= −1

ρ
Gp + f

under the constraint of (13). This yields

{
un+1 = u∗ + ∆t

(
− 1

ρGp + f
)

Dun+1 = 0
(15)

where D represents the discretization of the diver-
gence and G is the discrete gradient operator. Fi-
nally, Eq. (15) implies

D 1
ρ
Gp = D

(
1

∆t
u∗ + f

)
(16)

Equation (16) can again be solved using the PCG
method. It can be noted that solving (16) takes sig-
nificantly more computing time compared to solv-
ing (14) because the convergence of the iterative pro-
cess suffers from the highly discontinuous behavior
of the density ρ. The situation is even worse for rel-
atively large problems: to find the solution of (16)
requires the bulk of the computations in the whole
pressure-correction method. Therefore, we aim at
solving (16) efficiently in this paper. Further de-
tails about the pressure-correction method applied
to bubbly flows can be found in, e.g., [5,6].

International Journal for Multiscale Computational Engineering

FAST DEFLATION METHODS 19

At the boundaries of the domain, we impose
Dirichlet boundary conditions for the velocity. Be-
cause of the staggered grid, we do not have pressure
points at the boundaries of the domain. They are
also not required in the method because the veloc-
ity boundary conditions are included in the discrete
divergent operatorD in Eq. (16). It follows that pres-
sure Neumann boundary conditions should hold
implicitly. In this case, the pressure is a relative
variable because the differences in pressure and not
the absolute values are meaningful in the pressure-
correction method.

Equation (16) can be written as a symmetric
and positive semidefinite (SPSD) linear system [cf.
Eq. (1)]

Ax = b, A ∈ Rn×n (17)

where A is singular. Assumption 5 will hold in our
bubbly flow applications.

Assumption 5. A1n = 0n and bT 1n = 0, and the
algebraic multiplicity of the zero-eigenvalue of A is one.

The solution x of Eq. (17) is determined up to a
constant, i.e., if x1 is a solution then x1 + c1n with
an arbitrary c ∈ R is also a solution. This situation
presents no real difficulty for the iterative solver, as
long as b ∈ Col(A).

We consider two-phase bubbly flows with, for
instance, air (low-density phase) and water (high-
density phase). In this case, ρ is piecewise constant
with a contrast, δ > 0, which is the ratio of the two
densities, i.e.,

ρ =
{

ρ0 = 1, x ∈ Λ0

ρ1 = δ, x ∈ Λ1
(18)

where Λ1 is the low-density phase, namely, bubbles
in Ω, and Λ0 is the high-density phase, namely, the
fluid domain around these bubbles.

5. NUMERICAL EXPERIMENTS

In this section, we present results for some numer-
ical experiments with 3D bubbly flow problems,
which will illustrate the theoretical results obtained
in Section 3. The computations are performed on an
Intel Core 2 Duo (2.66 GHz) computer with a mem-
ory capacity of 8 GB. Moreover, the code is compiled
with FORTRAN g77 on LINUX.

We choose for a deflation subspace matrix Z con-
sisting of subdomain deflation vectors, which are
described in Section 5.1. The preconditioner M
is taken to be an incomplete Cholesky factoriza-
tion [25] based on A. For both DPCG and ADPCG,
the singular coarse systems Ev = w are solved us-
ing PCG with again the incomplete Cholesky factor-
ization preconditioner, but without deflation. Sec-
tion 5.2 is devoted to the bubbly flow problem with
eight air bubbles in water, and subsequently, the
problem with a lot of small air bubbles in water is in-
vestigated in Section 5.3. The corresponding geome-
tries of these test problems can be found in Fig. 1. It
is known (see, e.g., [17]) that more bubbles in the
domain lead to a coefficient matrix that is more ill-
conditioned, and therefore, the corresponding prob-
lem is more difficult to solve. Finally, we discuss the
results in more detail in Section 5.4.

X Y

Z

X Y

Z

(a) (b)

FIGURE 1. Geometry of bubbly flow test problems. a) Test problem 1: 8 air bubbles in water and b) Test prob-
lem 2: 27 air bubbles in water

Volume 6, Number 1, 2008

20 TANG AND VUIK

5.1 Construction of Z

As mentioned in Section 2, deflation subspace ma-
trix Z remains to be specified. In the ideal case
with respect to convergence, Z should consist of
eigenvectors associated with the smallest eigenval-
ues of M−1A, so that those unfavorable eigenval-
ues are eliminated from the spectrum. However, the
computation of these eigenvectors can be very ex-
pensive, and in addition, these dense vectors might
be inefficient in use because they require, relatively,
much memory and lead to dense matrices AZ and
E. Therefore, we will use sparse subdomain defla-
tion vectors, that appear to be good approximations
of those eigenvectors.

Let the open domain Ω be divided into subdo-
mains Ωj , j = 1, 2, . . . , k, such that Ω = ∪k

j=1Ωj

and Ωi ∩ Ωj = ∅ for all i 6= j. The discretized do-
main and subdomains are denoted by Ωh and Ωhj ,
respectively. Then, for each Ωhj with j = 1, 2, . . . , k,
we introduce a subdomain deflation vector, zj , as
follows:

(zj)i :=
{

0, xi ∈ Ωh \ Ωhj

1, xi ∈ Ωhj

where xi is a grid point in the discretized domain,
Ωh. Then, for k > 1, we define the deflation sub-
space matrices Zk−1 and Z as follows:

Zk−1 := [z1 z2 · · · zk−1]
Z := [Zk−1 zk] = [z1 z2 · · · zk] (19)

Obviously, Z consists of disjunct orthogonal
piecewise-constant vectors. Therefore, Z is sparse,
so that it can be stored efficiently in memory and
computations with Z can be carried out at low cost
(see [11] Section 3) for more details. Because of the
construction of Z and Zk−1, coarse matrix E is sin-
gular, while coarse matrix Ek−1 := ZT

k−1AZk−1 ap-
pears to be nonsingular.

If one replaces zk by 1n, then it can be proven that
it leads to the same deflation matrix P (see [11] Sec-
tion 4.2). Hence, Assumption 4 can be satisfied in
our case, because A1n = 0n follows from Assump-
tion 5. Then, it follows from Lemma 1 that the use
of both deflation subspace matrices given in (19) re-
sults in the same P . Therefore, we do not lose gener-
ality in the numerical experiments, if we restrict our-
selves to iterative solvers for coarse systems based
on Z rather than Zk−1. Moreover, Theorems 4–6 can

now also be applied. For example, we know from
Theorem 4 that the success of the deflation method
is determined by the space spanned by subdomain
deflation vectors instead of the separate vectors. Of
course, the space should approximate the eigenvec-
tors associated with small eigenvalues of M−1A in
order to obtain an effective deflation method. For
our bubbly flow applications, this can be done us-
ing the subdomain deflation vectors. It appears that
the subdomains can be chosen independently of the
density field, as long as the number of deflation vec-
tors k is sufficiently large (see [17] Section 7).

5.2 Test Problem 1

We consider the problem setting as given in Sec-
tion 4, where the test problem is taken with eight
airbubbles in the unit domain filled with water. In
this case, the ratio between the two phases is 103

[i.e., δ = 10−3 is chosen in Eq. (18)]. The bubbles are
spheres with a constant radius of 0.10 [see Fig. 1a].

We examine PCG and the deflation methods
DPCG and ADPCG for different parameters of
εinner and number of deflation vectors k on a grid of
n = 1003. The stopping criterion is the norm of the
relative residuals (i.e., ||rj ||2/||r0||2, should be below
a tolerance εouter = 10−8). The results of this test
problem can be found in Table 1.

From Table 1, we see in all test cases that DPCG
and ADPCG are always faster and require fewer
iterations compared to PCG, which confirms The-
orem 6. Both deflation methods require approxi-
mately the same number of iterations for fixed k,
which is as expected from Theorem 8. Moreover,
it can be observed that increasing the number of de-
flation vectors k leads to a reduction of the number
of iterations for both DPCG and ADPCG. This is in
agreement with Theorem 5. Furthermore, we have
expected that ADPCG is more stable than DPCG
due to Theorem 8. This is indeed the case: when
εinner ≤ 10−8, DPCG did not converge anymore,
while ADPCG still shows convergence, provided
that εinner ≤ 10−4. Finally, we note there is an
optimum considering the computing time for spe-
cific k and corresponding εinner. For DPCG, this is
k = 203 and εinner = 10−10, whereas k = 203 and
εinner = 10−4 are the optimal values in the case of
ADPCG. Hence, it can be seen that ADPCG can be
faster than DPCG.

International Journal for Multiscale Computational Engineering

FAST DEFLATION METHODS 21

TABLE 1. Results for DPCG and ADPCG to solve the linear system Ax = b with n = 1003, corresponding to Test
Problem 1. PCG requires 390 iterations and 37.0 s to converge. Iter = number of iterations of the outer process, CPU =
the required computing time (in seconds) including the setup time of the methods, N/C = no convergence within 250
iterations

k = 53 k = 103 k = 203 k = 253

Method εinner Iter. CPU Iter. CPU Iter. CPU Iter. CPU
DPCG 10−10 151 17.9 66 8.5 32 5.8 28 6.5

10−8 N/C – N/C – N/C – N/C –
ADPCG 10−10 140 20.2 60 9.2 30 7.2 27 10.1

10−8 140 20.1 60 9.1 30 6.7 27 9.4
10−6 140 20.1 60 9.1 30 6.3 27 8.2
10−4 141 20.2 60 9.0 29 5.6 29 7.0
10−2 N/C – 194 28.2 N/C – N/C –

5.3 Test Problem 2

We repeat the same experiment as performed in the
previous subsection, but we now take n = 1503 and
27 airbubbles, which have a smaller constant radius
of 0.05 (see Fig. 1b). The results of this experiment
can be found in Table 2.

First, it can be observed in Table 2 that both
DPCG and ADPCG require more iterations and
computing time, compared to the results as given
for Test Problem 1. This is due to a combination of
the increased grid sizes n and an increased num-
ber of bubbles. It appears that if k is sufficiently
large, then the number of iterations remains approx-
imately the same for varying number of bubbles.
For varying grid sizes, the number of iterations can
only be kept constant, if k is chosen proportionally
to n. More details about experiments with varying
grid sizes and the number of bubbles can be found
in [11,12].

From Table 2, we see that the conclusions drawn
in the previous subsection also hold in this test prob-
lem. In fact, the results in Table 2 emphasize these
conclusions. For example, both DPCG and ADPCG
are faster than PCG as long as they converge. We
note that the benefit of using a larger εinner in AD-
PCG can be huge for large k. In addition, the op-
timal choices are k = 153 and εinner = 10−10 for
DPCG, and k = 253 and εinner = 10−4 for ADPCG.
In contrast to Test Problem 1, it can be observed that
the optimal DPCG is always faster than ADPCG in
this test problem.

5.4 Discussion of the Results

From the above results of Test Problems 1 and 2, it
can be observed that the optimal values are ω =
10−2 for DPCG and ω = 104 for ADPCG with
respect to Eq. (11). These still hold if we vary
εouter. Apparently, DPCG can deal with nearly zero
eigenvalues, as long as they are very small, so that
they are treated as zero eigenvalues by the method.
In addition, ADPCG is faster than DPCG in some
cases, because a larger εinner can be taken while the
number of outer iterations remain approximately
the same. This is rather surprising, because no extra
orthogonalization steps considering the search di-
rections or residuals have been added to the itera-
tive process, in order to preserve the known orthog-
onality properties of CG.

We investigate the inner-outer iterations in more
detail. Note first that each outer iteration of AD-
PCG requires two inner solves, whereas DPCG only
needs one [cf. Eq. (3) and (10)]. Therefore, ADPCG
can only be more efficient, if each inner solve of this
method can be performed at least twice as fast as
DPCG, which is the case for sufficiently large εinner.
This is illustrated in Fig. 2, which shows a typi-
cal convergence of the residuals of an inner solve,
within an outer iteration of ADPCG for k = 253. It
can be observed that ADPCG can only be faster than
DPCG, if the inner solves would be reduced from
142 to at most 71. This means that, in theory, one
has to perform the inner solves with an accuracy of
approximately εinner ≤ 10−5, which can indeed be
achieved in ADPCG (see Tables 1 and 2). Moreover,
we remark that if k becomes relatively large, then

Volume 6, Number 1, 2008

22 TANG AND VUIK

TABLE 2. Results for DPCG and ADPCG to solve the linear system Ax = b with n = 1503, corresponding to Test
Problem 2. PCG requires 543 iterations and 177.6 s to converge

k = 153 k = 253 k = 503

Method εinner Iter. CPU Iter. CPU Iter. CPU
DPCG 10−10 53 24.1 44 25.1 24 82.1

10−8 N/C – N/C – N/C –
ADPCG 10−10 50 27.6 41 32.5 22 130.4

10−8 50 27.2 41 30.7 22 116.0
10−6 50 26.7 42 29.3 22 86.2
10−4 52 27.4 43 27.0 24 58.2
10−2 N/C – N/C – N/C –

20 40 60 80 100 120 140
10

−10

10
−8

10
−6

10
−4

10
−2

Typical convergence of the residuals of the inner solves

FIGURE 2. Convergence of the residuals during an in-
ner solve at one iteration of ADPCG with k = 253 (Test
Problem 2). The plots are similar for the other outer itera-
tions of the same test case, since one applies the inaccurate
solves on the same matrix E

matrix E would also be very large. Then, it is in-
evitable to use DPCG or ADPCG instead of PCG in
order to solve Ev = w efficiently. In this case, we
would obtain an iterative method with a multilevel
preconditioning.

Next, we examine the residuals of the outer itera-
tions to see what happens if a method does not con-
verge (see Fig. 3). From Fig. 3, we can observe that
if DPCG shows no convergence, it even diverges.
This is in contrast to ADPCG, whose residuals are
still slowly decreasing. This is an extra advantage
of ADPCG. Although it might not be the fastest

method, it gives somewhat more stable residuals in
case it converges slowly.

The reason that ADPCG does not work for
εinner ≤ 10−4 is twofold. On the one hand, solv-
ing Ev = w with low accuracy can be interpreted
as computing v = E+w with a strongly perturbed
matrix E+. As concluded in Section 3.4, the associ-
ated spectrum of ADPCG remains the same if E+ is
slightly perturbed. Large perturbations of E+ can
lead to the appearance of relatively small eigenval-
ues in the spectrum, which cause the slow conver-
gence of the method. On the other hand, as men-
tioned in Section 3.4, the CG algorithm cannot deal
with (strongly) varying preconditioners because or-
thogonal properties of the residuals and search di-
rections are not guaranteed anymore. This problem
might be solved by using flexible CG instead of CG,
but experiments show that this does not lead to bet-
ter results. In Fig. 4, the results can be found for
one test case of Test Problem 1, where ADPCG is
used with both original CG and flexible CG without
restart or truncation strategies, denoted by original
ADPCG and flexible ADPCG, respectively. It can
be readily noted in Fig. 4 that the flexible variant
might lead to a convergent method (see the case of
εinner = 10−4), but it requires too many iterations to
be an effective method. The situation will be even
worse, if restart or truncation strategies would be
added.

6. CONCLUSIONS

Some new theoretical results are obtained for the de-
flation method applied to singular systems. More-
over, some insights into stabilizing the deflation
method and its corresponding inner-outer itera-

International Journal for Multiscale Computational Engineering

FAST DEFLATION METHODS 23

50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

Convergence of the residuals of the outer solves of DPCG

ε
inner

=10−8

ε
inner

=10−10

50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

Convergence of the residuals of the outer solves of ADPCG

ε
inner

=10−2

ε
inner

=10−4

(a) (b)
FIGURE 3. Convergence of the residuals of the outer iterations from DPCG and ADPCG with k = 253 (Test Problem
2). a) DPCG, b) ADPCG

50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

Convergence of the residuals of the outer solves of Original ADPCG

ε
inner

=100

ε
inner

=10−2

ε
inner

=10−4

50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

Convergence of the residuals of the outer solves of Flexible ADPCG

ε
inner

=100

ε
inner

=10−2

ε
inner

=10−4

(a) (b)
FIGURE 4. Convergence of the residuals of the outer iterations from ADPCG with k = 253 (Test Problem 1). a) Orig-
inal ADPCG, b) Flexible ADPCG

tions are given. The numerical experiments con-
firm the theoretical results and show that the defla-
tion method can indeed be stabilized without losing
much efficiency. The experiments emphasize that
both deflation methods are very effective and fast
solvers for the pressure equation derived from two-
phase bubbly flow problems.

ACKNOWLEDGMENTS

Part of this research has been funded by the Dutch
BSIK/BRICKS project.

REFERENCES

1. Coyajee, E. R. A., A front-capturing method
for the numerical simulation of dispersed
twophase flow. Ph.D. thesis, Delft University of
Technology, 2007.

2. de Sousa, F. S., Mangiavacchi, N., Nonato, L. G.,
Castelo, A., Tome, M. F., Ferreira, V. G.,
Cuminato, J. A., and McKee, S., A front-
tracking/front-capturingmethod for the simu-
lation of 3d multi-fluid flows with free surfaces.
J. Comput. Phys. 198:469-499, 2004.

Volume 6, Number 1, 2008

24 TANG AND VUIK

3. Hua, J., and Lou, J., Numerical simulation of
bubble rising in viscous liquid. J. Comput. Phys.
222:769-795, 2007.

4. Sussman, M., Smith, K. M., Hussaini, M. Y.,
Ohta, M., and Zhi-Wei, R., A sharp interface
method for incompressible two-phase flows. J.
Comput. Phys. 221:469-505, 2007.

5. Van der Pijl, S. P., Segal, A., and Vuik, C., Mod-
elling of three-dimensional multi-phase flows
with a mass-conserving level-set method. Re-
port 06-10, Delft University of Technology,
Delft Institute of Applied Mathematics, Delft,
2006.

6. Van der Pijl, S. P., Segal, A., Vuik, C., and Wes-
seling, P., A mass-conserving level-set method
for modelling of multi-phase flows. Int. J. Nu-
mer. Methods Fluids. 47:339-361, 2005.

7. Nicolaides, R. A., Deflation of conjugate gradi-
ents with applications to boundary value prob-
lems. SIAM J. Numer. Anal. 24:355-365, 1987.

8. Vuik, C., Segal, A., and Meijerink, J. A., An
efficient preconditioned CG method for the
solution of a class of layered problems with
extreme contrasts in the coefficients. J. Comp.
Phys. 152:385-403, 1999.

9. Vuik, C., Segal, A., Meijerink, J. A., and Wi-
jma, G. T., The construction of projection vec-
tors for a Deflated ICCG method applied to
problems with extreme contrasts in the coeffi-
cients. J. Comp. Phys. 172:426-450, 2001.

10. Nabben, R., and Vuik, C., A comparison of
Deflation and Coarse Grid Correction applied
to porous media flow. SIAM J. Numer. Anal.
42:1631-1647, 2004.

11. Tang, J. M., and Vuik, C., Efficient deflation
methods applied to 3-D bubbly flow problems.
Elec. Trans. Numer. Anal. 26:330-349, 2007.

12. Tang, J. M., and Vuik, C., On deflation and sym-
metric positive semi-definite matrices. J. Com-
put. Appl. Math. 206:603-614, 2007.

13. Trottenberg, U., Oosterlee, C. W., and
Schuller, A., Multigrid. Academic Press,
London, 2000.

14. Wesseling, P., An Introduction to Multigrid Meth-

ods. Wiley, Chichester, 1992 corrected reprint,
R.T. Edwards, Inc., Philadelphia, 2004.

15. Nabben, R., and Vuik, C., A comparison of de-
flation and the balancing preconditioner. SIAM
J. Sci. Comput. 27:1742-1759, 2006.

16. Vuik, C., Nabben, R., and Tang, J. M., Deflation
acceleration for domain decomposition precon-
ditioners. In Wesseling, P., Oosterlee, C. W., and
Hemker, P., ed., Proc. of 8th European Multi-
grid Conference, Sept. 27–30, 2005, Schevenin-
gen, The Netherlands. TU Delft, 2006.

17. Tang, J. M., and Vuik, C., New variants of de-
flation techniques for bubbly flow problems. J.
Numer. Anal. Indust. Appl. Math. 2:227-249, 2007.

18. Golub, G. H., and van Loan, C. F., Matrix Com-
putations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

19. Tang, J. M., Nabben, R., Vuik, C., and Er-
langga, Y. A., Theoretical and numerical com-
parison of various projection methods derived
from deflation, domain decomposition and
multigrid methods. Report 07-04, Delft Uni-
versity of Technology, Delft Institute of Applied
Mathematics, Delft, 2007.

20. Mandel, J., Balancing domain decomposition.
Comm. Numer. Meth. Eng. 9:233-241, 1993.

21. Notay, Y., Flexible conjugate gradients. SIAM J.
Sci. Comput. 22:1444-1460, 2000.

22. Golub, G. H., and Overton, M. L., The conver-
gence of inexact Chebyshev and Richardson it-
erative methods for solving linear systems, Nu-
mer. Math. 53:571-593, 1988.

23. Golub, G. H., and Ye, Q., Inexact precondi-
tioned conjugate gradient method with inner-
outer iteration. SIAM J. Sci. Comput. 21:1305-
1320, 2000.

24. Van Kan, J., A second-order accurate pressure-
correction scheme for viscous incompressible
flow. SIAM J. Sci. Stat. Comput. 7:870-891, 1986.

25. Meijerink, J. A., and van der Vorst, H. A., An
iterative solution method for linear equations
systems of which the coefficient matrix is a
symmetric M-matrix. Math. Comp. 31:148–162,
1977.

International Journal for Multiscale Computational Engineering

