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Summary

A deflated preconditioned conjugate gradient (DPCG) method was implemented for
solving iteratively the system of hybrid single-step single nucleotide polymorphism Best
Linear Unbiased Prediction (ssSNPBLUP). Using a small dataset, we showed the presence of
large unfavourable eigenvalues associated with a poorly-conditioned preconditioned
coefficient matrix of hybrid ssSNPBLUP. These large unfavourable eigenvalues were deflated
with the DPCG method, which improved the conditioning and reduced the number of
iterations by up to a factor 6, in comparison to the traditionally used PCG method.
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Introduction

Single-step genomic evaluations simultaneously combine phenotypic and pedigree
information of genotyped and non-genotyped animals with genomic information. Currently,
national datasets may contain up to 1 million genotypes composed of several thousands of
single nucleotide polymorphisms (SNP). In addition to single-step genomic Best Linear
Unbiased Prediction (ssGBLUP) that fits breeding values as a random effect (Legarra et al.,
2014), different equivalent models that explicitly fit SNP covariates as random effects (single-
step SNPBLUP; ssSNPBLUP), were proposed to deal with such large datasets (Legarra and
Ducrocq, 2012; Fernando et al., 2016; Mäntysaari and Strandén, 2016; Taskinen et al., 2017).

An iterative method that is usually implemented in animal breeding for solving large
systems of linear equations, is the preconditioned conjugate gradient (PCG) method (Strandén
and Lidauer, 1999). It seems therefore a logical choice for solving systems of ssSNPBLUP.
However, in comparison to ssGBLUP, PCG convergence issues were reported for different
types of ssSNPBLUP (Manzanilla Pech, 2017; Taskinen et al., 2017). Therefore, the primary
aim of this study was to compare properties of the coefficient matrices of ssSNPBLUP and
ssGBLUP, and to relate this to observed convergence patterns. The second aim was to
implement a deflated PCG method (DPCG) for solving ssSNPBLUP.

Material and methods

Hybrid ssSNPBLUP

In the following, the subscripts g and n refer to genotyped and non-genotyped animals,
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respectively. In this study, we investigated a hybrid ssSNPBLUP model that fits SNP effects
(g) and a residual polygenic effect (ag) for genotyped animals, and an additive genetic effect
(un) for the non-genotyped animals (Legarra and Ducrocq, 2012; Fernando et al., 2016;
Mäntysaari and Strandén, 2016). The univariate mixed model for hybrid ssSNPBLUP is:

(1)
where y is the vector of records, b is the vector of fixed effects, and e is the vector of
residuals. The matrices X, Wn, and Wg are incidence matrices relating records to the
corresponding effects. The matrix Z is the matrix of SNP genotypes centered by their
observed means. Without loss of generality, we assumed diagonal (co)variance structures for
the residual and SNP effects.

The system of equations of the hybrid ssSNPBLUP model (1) is as follows:

where γ is the ratio of the residual variance (σe2) and the additive genetic variance (σu2); w is
the proportion of residual polygenic effect (0.05 in this study); m is twice the sum of the
products between the allele frequency and its counter-part for each SNP; I is an identity
matrix; Ann, Agn, Ang, and Agg are submatrices of the inverse of the pedigree relationship
matrix A-1; and the matrix Q is equal to Agn(Ann)-1Ang.

PCG and effective spectral condition number

In animal breeding, systems of linear equations, Cx = b, are usually solved iteratively
using the PCG method (Strandén and Lidauer, 1999; see Table 1 for algorithm) as:
M-1Cx =M-1b (2)
whereM-1 is the preconditioner,C is the coefficient matrix, x is the vector of solutions, and b
is the right-hand-side vector.

The effective spectral condition number of a positive semi-definite matrix (e.g., C),
denoted κ(C), is defined as the ratio of its largest and smallest positive eigenvalues (Nabben
and Vuik, 2006). Because convergence of CG methods highly depends on the effective
condition number of the coefficient matrix, the preconditioner M-1 aims to improve the
condition number from κ(C) to κ(M-1C). The smaller κ(M-1C) is, the more well-conditioned
M-1C is, which is expected to result in faster convergence of the PCG method.

Deflated PCG

The DPCG method is a two-level PCG method to iteratively solve ill-conditioned linear
systems. The DPCG method treats the unfavourable eigenvalues of the set of eigenvalues,
called spectrum, of M-1C that may remain after preconditioning C (Nicolaides, 1987; Vuik et
al., 1999). In DPCG, the preconditioned system (2) is transformed to the following system:
M-1PCx =M-1Pb
where P = I - CZd(Zd’CZd)-1Zd’ is a second-level preconditioner, called deflation matrix, and
Zd is called deflation-subspace matrix.

The deflation-subspace matrix Zd contains k columns, called ‘deflation vectors’, that
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should approximate the same space as the span of the unfavourable eigenvectors. A proposed
approach to set up deflation vectors is the subdomain deflation approach (Frank and Vuik,
2001). This approach divides the computational domain

ℝ

n (with x

∊ ℝ

n) into k subdomains,
with each ith (i = 1, ..., k) subdomain corresponding to the ith deflation vector. An entry of the
deflation vector zi is equal to 1 if the corresponding entry is included in the ith subdomain;
otherwise the entry of zi is equal to 0. Therefore, each row of Zd contains only one non-zero
element. Advantages of the subdomain deflation approach are that Zd is sparse, that additional
computations for DPCG that involve the deflation matrix (in comparison to PCG) can be
implemented efficiently, and that it gives good results if k is large enough (Frank and Vuik,
2001). An algorithm for DPCG is given in Table 1.

Data and model

Datasets and variance components were extracted from the Dutch single-step genomic
evaluation for ovum pick-up (OPU) and embryo transfer of dairy cattle (Cornelissen et al.,
2017). After extraction, the data file included information for 61,592 OPU sessions from
4,109 animals, and the pedigree included 37,021 animals. Genotypes of 6,169 animals
without phenotype were available. Due to computational limits, genotypes included 9,994
segregating SNP randomly sampled from (imputed) 50K SNP genotypes. The univariate
mixed model included random effects (additive genetic, permanent environmental, and
residual), fixed covariables (heterosis and recombination), and fixed cross-classified effects
(herd-year, year-month, parity, age (in months), technician, assistant, interval, gestation,
session, and protocol).

Statistical analyses

The hybrid ssSNPBLUP was compared against ssGBLUP. Both systems of hybrid
ssSNPBLUP and ssGBLUP were solved using the PCG method. Additionally, the system of
hybrid ssSNPBLUP was also solved using the DPCG method with different subdomain
decompositions. For setting up the deflation-subspace matrix Zd, we divided the hybrid
ssSNPBLUP domain as follows: (1) all cross-classified fixed effects were included in the
same subdomain, to avoid singular Zd’CZd; (2) covariables and random effects were included
in their own subdomain; and (3) each set of m consecutive SNPs were included in a same
subdomain. Sets of m = 1, 5, 50, and 200 SNPs were used. For both PCG and DPCG
methods, a Jacobi preconditioner, defined as M = diag(C), was used (Strandén and Lidauer,
1999). All systems were iterated until squared relative residual norm reached criteria of 10-12.

The spectrum of M-1C of ssGBLUP, of M-1C of hybrid ssSNPBLUP, and of M-1PC of
hybrid ssSNPBLUP with 1 SNP per subdomain, were computed using Intel(R) Math Kernel
Library (MKL) 11.3 subroutines. To avoid expensive computation of eigenvalues, only the
smallest and largest positive eigenvalues of M-1PC of hybrid ssSNPBLUP with 5, 50, and
200 SNPs per subdomain were estimated using the Lanczos algorithm based on information
obtained from the PCG method (Paige and Saunders, 1975). The different κ(M-1C) and κ(M-

1PC) were computed for comparing the different systems.

Results and discussion

The number of equations was equal to 41,949 for ssGBLUP and to 51,943 for hybrid
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ssSNPBLUP. Figure 1 shows the spectrum of M-1C of ssGBLUP and of hybrid ssSNPBLUP,
and the spectrum of M-1PC of hybrid ssSNPBLUP with 1 SNP per subdomain. All
eigenvalues lower than 10-10 were set to 10-10, and were considered as zero eigenvalues.
Similar patterns for the different spectra were observed. The smallest positive eigenvalues of
the differentM-1C andM-1PC were equal to 1.1*10-4, whatever the model or the definition of
subdomains. The largest eigenvalue of M-1C was equal to 11.9 for ssGBLUP, and to 181.0 for
hybrid ssSNPBLUP (Table 2). The increase of the largest eigenvalues can therefore be
attributed to the additional SNP equations fitted in hybrid ssSNPBLUP. When deflation was
applied, the largest eigenvalue of M-1PC varied from 6.0 with 1 or 5 SNPs per subdomain to
99.4 with 200 SNPs per subdomain. Figure 1 also shows that the largest eigenvalues of M-1C
of hybrid ssSNPBLUP disappeared from the spectrum of M-1PC. These results show that the
unfavourable largest eigenvalues were removed from the spectrum of M-1C of hybrid
ssSNPBLUP, without affecting the rest of the spectrum. The deflation vectors spanned
thereby approximately the same space as the span of the eigenvectors corresponding to the
largest eigenvalues of M-1C. Consequences of deflation were that the condition number of
hybrid ssSNPBLUP decreased from 1.7*106 to between 5.4*104 with 1 SNP per subdomain
and 9.3*105 with 200 SNPs per subdomain. Smaller condition numbers means faster
convergence for a CG solver.

All iterative solvers, PCG and DPCG, converged to the same solutions for all linear
systems of ssGBLUP and hybrid ssSNPBLUP. When the PCG method was used, the number
of iterations to reach convergence for hybrid ssSNPBLUP was more than 5 times higher than
the number of iterations for ssGBLUP (Table 2; Figure 2). However, when the DPCG method
with 1 or 5 SNPs per subdomain was used, the number of iterations decreased by a factor 6,
and was slightly less than the one for ssGBLUP. Fifty and 200 SNPs per subdomain also led
to a decrease of the number of iterations by a factor 1.25 and 1.70, respectively. Decreases of
number of iterations with DPCG were in agreement with the condition numbers (Table 2).
Figure 2 illustrates convergence by iteration for the PCG and DPCG methods. A flat pattern
is observed for the PCG method applied on hybrid ssSNPBLUP. The DPCG method allowed
to reduce this flat pattern to finally observe a pattern similar to the one of ssGBLUP.

The reduction of the number of iterations by the DPCG method can be performed at a
relatively low additional computational cost, compared to the decrease of number of
iterations, because subdomain deflation allows the use of sparse matrices (e.g., Zd) and
parallelisation. The DPCG method could be also implemented for other ssSNPBLUP models
for which similar convergence issues were observed. Future studies will investigate the
DPCG method on large datasets and applied in multivariate models.

Conclusion

We implemented a DPCG method for solving iteratively a system of linear equations of
hybrid ssSNPBLUP. We showed that the DPCG method treated the largest unfavourable
eigenvalues of the preconditioned coefficient matrix, and reduced the number of iterations by
up to a factor 6, in comparison to the PCG method.
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Table 1. Algorithm for preconditioned conjugate gradient (PCG) and deflated PCG (DPCG)
methods1.

1. Select an initial guess x0; rinit= b - Cx0 ; r0= Ψrinit ;p-1=0 ; τ-1=1
2. for j = 0,..., until convergence
3. yj=M-1rj
4. τj = rj’ yj
5. βj= τj / τj-1
6. τj-1 = τj
7. pj= yj+ βjpj-1
8. wj = ΨC pj
9. αj = rj’ yj / pj’ wj

10. xj+1= xj + αj pj
11. rj+1= rj - αj wj

12. end
13. xfinal = υ

1 For PCG: Ψ = I, υ = xj+1; For DPCG: Ψ = P, υ = Zd (Zd’CZd)-1Zd’b + P’xj+1.

Table 2. Largest eigenvalues and effective condition numbers (κ) of preconditioned (deflated)
coefficient matrices, and number of iterations to reach convergence.

Model Method1 Largest eigenvalue κ Number of iterations
ssGBLUP PCG 11.9 1.1*105 273
ssSNPBLUP PCG 181.0 1.7*106 1497

DPCG (200) 99.4 9.3*105 1195
DPCG (50) 40.5 3.8*105 880
DPCG (5) 6.0 5.4*104 233
DPCG (1) 6.0 5.4*104 240

1 Number of SNPs per subdomain are within brackets.

Figure 1. Eigenvalues of the preconditioned coefficient matrices of ssGBLUP and of
ssSNPBLUP, and of the preconditioned deflated coefficient matrix of ssSNPBLUP with 1 SNP
per subdomain.
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Figure 2. Square relative residual norms for ssGBLUP and ssSNPBLUP using the PCG
method and for ssSNPBLUP using the DPCG method. Number of SNPs per subdomain are
within brackets.
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