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Abstract--In a previous article [i], the eigenvalues of the elasto-plastic material matrix of a 
Drucker-Prager nonassociated soil model were analyzed with special attention to the occurrence of 
complex eigenvalues. The link between this analysis on material level to stress states which arise in 
a numerical computation is made in this article. @ 1999 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The relation between stresses and strains is set by the elasto-plastic material matrix. Complex 
eigenvalues of this matrix may cause difficulties in a numerical analysis. In previous work [1], 
the eigenvalues of the elasto-plastic material matrix were analyzed for orthotropic and isotropic 
plane-stress and plane-strain configurations. We found that  for isotropic materials the eigenvalues 
of the elasto-plastic matrix, set up with the Drucker-Prager yield function and a nonassociated 
flow rule, are always real. However, for orthotropic materials complex eigenvalues have been 
found. Here, we investigate how stresses that  cause complex eigenvalues in the material matrix 
relate to stresses computed in a numerical analysis. 

First, the previous work [1] is summarized in Section 2. In Section 3, the computational setup 
for a comparison with numerical computations is described. In the last section (Section 4), 
the stress states arising in three different examples of soil deformation are related to the stress 
states tha t  lead to complex eigenvalues of the material matrix. The examples discussed are for 
orthotropic plane-strain materials with no contraction. 

The numerical computations are performed with the finite element package DIANA [2] that is maintained and 
developed at TNO Building and Construction Research, Rijswijk, The Netherlands. 
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2. E I G E N V A L U E S  OF T H E  M A T E R I A L  M A T R I X  

A constitutive law describes the relation between stresses o. and strains e. The elastic response 
is described by Hooke's law: o. = Dee, whereas the total elasto-plastic response is given by 

DemnTDe 
& = Dep~, Dep -- De H + n T D e m  ' (1) 

in which H is a hardening parameter. The two vectors m and n are the direction of plastic 
flow and the normal to the yield surface, respectively. The Drucker-Prager yield surface is used 
to separate the stress states that  lead to an elastic response from those that  result in plastic 
deformation. The Drucker-Prager yield function reads 

f(o.i) = ~ - 3/2 + 
6 sin ¢ 6c cos ¢ 

3 - sin ~b p 3 - sin ~b -- 0. (2) 

/1,/2 are the first and second invariant of the stress matrix and are functions of 0.~, whereas 
p = I1/3 is the hydrostatic pressure [2]. Parameters c and ¢ are material parameters, namely the 
cohesion and the friction angle. The normal to the yield surface ni = o_/_ changes with a change 

Oai 

in friction angle ¢. The components of the direction of plastic flow are obtained from mi = i~7~, 
with g as f but with ¢ replaced by the dilatancy angle ¢ of the material. If ¢ = ¢ the normal 
to the yield surface equals the direction of plastic flow. Normally, soil is described better with a 
nonassociated flow rule, i.e., ¢ ~ ¢ and Dep, is therefore, nonsymmetric. 

In previous work [1], the eigenvalues of the elasto-plastic material matrix Dep have been in- 
vestigated for plane-stress and plane-strain orthotropic and isotropic materials. For orthotropic 
materials (with no elastic contraction) complex eigenvalues were found for certain stress states. 
We review briefly an example of an orthotropic plane-strain configuration. For a plane-strain 
configuration the first and second invariants of the stress matrix read [3] 

2 
I1 = o-xx + O'yy + o-zz, I2 ~ o'xxCryy -1- o-yyo'zz ~ f xxO'zz  -- o'xy, (3) 

and n is found by taking the appropriate derivatives of the yield function. Because elastic 
contraction is not included (v = 0), the elasticity matrix De is diagonal. The diagonal entries 
of De are the stiffness parameters for different orthogonal directions and the shear modulus. 
These are chosen equal 55, 60, 50, and 30 N/ram 2, respectively. The cohesion is chosen equal to 
0.0001 N/ram 2 and sin ¢ = 0.3. 

As a ring of the Drucker-Prager yield surface in three dimensions (a cone), we consider the circle 
that  lies in the plane that  has the hydrostatic axis as its normal. On the ring, the first and second 
invariant of the stress matrix are constant [4]. The eigenvalues of Dep are computed by varying 
o-xx and o.uu within the limit given by a fixed I1. The stress component o-zz then follows from 
this value of I1 and with the Drucker-Prager yield function (equation (2)) the second variant /2  
can be obtained as well as o-xy. Figure 1 is a plot of the three nonzero eigenvalues of Dep for 
/1 -- 0, where the holes denote complex eigenvalues that  appear in conjugate pairs. 

3. L I N K I N G  M A T E R I A L  A N D  N U M E R I C A L  S T R E S S E S  

Every intermediate equilibrium of a numerical analysis is defined by a stress state (four stresses 
in case of a plane strain configuration) and thus, relates to a particular value of I1. A value of/1 
defines a ring of the yield surface and a ring can be presented by a filled oval in the o-z~, o.yu space. 

2 The oval's center is the hydrostatic pressure p and its radius follows from the constraint that  o.~y 
must be positive. We would like to show the whole numerical process in one image, and thus, be 
able to relate the stress states of a numerical analysis to stresses that  lead to complex eigenvalues 
of the material matrix. Therefore, every stress state of an intermediate equilibrium is mapped 
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Figure 1. Eigenvalues of the elasto-plastic material matrix. Holes indicate complex 
eigenvalues. 

onto a reference oval defined by I~ = 0 and c* = 0.01, where the superscript * is used to indicate 
the reference values. As a consequence I~ = -12c 2 cos 2 ¢/(3 - sin ¢)2, see also equation (2). The 
angles ¢ and ~b are fixed during both material and numerical computations and equal 0.3 and 0.1, 
respectively. With the hydrostatic pressure p as center point, r(O) E [0, R(0)] and 0 E [0, 2~r] the 
description of the oval becomes 

axx = p + r c o s 0 ,  ay u = p + r s i n 0 ,  azz = p - r s i n 0 - r c o s 0 ,  (4) 

2 1 2  r2(1 + cos 0sin 0). (5) f f  x y  "=" ( T x x f f Y Y  -It ( Y x x f f  z z  -~  O ' y y f f  z z  - -  I 2  - -  3 - I 2  

From equation (5), it follows that  a2 u attains its maximum at r = 0 and vanishes when 

i ( I21 /3 -12 )  R . = i  - I ~  
r = (1 + cos0sin0) = R, (1 + cos0sin0)" (6) 

During the transformation to the reference state p and r change, but we keep 0 fixed. In this 
way, the stress values in the reference state can be computed from an arbitrary stress state via 

. ( ° = z  - p ) n *  , ( a y y  - p ) n *  , . . , 
a== - R , Cryy -- R ' azz = 11 - a== - ayv, (7) 

after which a~y can be computed from I~. The eigenvalues of the elasto-plastic matrix Dep are 
the same in the original state and in the reference state. That  is, the normals m,  n tha t  result 

0 in Dep are unchanged by the transformation. For example, n:  is obtained by evaluating ~ :  

2I~ - 3ayy - 3a;z 
n l  = + C, (8) 

2X/(I~) 2 - 3I~ 

with C = 2 sin ¢/(3 - sin ¢). Using equations (6) and (7) and I{' = O, it then follows that: 

- 3 ( a y y  + azz - 2 P ) v / ~  + C, (9) 

which can be simplified further, using equation (3), such that  

211 - 3 a y  u - 3azz 
n: -- 2V/~-:2- 3/2 + C. (I0) 

Elaborations for n2, n3, and n4 lead to similar relations. 
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Figure 2. Soil specimen configurations of (a) pure shear, (b) biaxial compression, 
and (c) borehole stability. 
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Figure 3. Stress' paths obtained with pure shear (o), biaxial compression (+) and 
borehole stability (o), mapped onto stress states of the Drucker-Prager yield surface. 
Holes denote stress states that yield complex eigenvalues of the material matrix. 

4.  E X A M P L E S  

In Section 2, eigenvalues were computed of the plane-strain orthotropic material matr ix with 
material properties that  lead to complex eigenvalues. This configuration is chosen as reference 
state onto which the stress states are mapped of the examples discussed in this section. The 
numerical computation is continued until the iterative solution procedure for fixed displacement 
increments [5] fails to converge. 

The first example is that  of pure shear, see Figure 2. In this test a rod is deformed under shear 
and is allowed to shorten, but not to bend. The stress states found by the numerical iterative 
procedure, are mapped onto the reference state according to the procedure described in Section 3. 
In Figure 3, the absolute value of the shear stress is plotted against the normal stresses crx=, auu 
for the reference configuration. The holes in the figure denote the areas where at least one of the 
three eigenvalues of the material matrix is complex (see also Figure 1). Each marker in Figure 3 
corresponds to an intermediate equilibrium state of the numerical computation. Even though 
the stresses lie close to the stress states associated to complex eigenvalues, none of the stresses is 
actually in this area. 
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The  second example is the biaxial compression test. The specimen is loaded on the top, 

supported at the bot tom,  and the sides are free (Figure 2). Because the sides of the specimen are 

free to move, the shear stress is zero during homogeneous deformation. In Figure 3, the stress 
path,  is therefore, si tuated on the outer border of the image in the axx, au~ space. As this figure 
shows, the stresses in this example remain far away from the critical zone. 

In the oil industry research is done on the stability of the borehole once the bore is taken out. 

This is modeled here with a quarter of a horizontal cross section of the soil around the borehole 
tha t  is loaded on the outer boundary. The computed stresses are si tuated close to the outer 

border in Figure 3. There is a large drop in value of the shear stress axv near to the side, and 

the shear stress in this example is of the same order as the normal stresses a~x, ayy. 

5. C O N C L U S I O N  

I t  was shown how the stresses tha t  yield plastic deformation according to the Drucker-Prager 

yield function can be related to stress states in a numerical computation.  This was done by 

a visualization in the normal stress space of one particular ring of the Drucker-Prager cone. 
If  two normal stresses are plotted against each other a filled oval evolves. The stresses of the 
numerical computat ion were mapped onto this oval and were related to the occurrence of complex 

eigenvalues of the elasto-plastic material  matrix. 
The  computat ional  setup discussed here provides a link between the stresses of a yield surface 

and those found in a numerical computation.  Stresses for which the constitutive law yields 

complex eigenvalues in the elasto-plastic material  matrix can thus be linked to the outcome of 
a numerical analysis and to possible computat ional  difficulties. In the three problems discussed 
here, the stresses found did not coincide with the stress states that  lead to complex eigenvalues 
in the elasto-plastic material  matr ix  but  this could happen in other problems. 
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