
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 06 - 15

A Note on the Numerical Simulation of
Kleijn’s Benchmark Problem

S. van Veldhuizen, C. Vuik, C.R. Kleijn

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2006



Copyright  2006 by Delft Institute of Applied Mathematics Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.



A Note on the Numerical Simulation of Kleijn’s

Benchmark Problem

S. van Veldhuizen∗ C. Vuik∗ C.R. Kleijn†

Abstract

In this study various numerical schemes for transient simulations of 2D laminar
reacting gas flows, as typically found in Chemical Vapor Deposition (CVD) reactors,
are proposed and compared. These systems are generally modeled by means of many
stiffly coupled elementary gas phase reactions between a large number of reactants
and intermediate species. The purpose of this study is to develop robust and efficient
solvers for the stiff reaction system, where as a first approach the velocity and tem-
perature fields are assumed to be given. Furhtermore, we neglect thermal diffusion
(Soret effect). In this paper we mainly focus on the performance of different time
integration methods, and their properties to successfully solve the transient problem.
Besides stability, which is important due to the stiffness of the problem, the preser-
vation of non-negativity of the species is crucial. It appears that this extra condition
on time integration methods is much more restrictive towards the time-step than
stability.

1 Introduction

This report is a continuation of the previous report [12], in which a ‘small’ Chemical
Vapor Deposition (CVD) problem was solved. In [12] four different (higher order) time
integration methods are compared in terms of efficiency for transient simulations running
into steady state. As iterative nonlinear solver we use the full Newton iteration, whereas
to solve linear systems a direct solver has been used. In this paper we will simulate instead
of simple CVD systems as has been done in [12], the well known benchmark problem of
Kleijn [8]. The transport and chemistry model used in this benchmark will be discussed
in the next sections, and can also be found in [8].

Chemical vapor deposition is extensively described in, for example, [3]. More informa-
tion on the mathematical model of CVD can be found in [5, 7, 6]. A shorter note on the
mathematical model of CVD is, for instance, [11, 12].
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2 Transport Model

The mathematical model describing the CVD process consists of a set of partial dif-
ferential equations with appropriate boundary conditions, which describe the gas flow, the
transport of energy, the transport of species and the chemical reactions in the reactor.

The gas mixture in the reactor is assumed to behave as a continuum. This assumption
is only valid when the mean free path of the molecules is much smaller than a characteristic
dimension of the reactor. For Knudsen numbers Kn < 0.01, where

Kn =
ξ

L
, (1)

the gas mixture behaves as a continuum. In (1) ξ is the mean free path length of the
molecules and L a typical characteristic dimension of the reactor. For pressures larger
than 100 Pa and typical reactor dimensions larger than 0.01 m the continuum approach
can be used safely. See, for example, [5].

Furthermore, the gas mixture is assumed to behave as an ideal and transparent gas1

behaving in accordance with Newton’s law of viscosity. The gas flow in the reactor is
assumed to be laminar (low Reynolds number flow). Since no large velocity gradients
appear in CVD gas flows, viscous heating due to dissipation will be neglected. We also
neglect the effects of pressure variations in the energy equation.

The composition of the N component gas mixture is described in terms of the dimen-
sionless mass fractions ωi = ρi

ρ
, i = 1, . . . , N , having the property

N
∑

i=1

ωi = 1. (2)

The transport of mass, momentum and heat are described respectively by the continuity
equation (3), the Navier-Stokes equations (4) and the transport equation for thermal energy
(5) expressed in terms of temperature T :

∂ρ

∂t
= −∇ · (ρv), (3)

∂(ρv)

∂t
= −(∇ρv) · v + ∇ ·

[

µ
(

∇v + (∇v)T
)

−
2

3
µ(∇ · v)I

]

−∇P + ρg, (4)

cp

∂(ρT )

∂t
= −cp∇ · (ρvT ) + ∇ · (λ∇T ) +

+∇ ·

(

RT

N
∑

i=1

D
T
i

Mi

∇fi

fi

)

+

N
∑

i=1

Hi

mi

∇ · ji

−

N
∑

i=1

K
∑

k=1

HiνikR
g
k, (5)

1By transparent we mean that the adsorption of heat radiation by the gas(es) will be small.
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with ρ gas mixture density, v mass averaged velocity vector, µ the viscosity, I the unit
tensor, g gravity acceleration, cp specific heat ( J

mol K
), λ the thermal conductivity ( W

m K
)

and R the gas constant. Gas species i has a mole fraction fi, a molar mass mi, a thermal
diffusion coefficient D

T
i , a molar enthalpy Hi and a diffusive mass flux ji. The stoichiometric

coefficient of the ith species in the kth gas-phase reaction with net molar reaction rate R
g
k

is νik.
We assume that in the gas-phase K reversible reactions take place. For the kth reaction

the net molar reaction rate is denoted as R
g
k

(

mole
m3 s

)

. In Section 3 the chemistry model is
discussed and in particular the net molar reaction rate will be defined.

The balance equation for the ith gas species, i = 1, . . . , N , in terms of mass fractions
and diffusive mass fluxes is then given as

∂(ρωi)

∂t
= −∇ · (ρvωi) −∇ · ji + mi

K
∑

k=1

νikR
g
k, (6)

where ji is the diffusive flux. The mass diffusion flux is composed of concentration diffusion
and thermal diffusion, e.g.,

ji = jCi + jTi . (7)

The first type of diffusion, jCi , occurs as a result of a concentration gradient in the sys-
tem. Thermal diffusion is the kind of diffusion resulting from a temperature gradient. For
a multicomponent gas mixture there are two approaches for the treatment of concentra-
tion diffusion, namely the full Stefan-Maxwell equations and an alternative approximation
derived by Wilke using effective diffusion coefficients, see [5]. In this paper, we use the ap-
proach of effective diffusion coefficients. Then, the species concentration equations reduce
to

∂(ρωi)

∂t
= −∇ · (ρvωi) + ∇ · (ρD

′
i∇ωi) + ∇ · (DT

i ∇(ln T )) +

+mi

K
∑

k=1

νikR
g
k, (8)

where D
′
i is an effective diffusion coefficient for species i and D

T
i the multi-component

thermal diffusion coefficient for species i.
The main focus of our research is on efficient solvers for the species equation(s) (8).

Typically the time scales of the slow and fast reaction terms differ orders of magnitude
from each other and from the time scales of the diffusion and advection terms, leading to
extremely stiff systems.

2.1 Simplified Model

In this paper we will solve the coupled system of N species equations (8), where N

denotes the number of gas-species in the reactor. Note that it suffices to solve the (N − 1)
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coupled species equations for all species except the carrier gas, where its mass fraction
ωcarrier gas will be computed via the property

N
∑

i=1

ωi = 1. (9)

For the moment we only focus on the development of efficient solvers for species equa-
tions, because solving the system of equations (3) - (5) is a rather trivial task in comparison
with solving the system of species equations (6). Therefore, we assume that both the veloc-
ity field, temperature field, pressure field and density field are given. To be more precise,
they are computed via using software developed by Kleijn [8].

With respect to the mass diffusion fluxes, we remark that the thermal diffusion flux
is omitted. The concentration mass diffusion fluxes are described by effective diffusion
coefficients as

jC
i = ρDi,He∇ωi, (10)

where, according to [8]
Di,He = ̟T ̺, (11)

and the fitting constants ̟ and ̺ as in Table 1.

Species ̟
[

m2

s K̺D

]

̺ Species ̟
[

m2

s K̺D

]

̺

H 1.94 × 10−8 1.67 Si2H2 3.67 × 10−9 1.67

H2 1.29 × 10−8 1.65 Si2H3 3.56 × 10−9 1.67

Si 2.91 × 10−9 1.75 H2SiSiH2 3.46 × 10−9 1.67

SiH 5.56 × 10−9 1.66 H3SiSiH 3.46 × 10−9 1.67

SiH2 4.95 × 10−9 1.67 Si2H5 3.35 × 10−9 1.67

SiH3 4.60 × 10−9 1.67 Si2H6 3.26 × 10−9 1.67

SiH4 4.28 × 10−9 1.67 Si3 2.23 × 10−9 1.75

Si2 2.47 × 10−9 1.75 Si3H8 2.64 × 10−9 1.67

Table 1: Fitted diffusion constants of the various species in the gas mixture in the simplified model

3 Gas Phase Reaction Model

In the region above the hot susceptor the reactive gas silane SiH4 decomposes into
disilane SiH2 and hydrogen gas H2. This gas phase reaction initiates a chain of homogeneous
reactions leading to the formation (and deformation) of silicon containing gases. Each of
these species may diffuse to the reacting surface and react to solid silicon.
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In this paper we have used the chemistry model by Coltrin et. al. [2], which is also
used in [8]. The gas mixture contains besides the carrier gas helium He also the species
given in Table 2.

Species Molar Mass [ kg

mole
] Species Molar Mass [ kg

mole
]

H 0.001008 Si2H2 0.058188

H2 0.002016 Si2H3 0.059196

Si 0.028086 H2SiSiH2 0.060204

SiH 0.029094 H3SiSiH 0.060204

SiH2 0.030102 Si2H5 0.061212

SiH3 0.031110 Si2H6 0.062219

SiH4 0.032118 Si3 0.084258

Si2 0.056172 Si3H8 0.092321

Table 2: Mole mass of the species in the gas mixture

The 26 reversible gas phase reactions in this model are listed in Table 3. Since different
species can act as reactant and as product, the gas phase can be written in the general
form

∑

reactants

‖ − νik‖Ai

k
g
k,forward

⇄

k
g
k,backward

∑

products

‖νik‖Ai. (12)

In (12) Ai represent the different gaseous species in the reactor chamber, k
g
k,forward the

forward reaction rate constant and k
g
k,backward the backward reaction rate constant. By

taking

νik > 0 for the products of the forward reaction
νik < 0 for the reactants of the forward reaction

and
‖νik‖ = νik and ‖ − νik‖ = 0 for νik ≥ 0
‖νik‖ = 0 and ‖ − νik‖ = |νik| for νik ≤ 0

equation (12) represents a general equilibrium reaction. The net reaction rate R
g
k for the

kth reaction is given by

R
g
k = R

g,forward
k − R

g,backward
k =

= k
g
k,forward

N
∏

i=1

(

Pfi

RT

)‖−νik‖

− k
g
k,backward

N
∏

i=1

(

Pfi

RT

)‖νik‖

. (13)

The forward reaction rate constants are fitted according to the Modified Law of Arrhe-
nius, i.e.,

k
g
k,forward(T ) = AkT

βke
−Ek
RT , (14)
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where the values of Ak, βk and Ek are listed in Table 3. The backward reaction rate
constants have to be calculated self consistently from the forward reaction rate constants
and reaction thermo-chemistry as

k
g
k,backward(T ) =

k
g
k,forward(T )

K
g
k

(

RT

P 0

)

P

i νik

, (15)

with K
g
k the reaction equilibrium constant given by

K
g
k(T ) = e−

∆H0
k
(T )−T∆S0

k
(T )

RT , with (16)

∆H0
k(T ) =

N
∑

i=1

νikH
0
i (T ), and, (17)

∆S0
k(T ) =

N
∑

i=1

νikS
0
i (T ). (18)

3.1 Simplified Chemistry Model

Instead of computing the backward reaction rate constants via (15) - (18), we use,
following [8], approximate temperature fits for the equilibrium constants of the form

K
g
k(T ) = Ak,eqT

βk,eqe
−Ek,eq

RT . (19)

The values for Ak,eq, βk,eq and Ek,eq can be found in Table 4, which is taken from [8].

4 Surface Reaction Model

At the reacting surface S irreversible reactions take place, such that gaseous reactants
will be transformed into solid and gaseous reaction products. The reactions that take place
are of the form

N
∑

i=1

‖ − σis‖Ai

RS
s−→

N
∑

i=1

‖ − σis‖Ai +
M
∑

j=1

χjsBj , (20)

where Ai, i = 1, . . . , N , is a gaseous reactant, and Bj , j = 1, . . . , M , a solid reaction
product. In (20) σis and χjs are the stoichiometric coefficients for the gaseous and solid
species for surface reaction s, where s = 1, . . . , S. For the definition of ‖σis‖ the same
convention as in Section 3 has been taken.

In the problem that we discuss in this paper solid silicon atoms Si are deposited on the
wafer surface. Deposition of the solid silicon Si (s) is due to one of the surface reactions:

SinH2m

RS
SinH2m−→ n Si (s) + m H2 (g), (21)

SinH2m+1

RS
SinH2m+1
−→ n Si (s) + m H2 (g) + H (g), (22)
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k Reaction Ak (-) βk (-) Ek ( kJ
mol

)

1 SiH4 ⇋ SiH2 + H2 1.09 × 1025 −3.37 256

2 SiH4 ⇋ SiH3 + H 3.69 × 1015 0.0 390

3 Si2H6 ⇋ SiH4 + SiH2 3.24 × 1029 −4.24 243

4 SiH4 +H ⇋ SiH3 + H2 1.46 × 107 0.0 10

5 SiH4 +SiH3 ⇋ Si2H5 + H2 1.77 × 106 0.0 18

6 SiH4 +SiH ⇋ Si2H3 + H2 1.45 × 106 0.0 8

7 SiH4 +SiH ⇋ Si2H5 1.43 × 107 0.0 8

8 SiH2 ⇋ Si + H2 1.06 × 1014 −0.88 189

9 SiH2 + H ⇋ SiH + H2 1.39 × 107 0.0 8

10 SiH2 + H ⇋ SiH3 3.81 × 107 0.0 8

11 SiH2 + SiH3 ⇋ Si2H5 6.58 × 106 0.0 8

12 SiH2 + Si2 ⇋ Si3 + H2 3.55 × 105 0.0 8

13 SiH2 + Si3 ⇋ Si2H2 + Si2 1.43 × 105 0.0 68

14 H2SiSiH2 ⇋ Si2H2 + H2 3.16 × 1014 0.0 222

15 Si2H6 ⇋ H3SiSiH + H2 7.94 × 1015 0.0 236

16 H2 + SiH ⇋ SiH3 3.45 × 107 0.0 8

17 H2 + Si2 ⇋ Si2H2 1.54 × 107 0.0 8

18 H2 + Si2 ⇋ 2 SiH 1.54 × 107 0.0 168

19 H2 + Si3 ⇋ Si+ Si2H2 9.79 × 106 0.0 198

20 Si2H5 ⇋ Si2H3 + H2 3.16 × 1014 0.0 222

21 Si2H2+H ⇋ Si2H3 8.63 × 108 0.0 8

22 H + Si2 ⇋ SiH + Si 5.15 × 107 0.0 22

23 SiH4 +H3SiSiH ⇋ Si3H8 6.02 × 107 0.0 0

24 SiH2 +Si2H6 ⇋ Si3H8 1.81 × 108 0.0 0

25 SiH3 + Si2H5 ⇋ Si3H8 3.31 × 107 0.0 0

26 H3SiSiH ⇋ H2SiSiH2 1.15 × 1020 −3.06 28

Table 3: Fit parameters for gas phase forward reaction rate constants in the simplified model

where n = 1, 2, 3 and m = 0, 1, 2, 3, 4. In surface reactions (21) and (22) we have besides
the deposition of silicon also desorption of gaseous hydrogen. From reactions (21) - (22)
the stoichiometric coefficients σis and χjs will follow immediately. In Table 5 a complete
overview of the surface reactions for Kleijn’s Benchmark problem is presented. The molar
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k Reaction Ak,eq (-) βk,eq (-) Ek,eq ( kJ
mol

)

1 SiH4 ⇋ SiH2 + H2 6.85 × 105 0.48 235

2 SiH4 ⇋ SiH3 + H 1.45 × 104 0.90 382

3 Si2H6 ⇋ SiH4 + SiH2 1.96 × 1012 −1.68 229

4 SiH4 +H ⇋ SiH3 + H2 1.75 × 103 −0.55 −50

5 SiH4 +SiH3 ⇋ Si2H5 + H2 1.12 × 10−6 2.09 −6

6 SiH4 +SiH ⇋ Si2H3 + H2 1.82 × 10−4 1.65 21

7 SiH4 +SiH ⇋ Si2H5 1.49 × 10−10 1.56 −190

8 SiH2 ⇋ Si + H2 1.23 × 102 0.97 180

9 SiH2 + H ⇋ SiH + H2 2.05 × 101 −0.51 −101

10 SiH2 + H ⇋ SiH3 2.56 × 10−3 −1.03 −285

11 SiH2 + SiH3 ⇋ Si2H5 1.75 × 10−12 1.60 −241

12 SiH2 + Si2 ⇋ Si3 + H2 5.95 × 10−6 1.15 −225

13 SiH2 + Si3 ⇋ Si2H2 + Si2 2.67 × 100 −0.18 59

14 H2SiSiH2 ⇋ Si2H2 + H2 1.67 × 106 −0.37 112

15 Si2H6 ⇋ H3SiSiH + H2 1.17 × 109 −0.36 235

16 H2 + SiH ⇋ SiH3 1.42 × 10−4 −0.52 −183

17 H2 + Si2 ⇋ Si2H2 7.47 × 10−6 −0.37 −216

18 H2 + Si2 ⇋ 2 SiH 1.65 × 103 −0.91 180

19 H2 + Si3 ⇋ Si+ Si2H2 1.55 × 102 −0.55 189

20 Si2H5 ⇋ Si2H3 + H2 1.14 × 106 0.08 210

21 Si2H2+H ⇋ Si2H3 3.43 × 10−4 −0.31 −149

22 H + Si2 ⇋ SiH + Si 1.19 × 103 −0.88 29

23 SiH4 +H3SiSiH ⇋ Si3H8 7.97 × 10−16 2.48 −233

24 SiH2 +Si2H6 ⇋ Si3H8 1.36 × 10−12 1.64 −233

25 SiH3 + Si2H5 ⇋ Si3H8 1.06 × 10−14 1.85 −318

26 H3SiSiH ⇋ H2SiSiH2 9.58 × 10−3 0.50 −50

Table 4: Fit parameters for gas phase equilibrium constants in the simplified model

reaction rate RS
i for the decomposition of gas species i is given as

RS
i =

γi

1 − γi

2

Pfi

(2πmiRTs)
1
2

, (23)

where γi is the sticking coefficient of species i, and Ts the temperature of the wafer surface.
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The sticking coefficients are for all silicon containing species equal to one, except for

γSi3H8 = 0,

γSi2H6 = 0.537e
−9400

Ts , and

γSiH4 =
1

10
γSi2H6 .

From (20) the growth rate Gj of solid species Bj can be deduced as

Gj = 109mj

ρj

S
∑

s=1

RS
s χj,s, (24)

where ρj is its density in solid phase. The unit of the growth rate Gj is nm
s

. In this paper
we have as solid species solid silicon only. Consequently, only one growth rate has to be
computed. The density of solid silicon2 is

ρSi = 2329
kg

m3
. (25)

More background information can be found in [5, 8].

4.1 Corresponding Boundary Conditions

On the reacting surface will be a net mass production Pi. For ωi this net mass produc-
tion is given by

Pi = mi

S
∑

s=1

σisR
S
s ,

where mi is the molar mass, σis the stoichiometric coefficient for the gaseous and solid
species for surface reaction s (s = 1, . . . , S) and RS

s the reaction rate of reaction s on the
surface.

We assume the no-slip condition on the wafer surface. Since there is mass production
in normal direction the normal component of the velocity will not be equal to zero. We
find for the velocity the boundary conditions

n · v =
1

ρ

N
∑

i=1

mi

S
∑

s=1

σisR
S
s ,

n × v = 0. (26)

on the reacting boundary.3 For the wafer surface temperature we have

T = Ts.

2See for instance http://en.wikipedia.org/wiki/Silicon
3The outer product of two vectors u and v is defined as

u× v = (u2v3 − u3v2)e(1) + (u3v1 − u1v3)e(2) + (u1v2 − u2v1)e(3),

with e(α) the unit vector in the xα direction. The outer product is anti symmetric, i.e., u × v = −v × u.
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Surface Reaction Sticking coefficient

Si (g) → Si (s) 1

SiH → Si (s) + H 1

SiH2 → Si (s) + H2 1

SiH3 → Si (s) + H2 + H 1

SiH4 → Si (s) + 2H2 0.0537e
−9400

Ts

Si 2 (g) → 2Si (s) 1

Si2H2 → 2Si (s) + H2 1

Si2H3 → 2Si (s) + H2 + H 1

H2SiSiH2 → 2Si (s) + 2H2 1

H3SiSiH → 2Si (s) + 2H2 1

Si2H5 → 2Si (s) + 2H2 + H 1

Si2H6 → 2Si (s) + 3H2 0.537e
−9400

Ts

Si 3 (g) → 3Si (s) 1

Si3H8 → 3Si (s) + 4H2 0

Table 5: Surface reactions for the silicon containing species in the gas mixture and their sticking coefficients

On the wafer surface the net mass production of species i must be equal to the normal
direction of the total mass flux of species i. Since the total mass flux of species i is given
by

ρωiv + ji,

we have on the wafer surface the boundary condition

n · (ρωiv + ji) = mi

S
∑

s=1

σisR
S
s . (27)

By introducing the mass flux of species i deposited on cell face s as

Fwall = mi

S
∑

s=1

σisR
S
s , (28)

(27) can be written as
n · (ρωiv + ji) = Fwall. (29)
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4.2 Discretization of the Reacting Surface Boundary Condition

for the Species Equations

The way of discretizing as done in this section is taken from [10]. We have to remark
that inclusion of surface chemistry can be discretized in various manners. However, we
prefer it to be discretized in a positivity conserving way.

The general form of the species equation (8) is

∂(rρφ)

∂t
= −∇ · (rαρvφ) + ∇ · (rαΓφ∇φ) + rαSφ, (30)

whereby

φ = ωi, Γφ = ρD
′
i and Sφ = mi

K
∑

k=1

νikR
g
k. (31)

Note that for α = 1 Equation (30) is in axisymmetric form and by taking α = 0 it is in
Cartesian coordinates. Next, we will compute the volume integral over the control volume
surrounding the grid point P , see Figure 1.

Grid point P has four neighbors, indicated by N(orth), S(outh), E(ast) and W (est),
and the corresponding walls are indicated by n, s, e and w. The south wall is the reacting
surface, automatically implying that S is a virtual point. For the sake of clarity, we write
in the remainder of this section

v =

[

u

v

]

, (32)

where u is the velocity component in r-direction and v the velocity component in z-
direction.

Integrating Equation (30) over the control volume ∆r∆z surrounding P gives

∫ ∫

∆r∆z

∂(rαρφ)

∂t
dr dz =

∫ ∫

∆r∆z

(−∇r,z · (r
αρvφ) + ∇r,z · (r

αΓφ∇r,zφ) + rαSφ) dr dz. (33)

By using the Gauß theorem we may write

∫ ∫

∆r∆z

∂(rαρφ)

∂t
dr dz = −

∫

n

rαρvφ dr +

∫

s

rαρvφ dr −

∫

e

rαρuφ dz +

∫

w

rαρuφ dz +

∫

n

rαΓφ

∂φ

∂z
dr −

∫

s

rαΓφ

∂φ

∂z
dr +

∫

e

rαΓφ

∂φ

∂r
dz −

∫

w

rαΓφ

∂φ

∂r
dz +

∫ ∫

∆r∆z

rαSφ dr dz. (34)

11



v n

vs

uw

u e

nz∆

F
wall

n

W

w

N

e

s

S

EP
∆

∆

z

r

Reacting Wall

Figure 1: Reacting surface boundary condition
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The remaining integrals are approximated as

d(rα
PρP φP )

dt
∆r∆z = −rα

nρnvnφn∆r + rα
s ρsvsφs∆r − rα

e ρeueφe∆z +

rα
wρwuwφw∆z + rα

nΓφ,n

∂φ

∂z

∣

∣

∣

∣

n

∆r − rα
s Γφ,s

∂φ

∂z

∣

∣

∣

∣

s

∆r + rα
e Γφ,e

∂φ

∂r

∣

∣

∣

∣

e

∆z −

rα
wΓφ,w

∂φ

∂r

∣

∣

∣

∣

w

∆z + rα
p Sφ,P∆r∆z. (35)

Recall that on the south cell face we imposed that the total mass transport flux in the
outward normal direction should be equal to the mass flux Fwall, which is the mass flux
due to deposition on the wafer (28), i.e.,

n ·

(

ρsφsvs + Γφ,s

∂φ

∂z
|s

)

= Fwall. (36)

Since near the wafer mass transport is mainly by diffusion and not by advection, see [5],
(36) reduces to

Γφ,s

∂φ

∂z
|s = Fwall. (37)

The mass diffusion flux can be approximated as

Γφ,s

∂φ

∂z
|s =

2D

∆z
(φP − φwall), (38)

where φwall is the species mass fraction on the reacting wall. For now, the mass fraction
φwall is unknown. However, we are not interested in computing the mass diffusion flux,
but in Fwall, which has to be computed using φwall. According to (23), for the type of
surface reactions assumed in the present report, the molar reactive surface flux is linearly
proportional to the species molar concentration at the wafer. Consequently, the reactive
surface mass flux is linearly proportional to the species mass fraction, and is denoted as

Fwall = RSφwall, (39)

with RS ≥ 0. Then, φwall can be computed from (37) - (39) as

φwall =
φP

1 + ∆zRS

2D

. (40)

Remark that φwall is positive when φP is positive, and φwall ≤ 1 as long as φP ≤ 1.
Finally, the semi discretization in a control volume near the reacting surface becomes

d(rα
PρP φP )

dt
∆r∆z = −rα

nρnvnφn∆r − rα
e ρeueφe∆z +

rα
wρwuwφw∆z + rα

nΓφ,n

∂φ

∂z

∣

∣

∣

∣

n

∆r + rα
e Γφ,e

∂φ

∂r

∣

∣

∣

∣

e

∆z − rα
wΓφ,w

∂φ

∂r

∣

∣

∣

∣

w

∆z +

rα
p Sφ,P∆r∆z + rα

s Fwall∆r, (41)

where Fwall is computed implicitly from φP as in (39) with φwall as in (40).
Note that the approach for spatial discretization of the reacting boundary in this paper

is conserves positivity, unlike the approach given in [5].
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5 Numerical Methods

Suitable numerical methods for solving the stiff, nonlinearly coupled system of species
equations should be

1. Stable with respect to the integration of the stiff reaction terms,

2. Positive with respect to spatial and time integration, and the iterative solvers,

3. Efficient.

In [12] a number of time integration methods has been selected in order to solve a simplified
CVD system. These methods satisfy the first two properties mentioned above. This so-
called simplified CVD system contains

1. a gas phase chemistry model consisting of 5 gas phase reactions,

2. no surface reactions.

This simplified CVD system does not represent a (realistic) practical process, but a sim-
plified version that represents its computational problems only. In this paper we consider
the same collection of time integration methods as in [12], and again compare them in
terms of efficiency. Following [12], for spatial discretization the hybrid scheme has been
used. Recall that the hybrid scheme uses second order central differencing and introduces
locally first order upwinding to avoid numerical instabilities. For the exact finite volume
discretization we refer to [11].

In this section we first describe the (variable) time step controller that we used in our
code. This controller is based on a local truncation error estimation, as is custom in MOL
solvers in the ODE field. Subsequently, the time integration methods used in [11] are
briefly described.

5.1 Variable Time Step Controller

We briefly explain the variable time stepping algorithm as it is implemented in our
code. Consider an attempted step from tn to tn+1 = tn + τn with time step size τn that is
performed with an pth order time integration method. Suppose an estimate Dn of order
p̂ of the norm of the local truncation error is available. Then, if Dn < Tol this step τn is
accepted, whereas if Dn > Tol the step is rejected and redone with time step size 1

2
τn. If

Dn < Tol, then the new step size is computed as

τnew = r · τ, r =

(

Tol

Dn

)
1

p̂+1

. (42)

Because estimates are used and additional control on decrease and increase of step sizes
is desirable. In the ODE field it is customary to implement the following new (trial) time
step

τnew = min(rmax, max(rmin, ϑr)) · τ, r =

(

Tol

Dn

)
1

p̂+1

. (43)
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In (43) rmax and rmin are the maximal and minimal growth factor, respectively, and ϑ < 1
serves to make the estimate conservative so as to avoid multiple rejections.

Besides the estimation of the new time step the controller in our code also checks
whether (i) the solution is positive, and (ii) Newton’s method is converged. In the case of
Newton divergence the time step size is halved and the time step redone. In the case of
negative species, we first check whether these negative mass fractions are due to rounding
errors, and if not, the time step is redone with a halved time step size.

For each time integration method discussed in this section, a local error estimation,
needed for the time step controller, will be given.

5.2 Euler Backward

The well known Euler Backward method is defined as

wn+1 = wn + τF (tn, wn+1). (44)

It is generally known that this method is unconditionally stable, and even L stable. In
[12] it has been shown that Euler Backward is also unconditionally positive, under the
assumption that the resulting nonlinear systems are solved exactly. In practice, exact
solutions of nonlinear systems cannot be found. This means that Euler Backward is not
unconditionally positive in practice.

The local truncation error of the Euler Backward method

δn = −
1

2
τ 2w′′(tn) + O(τ 3), (45)

can be estimated as

dn = −
1

2
(wn+1 − wn − τF (tn, wn)) . (46)

See also [4].

5.3 Rosenbrock Methods

In [12] the second order Rosenbrock scheme

wn+1 = wn +
3

2
k1 +

1

2
k2,

k1 = τF (wn) + γτJF k1,

k2 = τF (wn + k1) − 2k1 + γτJF k2, (47)

where JF is the Jacobian of F with respect to w, has been implemented. This scheme
has the property that R(z) ≥ 0 for all negative real z. For diffusion reaction problems
positivity is then assured. In the case advection is added, this method still performs well
with respect to positivity. We refer to [12] for more information.

The local error estimation for the Rosenbrock method can be taken equal to the Euler
Backward error estimation.
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5.4 Backward Differentiation Formulas (BDF)

The k-step BDF methods are implicit, of order k and defined as

k
∑

j=0

αjwn+j = τF (tn+k, wn+k), n = 0, 1, . . . , (48)

which uses the k past values wn, . . . , wn+k−1 to compute wn+k. Remark that the most
advanced level is tn+k instead of tn+1. The 1-step BDF method is Backward Euler. The
2-step method is

3

2
wn+2 − 2wn+1 +

1

2
wn = τF (tn+2, wn+2), (49)

and the three step BDF is given by

11

6
wn+3 − 3wn+2 +

3

2
wn+1 −

1

3
wn = τF (tn+3, wn+3). (50)

We implemented the 2-step BDF scheme, whereof some properties are discussed below.
Under the assumption that wn+1 is computed from a suitable starting procedure that

is positive, the 2-step BDF method is positive under the restriction ατ ≤ 1
2
, where α > 0

and ατ < 1 such that

v + τF (t, v) ≥ 0 for all t ≥ 0, v ≥ 0. (51)

For the BDF-2 scheme the local error estimation is as follows. Introduce the ratio
r = τn

τn−1
, where τn is defined as above, e.g., τn = tn+1 − tn. The second order BDF-2

scheme can be rewritten in the form with the ratio r as

wn+2 −
(1 + r2)

1 + 2r
wn+1 +

r2

1 + 2r
wn =

1 + r

1 + 2r
τF (tn+2, wn+2). (52)

A first order estimator, see [4], is

dn =
r

1 + r
(wn+1 − (1 + r)wn + rwn−1) . (53)

A second order estimator, see [4], is

dn =
1 + r

1 + 2r

(

wn+1 + (r2 − 1)wn − r2wn−1 − (1 + r)τnF (tn, wn)
)

. (54)

We remark that in the first time step, where BDF-1 is used, the local error is estimated by

d0 =
1

2
(w1 − w0 − τ0F (t0, w0)) . (55)
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IMEX Runge-Kutta Chebyshev Methods

The second order Runge-Kutta Chebyshev method is given as

wn0 = wn,

wn1 = wn + µ̃1τF (tn + c0τ, wn0),

wnj = (1 − µj − νj)wn + µjwn,j−1 + νjwn,j−2 + j = 1, . . . , s

+µ̃1τF (tn + cj−1τ, wn,j−1) + γ̃jτF (tn + c0τ, wn0), (56)

wn+1 = wns.

The coefficients µ̃1, µj, νj , µ̃j and γ̃j are available in analytical form for s ≥ 2 :

µ̃1 = b1ω1 and for j = 2, . . . , s, (57)

µj =
2bjω0

bj−1

, νj =
−bj

bj−2

, µ̃j =
2bjω1

bj−1

, γ̃j = −aj−1µ̃j , (58)

where

b0 = b2, b1 =
1

ω0

, bj =
T ′′

j (ω0)

(T ′
j(ω0))2

, j = 2, . . . , s, (59)

with

ω0 = 1 +
ε

s2
, and ω1 =

T ′
s(ω0)

T ′′
s (ω0)

. (60)

Furthermore,

c0 = 0, c1 = c2, cj =
T ′

s(ω0)

T ′′
s (ω0)

T ′′
j (ω0)

T ′
j(ω0)

, cs = 1, (61)

and,
aj = 1 − bjTj(ω0). (62)

In (59) - (62) Tj(x) are the Chebyshev polynomials of the first kind satisfying the recursion

Tj(x) = 2xTj−1(x) − Tj−2(x), j = 2, . . . , s, (63)

with T0(x) = 1 and T1(x) = x. Furthermore, in (60) ε is a free parameter. In Figure 2 its
stability region is given. The parameter β(s) moves to −∞ when the number of stages s

increases. For ε small, by which we mean ε
s2 ≪ 1, the stability bound β(s) satisfies

β(s) ≈
2

3

(

s2 − 1
)

(

1 −
2

15
ε

)

. (64)

The IMEX extension of (56) is as follows. Suppose we have an ODE system w′(t) =
F (t, w(t)), where F (t, w(t)) can be split as

F (t, w(t)) = FE(t, w(t)) + FI(t, w(t)). (65)
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Figure 2: Stability region of (56) for s = 5.

In (65) the term FI(t, w(t)) is the part of F which is (supposed to be) too stiff to be
integrated by an explicit Runge-Kutta Chebyshev method. Obviously, the term FE(t, w(t))
is the moderate stiff part of F that can be integrated in an explicit manner using RKC
methods. The first stage of (56) becomes in the IMEX-RKC scheme

wn1 = wn + µ̃1τFE(tn + c0τ, wn0) + µ̃1τFI(tn + c1τ, wn1), (66)

with µ̃1 as defined before. Note that the highly stiff part of F is treated implicitly. The
other (s− 1) subsequent stages of (56) will be modified in a similar way, such that in each
of the remaining s − 1 stages the solution of a system of nonlinear algebraic equations

wnj − µ̃1τFI(tn + cjτ, wnj) = vj , (67)

with vj a given vector, is required.
With respect to stability of this IMEX extension of (56) we remark that the implicit

part is unconditionally stable, whereas the stability condition for the explicit part remains
unchanged. For more background we refer to [13, 14].

The local error estimation for the IMEX -Runge-Kutta-Chebyshev methods is the same
as for the explicit Runge-Kutta-Chebyshev schemes, see [14]. The asymptotically correct
estimate of the local error is

dn =
1

15
[12(wn − wn+1) + 6τn(F (tn, wn) + F (tn+1, wn+1))] , (68)

which is taken from [9].
The code is also equipped with a number of stages selector. This procedure returns the

number of stages s, depending on the time step size τ , and the stability condition arising
from von Neumann stability analysis to ensure stable explicit RKC integration for advection
and diffusion. Following [14], this procedure can test on stability for diffusion only, which
will be called the ‘on the fly condition’, or, there can be tested on the full advection and
diffusion stability conditions. Detailed information on von Neumann stability analysis of
the explicit integration of advection and diffusion can, for instance, be found in [12, 14, 15].

6 Simulation on a Simple Geometry

In this section we consider the benchmark problem as defined in Sections 2 to 4 on a
simple geometry. The reactor is a square, 10 by 10 cm., with the pressure equal to the
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atmospheric pressure. At the top of the reactor is the inflow boundary, whereas at the
bottom the outflow boundary is situated. The other walls are adiabatic solid walls, and
there is no reacting surface within this reactor configuration. The velocity field depends on
the z coordinate only, and is constant, i.e., vz = −0.1 [m

s
]. Furthermore, the density field is

also taken constant, i.e., ρ = 1 over the whole (computational) domain. The temperature
depends linearly on the spatial variable z as

T (z) = 1000 − 3000z. (69)

See also Figure 3. Remark that the solution of this problem depends only on the z-
coordinate.
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Vz = -0.1 m/s
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f_{SiH4} = 0.001 T = 300 K

T = 1000 K

Density = 1 kg/m^3

r

z

z = 0 m

z = 0.10 m

Figure 3: Geometry and parameter values of the simplified problem

It appears that for the simulation from the initial state, which is equal to a zero con-
centration profile for all species on the domain, till steady state can give ‘poor’ Newton
convergence. We mean that from the moment that the ‘fast’ reactions come into play,
the condition number of the Jacobian grows very fast, and the number of Linesearch calls
within the Newton iteration becomes very large. Often, when linesearch is needed to
enforce global convergence, the Newton iteration will diverge.
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In Table 6 the integration statistics are given for the benchmark problem on the sim-
plified geometry as described above. Spatial discretization is done by means of the hybrid
scheme, and for time integration Euler Backward is used. If we do the same simulation
without the last gas phase reaction, i.e.,

H3SiSiH ⇋ H2SiSiH2, (70)

the integration statistics show that the performance is much better, see Table 6. If we also
look at the development of the condition number of the Jacobian with respect to time,
then we see that in the case of 25 reactions it is two to three orders of magnitude smaller
than before. Of course, for the quality of the Newton updates this is more convenient. In
Figure 4 the condition numbers of to the Jacobian matrix belonging to the Euler Backward
time discretization are given as a function of the time step for both the 25 and 26 reaction
system. The condition numbers in Figure 4 are estimations of the condition number in the
infinity norm, i.e.,

‖B‖∞ = max
1≤j≤m

m
∑

k=1

|bjk|, where B = (bjk). (71)

There estimations are obtained with routines from the LAPACK package, see [1]. The
irregular behavior of the condition number is partly due to the norm used to measure and
partly due to the time step adjustments to enforce Newton convergence and/or positivity. It
appears that Newton convergence and/or positivity is easier satisfied when the last reaction
is removed from the system, as can be seen in the magnitude and the more regular behavior
of the condition number in time.

In order to achieve this also for the reaction system of 26 reactions we apply diagonal
scaling to the linear systems within the Newton solver. We then obtain the results as given
in Table 7. For the similar system without the last reaction, we obtain no difference in the
integration statistics if diagonal scaling is applied.

In Figure 5 the largest condition number per time step, with and without diagonal
scaling, is given for the simulation on a 5×5 grid with Euler Backward time discretization.

We conclude that reaction (70) is responsible for higher condition number of the Jaco-
bian belonging to the nonlinear systems of the Euler Backward discretization. Application
of diagonal scaling takes care of a two order of magnitude drop of the condition number.
Our experiments show that this modification to the direct solver gives a better performance
in terms of efficiency.

6.1 Higher Order TIM for Solving the Benchmark on the Simple
Geometry

In the previous part we concluded that application of diagonal scaling to the linear
systems for the Newton update, where Euler Backward has been used to integrate in time,
increases the performance. In the following section we present similar results for the time
integration methods presented in Section 5.
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Figure 4: Condition number of the Jacobian belonging to Euler Backward time discretization versus the
time step. Spatial grid is 5 × 5.

4 × 4 grid 5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26 25 26

#F 128 193 136 443 153 739
#F ′ 54 67 57 94 62 125

# Linesearch 4 48 9 249 18 449
# Newton iters 54 67 57 94 62 125

# Rej. time steps 0 2 0 10 1 15

Table 6: Integration statistics without diagonal scaling
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Figure 5: Maximum condition number of Jacobian with and without Jacobi preconditioning. Time dis-
cretization is Euler Backward. Spatial grid is 5 × 5.

4 × 4 grid 5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26 25 26

#F 128 131 136 131 153 129
#F ′ 54 59 57 58 62 58

# Linesearch 4 2 9 3 18 3
# Newton iters 54 59 57 58 62 58

# Rej. time steps 0 0 0 0 1 0

Table 7: Integration statistics with diagonal scaling
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6.1.1 Rosenbrock

The ROS2 method has been implemented with the time step controller as presented in
Section 5. In (43) the following values have been taken

rmax = 1.5, rmin = 0.7, and, θ = 0.9. (72)

We see in Table 8 and 9 that preconditioning the linear systems does not increase
the performance. The main difference with Euler Backward and BDF is that the Newton
iteration performs better with the scaled linear systems, in particular in the second Newton
iterate and further. Since ROS2 is a linearized scheme it has no benefit from the diagonal
scaling.

4 × 4 grid 5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26 25 26

#F 176 176 188 184 244 240
#F ′ 44 44 47 46 61 60

# Rej. time steps 0 0 0 0 0 0

Table 8: Integration statistics ROS2 without diagonal scaling

4 × 4 grid 5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26 25 26

#F 176 176 188 184 244 240
#F ′ 44 44 47 46 61 60

# Rej. time steps 0 0 0 0 0 0

Table 9: Integration statistics ROS2 with diagonal scaling

6.1.2 BDF2

The BDF2 method has been implemented with the time step controller as presented in
Section 5. In (43) identical values have been taken for rmax, rmin and ϑ.

We see in Table 10 and 11 that preconditioning the linear system in the Newton update
increases the performance.

6.1.3 IMEX RKC

The IMEX RKC method has been implemented with the time step controller as pre-
sented in Section 5. In (43) identical values have been taken for rmax, rmin and ϑ. Fur-
thermore, we remark that from the point of view of efficiency for the nonlinear systems the
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4 × 4 grid 5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26 25 26

#F 183 312 193 297 nc 300
#F ′ 62 87 65 83 nc 92

# Linesearch 1 86 5 71 nc 51
# Newton iters 62 87 65 83 nc 92

# Rej. time steps 0 4 0 5 nc 7

Table 10: Integration statistics BDF2 without diagonal scaling. NC means that the simulation did not
converge to a steady state solution.

4 × 4 grid 5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26 25 26

#F 183 191 193 190 235 229
#F ′ 62 68 65 67 79 80

# Linesearch 1 0 5 0 3 0
# Newton iters 62 68 65 67 79 80

# Rej. time steps 0 0 0 0 3 2

Table 11: Integration statistics BDF2 with diagonal scaling

modified Newton iteration has been used. Then, in each time step only one LU factoriza-
tion of [I − µ̃1τF ′(t, w(t))], where F ′(t, w(t)) is the Jacobian of F (t, w(t)) with respect to
w(t), has to be computed. The time step controller is linked with a controller for the num-
ber of IMEX-RKC stages, as has been described in [12, 14]. With respect to the number
of IMEX-RKC stages controller there are two possibilities:

1. On the fly, meaning that for the conditional stability only the diffusion part is con-
sidered,

2. Conditional stability is also tested for the advection part.

For both strategies tests have been carried out, whereof the results are presented in Table
12 up to and including Table 15. We tested on 5 × 5 and 10 × 10 spatial grids, for the
damping parameters ε = 1 and ε = 10.

We observe that diagonal scaling does not influence the performance at all. An ex-
planation is that for each Newton iteration a good estimate of the nonlinear solution is
available, resulting in convergence within one Newton iteration.

7 Numerical Results

In this section we present results on the simulations of the benchmark problem of Kleijn
[8]. We remark that in the CVD community the steady state solution found by Kleijn is
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5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26

#F 2348 (3338) 2348 (3338) 3218 (4680) 3218 (4350)
#F ′ 29 (36) 29 (36) 34 (50) 34 (47)

# Linesearch 0 0 0 0
# Newton iters 587 (835) 587 (835) 805 (1173) 805 (1090)

# Rej. time steps 0 (1) 0 (1) 1 (6) 1 (5)
# Acc. time steps 29 (35) 29 (35) 33 (44) 33 (42)

smax 51 51 56 56

Table 12: Integration statistics IMEX RKC without diagonal scaling. Damping parameter ε = 10. If
the results for damping parameter ε = 1 differ from the results for ε = 10, then they are given between
brackets. The number of stages are controlled by controlling stability for both advection and diffusion.

5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26

#F 2348 (3338) 2348 (3338) 3218 (4680) 3218 (4680)
#F ′ 29 (36) 29 (36) 34(50) 34(50)

# Linesearch 0 0 0 0
# Newton iters 587 (835) 587 (835) 805 (1173) 805 (1173)

# Rej. time steps 0 (1) 0 (1) 1 (6) 1 (6)
# Acc. time steps 29 (35) 29 (35) 33 (44) 33 (44)

smax 51 51 56 56

Table 13: Integration statistics IMEX RKC with diagonal scaling. Damping parameter ε = 10. If the
results for damping parameter ε = 1 differ from the results for ε = 10, then they are given between
brackets. The number of stages are controlled by controlling stability for both advection and diffusion.

5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26

#F 3580 (15050) 3580 (15050) 5150 (12618) 5150 (18134)
#F ′ 29 (39) 29 (39) 34 (53) 34 (51)

# Linesearch 0 0 0 0
# Newton iters 895 (3763) 95 (3763) 1288 (3158) 1288 (4536)

# Rej. time steps 0 (1) 0 (1) 1 (7) 1 (5)
# Acc. time steps 29 (38) 29 (38) 33 (46) 33 (46)

smax 156 (676) 156 (676) 208 (425) 208 (777)

Table 14: Integration statistics IMEX RKC without diagonal scaling. Damping parameter ε = 10. If
the results for damping parameter ε = 1 differ from the results for ε = 10, then they are given between
brackets. The number of stages are controlled by the on the fly condition.
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5 × 5 grid 10 × 10 grid
# reactions 25 26 25 26

#F 3580(15050) 3580(15050) 5150 (12618) 5150 (12614)
#F ′ 29(39) 29(39) 34 (53) 34 (53)

# Linesearch 0 0 0 0
# Newton iters 895 (3763) 895(3763) 1288 (3158) 1288 (3157)

# Rej. time steps 0 (1) 0 (1) 1 (7) 1 (7)
# Acc. time steps 29 (38) 29 (38) 33 (46) 33 (46)

smax 156 (676) 156 (676) 208 (425) 208 (424)

Table 15: Integration statistics IMEX RKC with diagonal scaling. Damping parameter ε = 10. If the
results for damping parameter ε = 1 differ from the results for ε = 10, then they are given between
brackets. The number of stages are controlled by the on the fly condition.

considered to be correct. Actually, in the present simulations thermal diffusion (Soret
effect) was neglected. Therefore, we compare our results with the results obtained with
the code used in [8], where the experiments have been redone without thermal diffusion.
Before giving the results, we first give details on the reactor and the simulation strategy
itself.

7.1 Simulation strategy

In [8] a steady state solution of the problem stated in Sections 2 - 4 has been computed
for approximately the same reactor configuration as presented in Section 7.2.

We perform transient simulations with the different time integration methods as pre-
sented in this paper. The transient simulations continue until ‘numerical steady state’ is
obtained. Numerical steady state is defined as: for a certain index n holds that

‖yn+1 − yn‖

‖yn‖
≤ O(10−6), (73)

where yn is the numerical solution vector of the semi-discretization

w′(t) = F (t, w(t)). (74)

In (74) F (t, w(t)) represents the finite volume discretization of the species equations, as
has been done in [11, 12]. More detailed information on the simulation strategy can be
found in [12].

7.2 Reactor Configuration

The reactor configuration is given in Figure 6. As computational domain we take,
because of axisymmetry, one half of the (r-z) plane. The pressure in the reactor is 1 atm
= 1.01325 × 105 Pa. From the top a gas-mixture, consisting of silane SiH4 and helium

26



He, enters the reactor with a uniform temperature Tin = 300 K and a uniform velocity
uin = 0.10 [m

s
]. The inlet silane mole fraction is fin,SiH4

= 0.001, whereas the rest is helium.
At a distance of 10 cm. below the inlet a susceptor with temperature T = 1000 K and a
diameter 30 cm. is placed. Unlike the problem considered in [8] the susceptor does not
rotate. Furthermore, the inner and outer side of the reactor walls are adiabatic and do not
rotate.

r

z
θ

susceptor

outflow

inflow

solid
wall

dT/dr = 0
v = 0
u = 0

T=300 K f_{SiH4}= 0.001 f_{He}= 0.999v= 0.10 m/s

T=1000 K u, v = 0

dT/dz = 0
dv/dz = 0

0.175 m

0.15 m

0.
10

 m

Figure 6: Reactor geometry

The velocity field, temperature field, pressure field and density field are assumed to
be known. In Figure 7 the streamlines and temperature field are given for the reactor
configuration as presented in this section. The streamlines are computed from the velocity
fields obtained by the code of Kleijn [8].

7.3 Numerical Simulation Without Reacting Surface

In this section we present results of the transient simulations with the different time
integration methods discussed in this paper. Except for the IMEX RKC method, we use, if
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Figure 7: Streamlines and temperature field for the reactor configuration. The velocity and temperature
fields are obtained by the code used in [8].
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a nonlinear solver is needed, the full Newton iteration. As linear solver within the Newton
iteration a direct solver with diagonal scaling is used. Without diagonal scaling the Newton
updates are very poor for both the Euler Backward as the BDF-2 time discretization. See
also Section 6 where the same is observed for simulations on a simple geometry. Also for
the Rosenbrock time integration we observe that without preconditioning the updates in
the intermediate stages are poor. In Table 16 the integration statistics are given for Euler
Backward, Rosenbrock and BDF-2.

EB ROS2 BDF-2
#F 192 551 510
#F ′ 74 191 241
# Linesearch 28 0 42
# Newton iters 74 0 241
# Rej. time steps 0 22 14
# Acc. time steps 37 169 92
CPU Time 5500 12200 23280

Table 16: Integration statistics for Euler Backward, Rosenbrock and BDF-2.

For the integration statistics of IMEX RKC we refer to Table 17. It is remarkable that
the number of rejected time steps is quite high. These rejections are due to negative species
concentrations when computing to chemical steady state and the conditional positivity of
IMEX RKC. When the solution is nearly steady state the time step controller returns
larger estimates for the succeeding time step, and consequently a larger number of stages
have to be computed, that violates the ‘unknown’ positivity condition.

stability condition on the fly full adv.-diff.
ε = 1 ε = 10 ε = 1 ε = 10

#F 71306 52714 57568 43278
#F ′ 450 247 402 246
# Linesearch 0 0 0 0
# Newton iters 18016 13219 14452 10884
# Rej. time steps 156 81 120 49
# Acc. time steps 294 166 282 197
smax 92 126 55 55
CPU Time 13800 8600 13700 9700

Table 17: Integration statistics IMEX RKC with damping parameter ε = 1 and ε = 10. The number of
stages are controlled by the on the fly condition and the full advection-diffusion stability condition.

For some selected species, to be precise the species as in Figure 6 of [8], the steady
state axial mass fraction profiles are presented in Figure 8. It can be seen from Figure 8
that our steady state solution agrees well with the solution found in [8].
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7.4 Numerical Simulation Including Reacting Surface

The simulations of the benchmark problem with reacting surface are done for the reactor
configuration as presented in Section 7.2. The reacting surface is situated near the outflow,
at the bottom of the reactor (In Figure 6 the reacting surface is called susceptor). The
code of Section 7.3 has to be extended with a routine that returns an update of the vector
of boundary conditions in every time step and/or Newton iteration. The reacting surface
mass fluxes are computed in the positivity conserving way described in Section 4.2.

From the experiments we observed that inclusion of a reacting surface increases the
total computational costs. In the case of added surface chemistry, more ‘fast’ components
are actually added to the system. To correctly follow the transient solution smaller time
steps are needed. The integration statistics of our experiments are given in Table 18. For
both IMEX RKC schemes holds that for the damping parameter ε = 10 the maximum
number of stages is equal to 52, and for ε = 1 equal to 50.

Note that the total computational costs for IMEX RKC are in this experiment some-
what smaller, but the difference between both is for CPU times in the region of noise4.

In order to compare our steady state solution with the one obtained with the computer
code of [8], we give mass fraction profiles for some selected species along the symmetry
axis (as a function of the height of the reactor), see Figure 9. Furthermore, we measured
in steady state a deposition rate of solid silicon of 2.43 nm

s
, against a deposition rate of

2.49 nm
s

obtained with the code of [8]. Again, we conclude that our steady state solution
agrees well with the one found in [8].

Number of EB ROS2 BDF-2 IMEX RKC(fly) IMEX RKC(full)
F 491 2114 3697 65704 (77480) 66639 (77424)
F ′ 231 802 1402 588 (1018) 589 (1018)
Linesearch 68 0 24 0 0
Newton iters 231 0 1402 16747(19500) 16770 (19540)
Rej. time steps 5 292 489 210 (370) 210 (370)
Acc. time steps 94 510 893 378 (648) 379 (648)
CPU Time 10900 ±40000 > 50000 12500 (12900) 12700 (15900)

Table 18: Integrations statistics of EB, ROS2, BDF-2, IMEX RKC(fly) and IMEX RKC(full) running into
steady state (performed on a Pentium IV 3.2 GHz). Surface chemistry is included. In IMEX RKC(fly)
stability of the explicit part is controlled by the ‘on the fly condition’, whereas the full advection-diffusion
stability condition is used in IMEX RKC(full). Number of F -evaluations for IMEX RKC are the ones
containing reaction terms. The damping parameter in IMEX RKC is taken equal to ε = 10. If the results
for damping parameter ε = 1 differ from the results for ε = 10, then they are given between brackets.

4For CPU times we keep on a region of 10% noise.

30



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Height above susceptor (m)

S
pe

ci
es

 m
as

s 
fr

ac
tio

n 
(−

)

SiH
4
 

H
2
 

Si
2
H

6
 

H
2
SiSiH

2
 

SiH
2
 

Si

Si
2

Figure 8: Steady state axial mass fraction profiles for some selected species; surface chemistry not included.
A similar figure can be found in [8]. Solid lines: profiles obtained with the code of [8]. Circles: our steady
state mass fraction profiles.
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Figure 9: Steady state axial mass fraction profiles for some selected species; surface chemistry is included.
A similar figure can be found in [8]. Solid lines: profiles obtained with the code of [8]. Circles: our steady
state mass fraction profiles.
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8 Conclusions

In this paper we presented two dimensional transient simulations of laminar reactive
gas flows, that appear in Chemical Vapor Deposition. The accent has been put on time
integration of the stiffly, nonlinearly coupled system of species equations, which describe
the transport of mass within the reactor. Finding the (transient) solution of the equations
describing the gas flow and transport of energy is a rather trivial task in comparison with
solving the species equations. Therefore, we assume that these equations are already solved
and the solutions are available.

We tested a collection of time integration methods, which are suitable for integration
of stiff ODEs, and have good properties with respect to the conservation of positivity.
Spatial discretization has been done in a positive way by a hybrid finite volume scheme.
The nonlinear and linear solvers are not individually optimized for each ODE method.
Actually, standard techniques are used to solve the nonlinear systems. Based on our
experiments we conclude that the unconditionally positive Euler Backward scheme is the
most efficient time integrator, in terms of total computational costs. However, for 3D
transient simulations the, conditionally positive, IMEX RKC scheme is still an excellent
candidate, because the associated non linear systems can be solved in a cheaper way. Other
higher order, conditionally positive, time integration methods are computationally more
expensive than Euler Backward and IMEX RKC.
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