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Transient Chemical Vapor Deposition Simulations

S. van Veldhuizen∗ C. Vuik∗ C.R. Kleijn†

Abstract

The numerical modeling of laminar reacting gas flows in thermal Chemical Vapor
Deposition (CVD) processes commonly involves the solution of convection-diffusion-
reaction equations for a large number of reactants and intermediate species. These
equations are stiffly coupled through the reaction terms, which typically include
dozens of finite rate elementary reaction steps with largely varying rate constants.
The solution of such stiff sets of equations is difficult, especially when time-accurate
transient solutions are required. In this study various numerical schemes for multidi-
mensional transient simulations of laminar reacting gas flows with homogeneous and
heterogeneous chemical reactions are compared in terms of efficiency, accuracy and
robustness. As a test case, we study the CVD process of silicon from silane, modeled
according to the classical 16 species, 27 reactions chemistry model for this process as
published by Coltrin et al. (1989).

1 Introduction

The growth of thin solid films via Chemical Vapor Deposition (CVD) is of consider-
able importance in the micro-electronics industry. Other applications of thin solid films
via CVD can for instance be found in the glass industry as protective and decorative lay-
ers. The CVD process considered in this paper involves the deposition of silicon in an
atmospheric pressure, cold wall, stagnation flow single wafer reactor, starting from the
thermal decomposition of silane at the heated susceptor surface. This CVD process was
one of the very first for which a detailed chemistry mode, based on a large number of
elementary reaction steps leading to the formation of many intermediate species, has been
proposed in literature by Coltrin et al. (1989). The numerical modeling realistic CVD pro-
cesses and equipment, based on such detailed chemistry models, involves the solution of
multi-dimensional convection-diffusion-reaction equations for a large number of reactants
and intermediate species. These equations are stiffly coupled through the reaction terms,
which typically include dozens of finite rate elementary reaction steps with largely varying
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rate constants. The solution of such stiff sets of equations is difficult, and the numerical
solvers present in most commercial CFD codes have great problems in handling such stiff
systems of equations. This is especially the case when time-accurate transient solutions
are required. The latter is important for the study of start-up and shut-down cycli, but
also for the study of inherently transient CVD processes, such as Rapid Thermal CVD
(RTCVD), see Bouteville (2005), and Atomic Layer Deposition (ALD), see Alam & Green
(2003).

In this paper we focus on solving the system of species equations, which describe mass
transport due to convective and diffusive transport, and their conversion due to chemical
reactions, in a time accurate way. Since there may be orders of magnitude difference
between the time scales of advection, diffusion and the various chemical reactions, the
system of species equations is extremely stiff. To stably integrate the species equations
in time, a suitable time integration method has to be found. Moreover, we demand that
negative species concentrations are not allowed in the transient solution, because they cause
blow up of the solution in finite time, see, for instance, Hundsdorfer & Verwer (2003). Since
we do not want to apply clipping, and thus artificially add mass to the system, this extra
property puts a severe restriction on time integration methods.

This report, which is a detailed description of van Veldhuizen et al. (2007a), is organized
as follows. First we give details of the CVD process considered in this paper, followed by a
brief overview of the numerical methods that we used to do the experiments. We conclude
with some transient numerical results.

2 Model Equations

The model assumptions and equations used have been described in great detail in
Kleijn (2000). The gas mixture is assumed to behave as a continuum, Newtonian fluid.
The composition of the N component gas mixture is described in terms of mass fractions
ωi, i = 1, . . . , N . In this paper we focus on the time accurate numerical solution of the
nonlinearly, stiffly coupled set of species equations, i = 1, . . . , N ,

∂(ρωi)

∂t
= −∇ · (ρvωi) +∇ · [(ρD

′
i∇ωi) + (DT

i ∇(ln T ))] + mi

K
∑

k=1

νikR
g
k, (1)

where the diffusive mass flux is composed of concentration and thermal diffusion.
The studied reactor is illustrated in Figure 1, where as computational domain one half

of the (r-z) plane is taken. From the top a gas-mixture, consisting of 0.1 mole% silane
diluted in helium, enters the reactor with a uniform temperature Tin = 300 K and velocity
uin = 0.1 m

s
. In the hot region above the susceptor with temperature Ts = 1000 K the

reactive gas silane decomposes into silylene and hydrogen. In the model of Coltrin et al.
(1989), which was used in this paper, this first gas phase reaction initiates a chain of 25
homogeneous gas phase reactions leading to the (de)formation of 14 silicon containing gas
phase species. Each of these silicon containing species may diffuse towards the susceptor
to produce a thin solid film.
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Figure 1: Reactor geometry and boundary conditions.
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There is some ambiguity as to which values were used in Coltrin et al. (1989), in
the present work we followed the approach used in Kleijn (2000), i.e., we set the sticking
coefficient of Si2H5 equal to one, the sticking coefficient of Si3H8 equal to zero and for the
other species the values as were used in Coltrin et al. (1989).

3 Numerical Methods

The species equations are first discretized in space, and thereafter integrated in time.
For spatial discretization a hybrid Finite Volume (FV) scheme has been used, which uses
central differences if possible and first order upwinding if necessary. More information
on the hybrid FV scheme can be found in, for instance, Patankar (1980). It should be
noted that the hybrid FV discretization conserves the non-negativity of the solution. In
van Veldhuizen et al. (2005) all details of the hybrid FV spatial discretization have been
written down.

Implicit treatment of the reaction terms, when integrating in time, is needed for stabil-
ity reasons. When, in addition, also the positivity of the solution is needed, this results in
an extra, severe condition on the time step size. Moreover, it has been proven in Hundsdor-
fer & Verwer (2003), that the first order accurate Euler Backward time integration method
is the only known method being unconditionally positive (and stable). Every higher order
time integration method will need impractically small time steps to integrate the solution
positively. However, in this paper we test next to EB, also the second order accurate
Rosenbrock scheme ROS2, the second order BDF2 scheme, and the second order IRKC
scheme. To test these schemes seems to contradict with the previous remark, but each
of these higher order methods have their advantages. As has been experienced in several
tests, see Hundsdorfer & Verwer (2003), the ROS2 scheme performs well with respect to
positivity. For the BDF2 scheme the positivity condition can be computed explicitly, and
the IRKC scheme is designed to integrate convection-diffusion-reaction schemes very effi-
ciently. More information on these time integration schemes can be found in Hundsdorfer
& Verwer (2003) or van Veldhuizen et al. (2007b). For the recently developed IRKC
scheme, which integrates the moderately stiff advection-diffusion part of the species equa-
tions explicitly, and the reaction part implicitly, we refer to Verwer et al. (2004). In van
Veldhuizen et al. (2006) the time integration methods EB, BDF2, ROS2 and IRKC are
comprehensively described, as well as relevant properties as stability, positivity, etc.

3.1 Positivity for Included Surface Chemistry

Spatial discretization of the species equations along the reacting surface can give some
problems with respect to positivity. In particular, when the species surface reaction flux
is computed with the cell centered species concentrations, the surface reaction flux can be
too large. Consequently, in the next time step we might obtain negative concentrations.

For the type of surface reactions in the present paper, the molar reactive surface flux
is linearly proportional to the species molar concentration at the wafer. Consequently, the
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reactive surface mass flux is linearly proportional to the surface mass fraction, which is
denoted as Fwall = K1ωwall, with ωwall the unknown species mass fraction at the wafer.
Since advective transport of the species mass fraction is negligible near the wafer, we have
diffusion transport only, see Kleijn (2000). At the reacting surface will therefore hold that
the total transport mass flux should be equal to Fwall, or in discretized form

D

∆z
(ωcenter − ωwall) + D

T∇(ln T ) = Fwall, (2)

where

• D is the effective ordinary diffusion coefficient,

• D
T is the multi-component thermal diffusion coefficient,

• ωcenter the species mass fraction in the cell center, and,

• ωwall the unknown species mass fraction at the wafer.

From Figure (2) the meaning of ωcenter, ωwall, ∆z, etc. should be clear.

ωcenter

N

E

W

∆ r

∆ z

Reacting wall

S

Fwall

ωwall

Figure 2: Grid cells near the reacting surface
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The multi-component thermal diffusion coefficient D
T is linearly proportional with the

mass fraction, see Kleijn (2000), and therefore we can write D
T = K2ωwall. The unknown

mass fraction at the wafer can easily be derived from (2) as

ωwall =
ωcenter

1 + K1∆z
D
− K2∇(ln T )∆z

D

(3)

From (3) follows easily that ωwall is positive when ωcenter is positive, and ωwall ≤ 1 as
long as ωcenter ≤ 1 and K1 − K2∇(ln T ) ≥ 0. The latter is easily satisfied along the
reacting boundary because the size of ∆z of the corresponding grid cell, see Figure 2,
is relatively small. Therefore, ∇(lnT ) will be small in comparison with K1 and K2 and
thus K1 − K2∇(ln T ) will remain positive. Note that this is not a proof, but a heuristic
argument.

To summarize, by replacing the diffusive mass flux by Fwall = RSωwall, with ωwall as in
(3), one obtains a positive semi-discretization near the wafer.

3.2 Nonlinear Solver in Euler Backward and BDF2: Newton’s

method

The nonlinear systems arising from the implicit treatment of the species equations
are solved by means Newton’s method, which, if necessary, uses the global convergence
technique line search. The line search technique, or back tracking, is explained below. The
algorithm as used in our code is Algorithm 1. Convergence of Algorithm 1 is declared
when ‖F (x)‖ > TOL, where TOL the termination tolerance. As default the termination
tolerance is given as

TOL = TOLrel‖F (x0)‖+ TOLabs, (4)

where

• TOLrel is the relative termination tolerance,

• TOLabs is the absolute termination tolerance, and,

• ‖F (x0)‖ the norm of F evaluated in the initial guess x0.

Global convergence of Newton’s method can, for instance, be obtained by augmenting
the algorithm by a sufficient decrease condition on ‖F‖:

Find a λ ∈ [λmin, λmax] such that

‖F (xk + λsk)‖ ≤ (1− αλ)‖F (xk)‖, (5)

with α a small number such that (5) is satisfied as easy as possible.
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Algorithm 1: Globally Convergent Newton’s method

Evaluate F (x)1

TOL← TOLrel‖F (x)‖+ TOLabs2

while ‖F (x)‖ > TOL do3

Solve F ′(x)d = −F (x)4

If no such d can be found, terminate with failure.5

Put λ = 1.6

while ‖F (x + λd)‖ > (1− αλ)‖F (x)‖ do7

λ← αλ, where λ ∈ [1/10, 1/2] is computed by minimizing the polynomial8

model of ‖F (x + λd)‖2.

x← x + λd9

This condition provides a test for acceptability of a Newton step that is used. If (5) is
satisfied for a certain λ ∈ [λmin, λmax], then the Newton step is replaced by sk ← λsk.

The minimum step-length reduction is one half, and in our code the maximum step-
length reduction is 1/10. In the second while-loop in Algorithm 1 (see line 7), the step-
length reductioner λ is computed by minimizing the quadratic polynomial model of

p(λ) = ‖F (xk + λd)‖2, (6)

which is based on the last two values of λ. The while-loop in Algorithm 1 terminates when
for a certain λ holds

‖F (xk + λsk)‖ > (1− αλ)‖F (xk)‖. (7)

3.2.1 Quadratic Polynomial Model of ‖F (xk + λd)‖2

In this section we provide details on the minimization of the quadratic polynomial
model of

p(λ) = ‖F (xk + λd)‖2, (8)

which is based on the last two values of λ. The quadratic polynomial model is based on
the three values

• F0 = ‖F (xk)‖
2,

• Fprev = ‖F (xk + λprevd)‖2, where λprev is the previous step-length, and,

• Fcur = ‖F (xk + λcurd)‖2, with λcur the current step-length.

The second order interpolation polynomial through F0, Fprev and Fcur is

p(λ) = F0 + c1λ + c2λ
2. (9)
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Computing the constants c1 and c2 in (9) gives the polynomial

p(λ) = F0 +
c̃1λ + c̃2λ

c̃3
, (10)

with

• c̃1 = λ2
cur(Fcur − F0)− λ2

prev(Fprev − F0),

• c̃2 = λprev(Fcur − F0)− λcur(Fprev − F0),

• c̃3 = (λcur − λprev)λcurλprev.

Note that c̃3 < 0. The next step-length λnew is the minimizer of (10), i.e.,

λnew = −
c̃1

2c̃2
. (11)

In the case that

• c̃2 ≥ 0, we have negative curvature, and thus λnew ← 1/2 λcur,

• λnew < 1/10 λcur, then λnew ← 1/10 λcur, and,

• λnew > 1/2 λcur, then λnew ← 1/2 λcur.

3.3 Direct Linear Solver

At the deepest level of each time integration method considered in this paper, at least
one linear system has to be solved per time step. This section is subdivided into two parts,
where in the first part the linear solvers that appear in Newton’s method in the case of EB
and BDF2 time integration are described. The linear systems in the ROS2 time integration
method are solved in the same way as the linear systems appearing in Newton’s method
for EB and BDF2. In the second part of this section we discuss the linear systems as they
appear in the IRKC solver.

3.3.1 Linear Solver in EB and BDF2

When considering the semi-discretization w′ = F (t, w), with w containing all species in
all grid points and F (t, w) the spatially discretized advection, diffusion and reaction terms,
the resulting linear system is of the following form

Ax = b, (12)

with

• A = I − τF ′(t, w), with F ′(t, w) the Jacobian of F , and,
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• b = −F (t, w).

Since in this paper only two dimensional simulations are considered, we use a direct solver.
Because, in particular, the reaction part of F ′ is not-symmetric, an LU -factorization of A
will be used. The amount of work of computing an LU -factorization of A depends highly
on the bandwidth of A. Therefore, the ordening of unknowns in w, and thus implicitly the
ordening of equations, is important, since it determines the bandwidth of A.

On a rectangular, non-equidistant, structured grid, as presented in Figure 6, with nr
grid cells in the r direction, and nz grid cells in the z direction, we call the number of grid
points n = nr ·nz. Then, it follows that the total number of unknowns is totn = s ·n, with
s the number of species.

The most obvious ordening of unknowns would be the ‘natural ordening’, which means
per species a sequential numbering of the grid lines and the points within each grid line.
The resulting nonzero pattern of A is presented in Figure 3. It can easily be seen that the
bandwidth of A is then n(s− 1).

The most ‘optimal’ ordening in terms of minimal bandwidth is, however, given by: per
grid point a sequential numbering of all species, and then walk through by sequentially
numbering all grid points per line. The resulting bandwidth is s ·nr, and the corresponding
nonzero pattern can be found in Figure 4.

Figure 3: Nonzero pattern of the Jacobian matrix with a natural ordening of the unknowns. In this case
the number of species s = 6.
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Figure 4: Nonzero pattern of the Jacobian matrix with an optimal reordening.

3.3.2 Linear systems appearing in IRKC

The efficiency of the IRKC time integrator highly depends on the ordening of the
unknowns. The only way to make this scheme efficient, and that is then also the way it
should be used, is to arrange the unknowns and equations as described above as being the
most ‘optimal’ ordening. Since the advection and diffusion part(s) of the species equations
are integrated explicitly, the two upper and two lower diagonals in Figure 4 will drop
out. Then remains a matrix A with bandwidth s, i.e., s the number of species. If one
looks more carefully to the structure of A, then one observes that there are actually small,
independent, linear systems per grid point, which have to be inverted, see also Figure 5
The cheapest way to do this is to build an LU factorization of these small subsystems per
grid point, which is a cheap operation. For the sake of clarity, these small systems are not

sparse.

3.3.3 Rounding Errors in the Linear Solver

A very well known result on the error analysis of Gaussian elimination is the following.
Suppose that L̂ and Û are the computed factors of the LU factorization of A, and let ŷ be
the computed solution of L̂ŷ = b, and x̂ be the computed solution of Û x̂ = ŷ. Then the
computed solution x̂ and the exact solution x of Ax = b can are related in the following
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Figure 5: Nonzero pattern of the Jacobian matrix arising in the IRKC method. The current Jacobian is
constructed for the case with 5 grid points in both radial and axial directions, and 3 species.

way
‖x− x̂‖

‖x‖
≤ Cκ(A), (13)

where C ∈ R is the machine precision.
To use this error analysis in practice it is needed to estimate the condition number of

A. We follow the algorithm proposed in Higham (1988), which gives a reliable estimation
of the order of magnitude of the condition number of A.

The condition number of A is defined as

κ(A) = ‖A‖‖A−1‖. (14)

The L1-norms of A and A−1 are respectively

‖A‖ = max
x

‖Ax‖

‖x‖
, and (15)

‖A−1‖ = max
z

‖z‖

‖Az‖
. (16)

The L1-norm of a square matrix A of dimension m can be computed easily as

‖A‖ = max
1≤k≤m

m
∑

j=1

|Aij|. (17)
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Basically, the condition estimator’s task is to obtain a good approximation for ‖A−1‖. The
algorithm to do this is described in Higham (1988) and presented below as Algorithm 2.
In Higham (1988) can be found that it terminates in at most m + 1 iterations. If A is an
M-matrix, then Algorithm 2 terminates after at most 2 iterations and ‖A−1‖ is computed
exactly.

Algorithm 2: Estimation γ of κ(A−1)

Choose x such that ‖x‖1 = 11

repeat2

Solve Ay = x3

ζ = sign(y) (componentwise)4

Solve AT z = ζ5

if ‖z‖∞ ≤ zT x then6

quit with γ = ‖y‖17

x = ej, where |zj| = ‖z‖∞8

until finished ;9

4 Results

Since the reactants are highly diluted in the carrier gas helium, we use the steady
state velocity fields, temperature field, pressure field and density field computed by Kleijn
(2000). For such systems, the computation of the laminar flow and temperature fields etc.,
is, in comparison with computation of the species mass fractions, a relatively trivial task.
All simulations are done on a spatial grid with nr = 35 equidistant grid points in radial
direction with ∆r = 5 · 10−3 m, and nz = 45 non-equidistant grid points in axial direction.
The axial distance from the wafer to the first grid point is 1 ·10−5 m, with the grid spacing
gradually increasing to 5 · 10−3 m for z > 0.04 m. The computational grid is presented in
Figure 6, and the steady state streamlines and temperature field in Figure 7.

The simulations start from the instant that the reactor is completely filled with the
carrier gas helium and a mixture of helium and silane starts to enter the reactor, and stop
when steady state is obtained. Correctness of our solution is then validated against the
steady state solution obtained with the software of Kleijn (2000). All simulations presented
in this paper are test cases where the wafer is not rotating.

In Figure 9 up to and including 13 we present transient deposition rates for simulations
with wafer temperatures varying from 900 K up to 1100 K. The time dependent behavior
of all deposition rates is monotonically increasing until the species concentrations are in
steady state. Note that the relative contributions of the various silicon containing species
to the total deposition rate is a function of the wafer temperatures, with the relative
contribution of Si2H2 increasing with increasing temperature, and the relative contribution
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Figure 7: Steady state streamlines and temperature field.
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of H2SiSiH2 decreasing with increasing temperature. In Table 1 the total steady state
deposition rates for wafer temperatures from 900 K up to 1100 K are given.

900 K 950 K 1000 K 1050 K 1100 K
via long term time integration 0.65 1.44 1.93 2.08 2.15

Kleijn’s steady state computations 0.603 1.42 1.88 2.14 2.21

Table 1: Total steady state deposition rates
(

nm

s

)

for wafer temperatures varying from 900 K up to and
including 1100 K.

Figure 15 shows radial profiles of the total steady state deposition rates of both Kleijn’s
steady state computations, see Kleijn (2000), and our steady state results obtained with
the time integration methods as discussed in Section 3, for wafer temperatures varied from
900 K up to and including 1100 K. Again, the agreement is for all wafer temperatures
excellent. For all studied temperatures, the steady state growth rates obtained with the
present transient solution method were found to differ less than 5% from those obtained
with Kleijn’s steady state code.

The integration statistics of the various time integration methods mentioned in Section
3 are presented in Table 2. Based upon these experiments we conclude that the uncon-
ditionally stable and positive time integration method Euler Backward is the cheapest
in terms of computational costs. However, the second order ROS2 scheme performs also
quite well, although it is not unconditionally positive for the species equations, see van
Veldhuizen et al. (2007b). When the convection part is omitted, then the ROS2 scheme
becomes unconditionally positive. This property explains probably the good behavior
with respect to positivity for the convection-diffusion-reaction case. The performance of
the IRKC scheme is between BDF-2 and ROS2. However, when going from 2 to 3 spatial
dimensions, we expect that the IRKC scheme performs much better in comparison with EB
and ROS2. This is due to the fact that the linear systems to be solved in IRKC remain of
the same dimension, but only more of them have to be solved. This dimension corresponds
to the number of species in the mixture, see also Section 3.3.2.

For the other schemes like EB, ROS2 and BDF2 holds that when going from 2 to 3
spatial dimensions, the direct linear solver as presented in this paper is no longer feasi-
ble. Therefore, one has to apply iterative linear solvers, like for instance Krylov Subspace
methods. The success of a Krylov Subspace method largely depends on an effective pre-
conditioner, which efficiently clusters the eigenvalues of the iteration matrix, resulting in
speed-up of the Krylov method. To find such an effective preconditioner is a challenging
task for future research in this field.

5 Conclusions

In this paper we presented two dimensional transient simulations of a Chemical Vapor
Deposition problem taken from Kleijn (2000). The solutions presented in Kleijn (2000),
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Number of EB BDF-2 ROS2 IRKC
F 190 757 424 427911
F ′ 94 417 142 2008
Linesearch 11 0 0 30
Newton iters 94 417 0 17331
Rej. time steps 1 10 2 728
Acc. time steps 38 138 140 1284
CPU Time 6500 30500 8000 19500

Table 2: Integration statistics for EB, BDF-2, ROS2 and IRKC, with full Newton solver
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Figure 9: Transient deposition rates due to some selected species on the symmetry axis for simulations
with a non-rotating wafer at 900 K. On the right vertical axis: steady state deposition rates obtained with
the steady state code from Kleijn (2000).
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Figure 11: Transient deposition rates due to some selected species on the symmetry axis for simulations
with a non-rotating wafer at 1000 K. On the right vertical axis: steady state deposition rates obtained
with the steady state code from Kleijn (2000).
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with a non-rotating wafer at 1050 K. On the right vertical axis: steady state deposition rates obtained
with the steady state code from Kleijn (2000).
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Figure 13: Transient deposition rates due to some selected species on the symmetry axis for simulations
with a non-rotating wafer at 1100 K. On the right vertical axis: steady state deposition rates obtained
with the steady state code from Kleijn (2000).
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Figure 14: Transient deposition rates for some selected species on the symmetry axis for wafer temperatures
varying from 900 K up to 1100 K. On the right vertical axis: steady state deposition rates obtained with
the steady state code from Kleijn (2000).
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Figure 15: Radial profiles of the total steady state deposition rate for wafer temperatures varied from 900
K up to 1100 K. Solid lines are steady state results from Kleijn (2000), circles are long time steady state
results obtained with the present transient time integration method.

however, were steady state. Correctness of our code is validated by comparing our long
term time integration steady state solutions with the steady state solutions from Kleijn
(2000). The steady state growth rates obtained with our code(s) were found to differ less
than 5% from those obtained in Kleijn (2000).

Another topic considered in this paper is the efficiency, in terms of total computational
costs, of the time integration method used. The time integration methods considered in this
paper, are selected on stability issues and positivity properties. In terms of computational
costs the Euler Backward scheme is the best choice. In spite of its conditional positivity, the
ROS2 scheme performed quite well in comparison with the other higher order integration
methods. However, for time accurate simulations on 3D geometries, we expect that the
IRKC scheme will perform better, because the dimension of the linear systems appearing
in this method remain the same. The other time integration methods have to switch
to iterative linear solvers, where appropriate preconditioners have to be developed. For
problems from chemistry, like the one in this paper, this is still a challenging task for future
research.
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