
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 08-03

A class of projected Newton methods to solve

laminar reacting flow problems

S. van Veldhuizen C. Vuik C.R. Kleijn

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2008

Copyright  2008 by Delft Institute of Applied Mathematics Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission from
Delft Institute of Applied Mathematics, Delft University of Technology, The
Netherlands.

A class of projected Newton methods to solve

laminar reacting flow problems

S. van Veldhuizen1, C. Vuik1, C.R. Kleijn2

1 Delft University of Technology, Delft Institute of Applied Mathematics and J.M.
Burgerscentrum, Mekelweg 4, 2628 CD Delft, The Netherlands

2 Delft University of Technology, Department of Multi Scale Physics and J.M.
Burgerscentrum, Prins Bernardlaan 6, 2628 BW Delft, The Netherlands

Received: February 19, 2008/ Revised version: February 19, 2008

Abstract The numerical modeling of the transport phenomena and the
multispecies, multireaction chemistry in laminar reacting gas flow processes
such as chemical vapor deposition typically involves the solution of large
numbers of advection-diffusion-reaction equations, which are stiffly coupled
through the reaction terms. Stability and positivity requirements of the
solution basically reduce the time integration to be first order Euler Back-
ward. This paper is devoted to the reduction of the computational costs
within Newton’s method by means of introducing preconditioned iterative
linear solvers. However, solving nonlinear systems in an iterative way does
not guarantee the positivity of the solution. In particular when the lin-
ear systems within Newton’s method are not solved exactly, the nonlinear
solution may have many small negative elements. To circumvent this, we
introduce a projected Newton method. We conclude by comparing various
preconditioners for the acceleration of the internal linear algebra problem.

1 Introduction

The class of nonlinear solvers that are a generalization of Newton’s method
in the following sense are called Inexact Newton solvers. Instead of factor-
izing the Jacobian and solving the Newton step directly, the Newton step is
approximated by means of an iterative linear solver. Some well known refer-
ences on Inexact Newton Methods are [3], [6] and [13], in which theoretical
background and numerous applications and examples are given. However,
for practical applications in for instance multi-dimensional industrial flow
process simulations, it is relevant to explore the possibilities to get more

Correspondence to: s.vanveldhuizen@tudelft.nl

4 S. van Veldhuizen et al.

efficient linear solvers within an Inexact Newton method, because this is
one of the cost drivers. Another important cost driver is the computation
of the Jacobian. In this paper we explore possibilities to reduce the compu-
tational costs of time accurate transient simulations of laminar reacting gas
flows as found in Chemical Vapor Deposition (CVD). For comprehensive
descriptions of CVD we refer to [8,12]. As can be found in, for instance
[21], implicit time integration is needed to positively integrate the stiff set
of ODEs resulting from the discretization of the equations in the mathe-
matical model. Consequently, huge nonlinear systems have to be solved. To
reduce the computational costs efficient preconditioners for iterative linear
solvers have to be developed. In this paper we explore several well known
preconditioning techniques and suggest how they should be used in the con-
text of chemically reacting flows. Further, we discuss the issue of positivity
for iterative solvers.

In this paper CVD is modeled as a continuum reacting gas flow pro-
cess. Its mathematical model describes flow, temperature distribution and
chemistry within the reactor. The main gas flow is modeled by the continuity
equation, the Navier Stokes equations and the equation of state (perfect gas
law). The temperature part is described by the energy equation in terms
of temperature. The chemistry part is described by the so-called species
equations, which describe the transport of gas species and their conversion
through various chemical reactions in the gas mixture in terms of mass frac-
tions. Hence, the species equations are of the advection-diffusion-reaction
type, i.e.,

∂(ρωi)

∂t
= −∇ · (ρvωi) +∇ · [(ρDi∇ωi) + (DT

i ∇(ln T))] + mi

K
∑

k=1

νikRg
k, (1)

where ωi is the ith species mass fraction, ρ the density of the gas mixture, v
the mass averaged velocity, Di the effective diffusion coefficient for species
i, D

T
i the thermal diffusion coefficient for species i, T the temperature,

mi molar mass of species i, K the number of gas phase reactions, νik the
stoichiometric coefficient of species i in the kth reaction, and Rg

k the reaction
rate of gas phase reaction k. Further details on Rg

k are presented in Section
4.1.

In this paper we will consider a CVD process in which the reacting
gas species are highly diluted in an inert carrier gas. For such a process,
the gas flow and temperature are not influenced by the reactions and the
computation of the steady flow and temperature field is quite trivial. Only
the species equations need to be solved in a time accurate manner.

The solutions of the other PDEs involving the mathematical model are
computed using the codes developed by Kleijn [11]. Further details on com-
putational algorithms in this code can be found in [11]. In [10] and [11]
further details on CVD modeling can be found. In [20] and [21], further
details can be found on the computational method of solving the species
equations in this way.

Projected Newton methods for laminar reacting flow problems 5

Due to the different time scales involving the species transport and their
conversion as consequence of chemical reactions, the system of species equa-
tions is a stiff system of PDEs. Therefore, implicit time integration will
be needed to fulfill stability requirements. Besides the stability issue, the
non-negativity of the species mass fractions is also important, because they
represent a physical quantity. As we already discussed in previous work,
fulfilling this extra constraint is impossible for higher order time integra-
tion schemes. Moreover, one can prove that unconditionally positive time
integration schemes can be first order accurate only with the consequence
that Euler Backward is the only known scheme which can be proven to be
unconditionally positive. Therefore, we consider in this paper Euler Back-
ward time integration only. Moreover, we investigate how this property can
be maintained within the nonlinear solver.

The paper is organized as follows. First we discuss the Inexact Newton
method and propose a generalization which maintains the non-negativity
property. Second, various preconditioners are discussed, and if possible we
mention their influence on the non-negativity preservation. We conclude
with a short description of the chemistry models, the reactor geometry and
corresponding boundary conditions, and numerical experiments.

2 Inexact Newton Solvers

Instead of solving the Newton step directly, i.e. sk = −[F (xk)]−1F (xk),
the Newton step in Inexact Newton solvers is approximated by an iterative
linear solver, in our case a preconditioned Krylov method. This approximate
Newton step sk has to satisfy the so-called Inexact Newton condition

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖, (2)

for a certain ‘forcing term’ ηk ∈ [0, 1). In general form, the algorithm is
presented as Algorithm 1.

Algorithm 1 Inexact Newton

Let x0 be given.
for k = 1, 2, . . . until ‘convergence’ do

Find some ηk ∈ [0, 1) and sk that satisfy

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖.

Set xk+1 = xk + sk.
end for

Note that the inexact Newton condition (2) expresses

1. a certain reduction in the norm of F (xk) + F ′(xk)sk, which is the local
linear model of F in a neighborhood of xk, and,

6 S. van Veldhuizen et al.

2. a certain (relative) accuracy in solving the Newton equation F ′(xk)sk =
F (xk) iteratively.

Of course, the local convergence behavior of the inexact Newton method
depends on the sequence of forcing terms ηk. As has been illustrated in [3],
the intuitive idea that smaller values of the forcing terms leads to fewer
Newton iterations holds. However, away from a solution, the function F
and its local linear model may disagree considerably at a step that closely
approximates the Newton step. When choosing ηk too small, this can lead
to oversolving the Newton equation; meaning that imposing an accurate
linear solution to an inaccurate Newton correction may result in a poor
Newton update, and, therefore, little or no progress towards a solution. The
latter has been experienced in, for instance, [14] and [16]. Moreover, for
Newton solvers with forced global convergence algorithms, like line-search
(or backtracking), in which additional accuracy in solving the Newton equa-
tion requires additional expense, it may entail pointless costs. Then, a less
accurate approximation of the Newton step is cheaper, and probably more
effective.

In the next section we give some proposed choices on the forcing terms,
all taken from [6], that achieve desirable fast convergence and tend to avoid
oversolving. All strategies to choose the forcing term incooperate informa-
tion about F (and are scaling independent).

2.1 Choosing the forcing term

2.1.1 Choice 1 The first choice, taken from [6],is the following. Given the
initial forcing term η0 ∈ [0, 1), then choose

ηk =

∣

∣

∣
‖F (xk)‖ − ‖F (xk−1)− F ′(xk−1)sk−1‖

∣

∣

∣

‖F (xk−1)‖
, k = 1, 2, (3)

Observe that (3) directly reflects the agreement between F and its local
linear model at the previous step. If the initial iterate x0 is sufficiently near
a solution x∗, then the sequence {xk} produced by Algorithm 1 and the
forcing term as in (3), converges super-linearly towards a solution. As in the
classical case of the secant method, it follows that the order of convergence

equals 1+
√

5
2 ; see, for instance, [15], page 293. The irrational number 1+

√
5

2
is known as the golden ratio, see [7].

Usually the forcing term (3) avoids oversolving, but it might happen
that it is chosen too small. As a safeguard we restrict ηk to be no less than

a certain minimal value, which depends on ηk−1 as η
(1+

√
5)/2

k−1 . Note that
this safeguard should only be activated as ηk−1 is relative large. Therefore

we first check whether η
(1+

√
5)/2

k−1 is larger than a certain threshold, and if
so, the safeguard is active. As was done in [6], the threshold we use is 0.1.
It appeared that this threshold value worked fine in our experiments, and
therefore it was not necessary to change it. To summarize:

Projected Newton methods for laminar reacting flow problems 7

Modify ηk ← max{ηk, γη
(1+

√
5)/2

k−1 } whenever γη
(1+

√
5)/2

k−1 > 0.1.

2.1.2 Choice 2 Another way to base the forcing term on residual norms is

ηk = γ
‖F (xk)‖2

‖F (xk−1)‖2
, (4)

with γ ∈ [0, 1) a parameter. In our experiments we put γ = 0.5, which
worked fine. Again, we have the safeguard:

Modify ηk ← max{ηk, γη2
k−1} whenever γη2

k−1 > 0.1.

Note that for the choice of (4) as forcing term, the order of convergence of
Inexact Newton equals 2, see [6]. In [9], (4) is chosen as forcing term. A
brief discussion on the use of this forcing term can be found in [9].

2.2 The Globalized Inexact Newton Algorithm

It is necessary to introduce a globalized inexact Newton algorithm, because
the initial approximate solutions are not always in the neighborhood of
a solution. The method that we used to ensure global convergence of the
Newton algorithm is line-search, or backtracking as it was called in [6]. The
algorithm is given below; it is called Algorithm 2.

Algorithm 2 Globalized Inexact Newton

1: Let x0, ηmax ∈ [0, 1), α ∈ (0, 1) and 0 < λmin < λmax < 1 be given.
2: for k = 1, 2, . . . until ‘convergence’ do

3: Find some ηk ∈ [0, ηmax] and sk that satisfy
4:

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖.

5: while ‖F (xk + sk)‖ > (1− α(1− ηk))‖F (xk)‖ do

6: Choose λ ∈ [λmin, λmax]
7: Set sk ← λsk and ηk ← 1− λ(1− ηk)
8: end while

9: Set xk+1 = xk + sk.
10: end for

In the implementation of Algorithm 2 we choose every first initial forcing
term equal to one half (1/2) and determine an approximation of the first
Newton step s0 using the Bi-CGSTAB algorithm [17]. The parameters used
in the implementation of Algorithm 2 were ηmax = 0.9, α = 10−4, λmin =
1/10 and λmax = 1/2. In the while-loop, each λ was chosen such that it is
the minimizer of the quadratic polynomial model of

φ(λ) = ‖F (xk + λsk)‖22, (5)

8 S. van Veldhuizen et al.

subject to the safeguard that λ ∈ [λmin, λmax]. Convergence of the global-
ized Newton method is declared when ‖F (xk)‖ < TOLrel‖F (x0)‖+TOLabs,
where TOLrel and TOLabs are, respectively, the relative termination toler-
ance and the absolute termination tolerance of the Newton process. Failure,
or divergence, of Algorithm 2 is declared when

– k reached the maximum number of Newton iterations, of which the de-
fault value is 100 in our code,

– the Bi-CGSTAB algorithm does not succeed in finding a suitable Newton
step within 1000 iterations, or

– the linesearch algorithm is not able to find a suitable Newton step after
10 iterations. (Taking more linesearch iterations into account wouldn’t
make sense, because then the Newton update sk would be too small to
obtain convergence in the next iterations)

In the case that Newton’s method diverges, then the common way to over-
come divergence is to decrease the time-step size. In our code, as in many
other codes, we halve the time step size and repeat Newton’s process.

2.3 Globalized Projected Newton Methods

Preservation of non-negativity of species concentrations in the solution of
the species equations crucial in order to avoid blow up of the solution. In
earlier work, see [21], we discussed classes of time integration methods that
perform well with respect to positivity. The first order Euler Backward
method is the only method being unconditionally positive for all time step
sizes. However, solving the resulting implicit relation by means of a Global-
ized (Inexact) Newton Method, see Section 2.2, does not guarantee positiv-
ity of the solution vector of species concentrations. Moreover, we observed
that for certain preconditioned Krylov methods the returned nonlinear solu-
tion repeatedly contains negative species concentrations. Thus, in practice,
even for the unconditional positive Euler Backward method, repetitions of
negative species concentrations can be observed. For this lacking property
of the (Globalized) (Inexact) Newton method we present an adaptation to
the algorithm such that it preserves positivity.

The basic idea is to generate sequences {xn} in the positive orthant
which converge to a solution x∗ of the nonlinear problem F (x) = 0. The
fact that {xn} is in the positive orthant, gives that the solution x∗ contains
positive entries. These so-called Projected Newton methods originate from
nonlinear optimization problems with constraints, and were first proposed
by [1]. To the authors’ knowledge, these kind of ideas have not been applied
into the field of PDEs.

Application of Projected Newton in the field of PDEs can be done as
follows. Suppose we have computed a Newton direction sk and that the new
solution vector xk+sk contains negative entries. In Figure 1 this is illustrated
for the 2D case. Then, in order to maintain positivity of these entries we

Projected Newton methods for laminar reacting flow problems 9

project the negative entries to zero and check whether this projected solution
is still in the steepest descent direction. More specific, we test whether the
projected solution suffices the sufficient decrease condition, i.e.,

‖F (P(xk + sk))‖ > (1− α(1 − ηk))‖F (xk)‖, (6)

where P is the projection on the positive orthant and α a typical small
parameter. The ith entry of P(x) is given as

Pi(x) =

{

xi if xi ≥ 0
0 if xi < 0

. (7)

When condition (6) is not satisfied, the search direction sk and ηk will be
adjusted by means of a linesearch procedure as described in Section 2.2 and
Algorithm 2.

Algorithm 3 Globalized Inexact Projected Newton

1: Let x0, ηmax ∈ [0, 1), α ∈ (0, 1) and 0 < λmin < λmax < 1 be given.
2: for k = 1, 2, . . . until ‘convergence’ do

3: Find some ηk ∈ [0, ηmax] and sk that satisfy
4: ‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖.
5: while ‖F (P(xk + sk))‖ > (1− α(1− ηk))‖F (xk)‖ do

6: Choose λ ∈ [λmin, λmax]
7: Set sk ← λsk and ηk ← 1− λ(1− ηk)
8: If such λ cannot be found, terminate with failure.
9: end while

10: Set xk+1 = P(xk + sk).
11: end for

As in the case of linesearch, or backtracking methods, we cannot prove
that (6) can always be satisfied. Neither can we derive conditions for which
it surely does not hold. However, we can plead on the fact that it is a
useful extension. The unconditional positivity of Euler Backward ensures
that a non-negative solution exists. If we start with a positive initial guess
in a neighborhood of the positive solution, then we may expect that the
algorithm converges towards this solution. However, due to the use of ap-
proximate Jacobians and/or preconditioned Krylov solvers the solution is
most likely approached from a non-positive direction. By projecting the neg-
ative entries to zero, it is still likely that we remain in a neighborhood of the
solution. The Globalized Inexact Projected Newton method is presented as
Algorithm 3.

It is a straightforward exercise to prove that when (6) is satisfied and
Algorithm 3 does not break down, it converges to a solution. The proof is
an analogue of the proof of Theorem 3.4 in [5], except that the sufficient
decrease condition has to be replaced by (6). By overcoming the positivity
issue, the remaining problem to be solved is the system of linear equations.
The next section is devoted to the preconditioning the linear systems ap-
pearing in Newton’s method.

10 S. van Veldhuizen et al.

x

P(x+s)

contours
of F

x+s

x

x 2

1

Fig. 1 Illustration of the Projected Newton Method for a nonlinear problem of
2 variables, where x = [x1, x2]

T and s the Newton search direction.

3 Preconditioned Linear Solver

Right preconditioned Bi-CGSTAB is used as iterative linear solver. It is well
known that a preconditioner M−1 should be chosen in such a way that the
eigenvalues of AM−1 are efficiently clustered in comparison with those of A.
Typically, in reacting flow simulations where the linear systems have huge
condition-numbers, an effective clustering is needed to get convergence at
all. In Figure 2 the typical order of magnitude of the condition-number of
the Jacobian is shown as a function of (real) time (in seconds). Application
of Krylov solvers without (effective) preconditioning is ruled out.

The ordering of unknowns and equations influences both the perfor-
mance and construction of a preconditioner. In this paper two orderings are
considered:

1. the so-called ‘natural’ ordering, where the unknowns are ordered per
species equation, and,

2. the alternate blocking per grid point ordering, where the unknown species
are ordered per grid point.

For both orderings the corresponding non-zero pattern of the Jacobian in
the Newton iteration is shown in Figure 3(a) and 3(b).

3.1 Incomplete Factorization

Since the computational grids are structured, it is rather easy to build the
incomplete factorization without fill-in for both orderings. Preconditioning
techniques can benefit if the entries in the diagonal block are large relative
to the off-diagonal blocks, see [4]. Since indeed the ‘heavy’ elements are in

Projected Newton methods for laminar reacting flow problems 11

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

C
on

di
tio

n
nu

m
be

r

Time (s)

Fig. 2 Condition-number of the Jacobian as function of time (in seconds)

(a) Natural ordering (b) Alternate blocking per grid point

Fig. 3 Nonzero structures of the Jacobian within Newton’s method for different
orderings

the diagonal blocks in the alternate blocking per grid point ordering, it is
expected that the incomplete LU preconditioner for this ordering should
be more beneficial than the incomplete LU preconditioner for the natural
ordering. Numerical experiments with ILU(0) preconditioners for both or-
derings have confirmed this. In Table 1 the integration statistics for time
accurate simulations running from initial inflow conditions until steady state
are presented. Details of the chemical model consisting of 16 species and 26
reactions used in these experiments are discussed in Section 4.

12 S. van Veldhuizen et al.

Number of alternate block natural

F 197 220
F’ 111 124
Newton 111 124
linesearch 7 12
Rej. time 0 0
Acc. time 36 36
lin iter 346 444
CPU time 300 400

Table 1 Integration statistics for GIN with ILU(0) as preconditioner for two
orderings of the unknowns.

3.2 Lumped Jacobian

Iterative methods will converge more quickly if the diagonal elements are
relative large compared to the off-diagonal elements in its row and column.
Consider, for instance, the 2D discrete advection-diffusion operator A, for
which the advection and diffusion terms are discretized by means of central
differences. This operator A could be approximated by a diagonal matrix
where the entry on the diagonal of the lumped mass matrix is the sum of
all entries of one row of the mass matrix. In the case of a system of species
equations one should not sum up all entries of one row of the Jacobian,
because then also contributions of other species are added to the diagonal
entry. Instead, one should sum up the entries of one row that are related
to the same species. This means that for the natural ordering of unknowns
the diagonals marked by circles in Figure 4(a) should be added to the main
diagonal. Hence, the resulting nonzero structure of the Jacobian is not easy
factorizable (or invertible) due to fill-in.

However, for the alternate blocking per grid point ordering the lumped
version of the Jacobian is constructed by adding the diagonals marked by
circles in Figure 4(b) to the main diagonal. The result is that the lumped
approximation consists of small, uncoupled systems on the diagonal. Each
of these small subsystems has dimension equal to the number of species,
and, hence, is easily decomposed in LU factors.

3.3 Block D-ILU

Denote nr as the number of grid points in radial direction and nz the number
of grid points in axial direction for a 2D finite difference discretization in
cylindrical coordinates. The total number of grid points is denoted as n =
nr ·nz. Ordering the unknowns according to the alternate blocking per grid
point ordering generates a matrix consisting of blocks with a dimension
equal to the number of species. The blocks on the diagonal Aii, i = 1, . . . , n
are not sparse. The other nonzero blocks Ai−1,i, Ai,i−1, Ai−nr,i and Ai,i−nr

are diagonal (sub)matrices.

Projected Newton methods for laminar reacting flow problems 13

(a) Natural ordering. (b) Alternate blocking per grid point.

Fig. 4 Nonzero pattern of the lumped approximations to the Jacobian matrix for
different orderings of unknowns. The super- and sub-diagonals marked by circles
should be added to the main diagonal.

The Jacobian matrix can be split into three matrices, namely,

1. a matrix D, containing all blocks Aii on the main diagonal,
2. the strictly lower part L, containing the blocks Ai−1,i and Ai−nr,i, and,
3. the strictly upper part U , containing the blocks Ai,i−1 and Ai,i−nr.

The block D-ILU preconditioner is then written as

M = (D + L)D−1(D + U), (8)

where D is the block diagonal matrix containing the block pivots generated.
Generating this preconditioner is described in Algorithm 4. Since the upper
and lower triangle parts of the matrix remain unchanged, only storage space
for D is needed.

Algorithm 4 Block D-ILU

Put Dii = Aii for all i = 1, . . . , n
for i = 2, . . . , n do

if mod (i, nr) 6= 0 then

Di+1,i+1 = Di+1,i+1 −Ai+1,iD
−1

ii Ai,i+1

end if

if i + nr ≤ s · n then

Di+nr,i+nr = Di+nr,i+nr −Ai+nr,iD
−1

ii Ai,i+nr

end if

end for

To solve Mx = b, with M defined as in (8), we implemented the following
equivalent formulation:

(D + L)z = b, (I + D−1U)x = z. (9)

14 S. van Veldhuizen et al.

Solving Mx = b using this formulation is outlined in Algorithm 5.

Algorithm 5 Preconditioner solve of a system Mx = b, with M = (D +
L)D−1(D + U)

for i = 1, . . . , n do

Solve Diizi = bi −
P

j<i
Lijzj

end for

for i = n, . . . , 1 do

Solve Diiy =
P

j>i
Uijxj

Put xi = zi − y
end for

With respect to solving systems

Diiy =
∑

j>i

Uijxj , (10)

and

Diizi = bi −
∑

j<i

Lijzj , (11)

as formulated in Algorithm 5, is done by building an LU factorization of
Dii. Since the dimension of Dii equals the number of species, and is small
with respect to the number of grid points, this is a cheap operation.

For the right multiplication of D−1
ii and the diagonal matrix Ai,i+1 we

proceed as follows. We compute the inverse of Dii exactly, with a Gauss-
Jordan decomposition, and multiply it with the diagonal matrix. The di-
mension of Dii, and Ai,i+1, is denoted as s; s is the number of species in
the gas mixture. The total flop count for this multiplication operation is s3

for the Gauss-Jordan decomposition and s2 for the multiplication with the
diagonal matrix. Another possibility is to use an LU factorization and solve
s linear systems, which needs 2/3s3 + s · s2 flops. Based on the amount of
flops we use the first approach.

3.4 Block Diagonal Preconditioner

If the unknowns are ordered according to the alternate blocking per grid
point ordering, then the non-zero pattern of the Jacobian matrix is as in
Figure 4(b). Instead of adding the diagonals marked by circles to the main
diagonal, they can also be omitted. The resultant approximate Jacobian is
easily invertible, because it consists of small, easily factorizable subsystems
on the diagonal blocks.

Projected Newton methods for laminar reacting flow problems 15

3.5 Comparison of Flops

To indicate the amount of work for one of the above preconditioners, we
present for each of them the number of floating point operations (flops)
needed to build the preconditioner P , and the number of flops to solve
Px = b. Note that per Newton iteration the preconditioner is built once,
and the Px = b is solved twice in each Bi-CGSTAB iteration. From Table
3.5 it can be concluded that the incomplete LU-factorization, the lumped
Jacobian and the block diagonal are, in terms of flops, the cheapest to build,
i.e., the number of flops scales linearly and n and cubically in s. The most
expensive preconditioner to build is the blocked version of D-ILU. Thus,
the extra fill-in in this preconditioner expresses itself in, of course, extra
computational costs.

Table 2 Number of floating point operations to build the preconditioner P and
to solve Px = b. The total number of grid points is denoted as n and s denotes
the number of species.

Building P Solving Px = b

ILU(0) 8ns3 2n(s2 + 4s)
Lumped Jacobian 2/3s3n 2s2n

Block D-ILU 2n(s3 + 3s2) 6s2n
Block diagonal 2/3s3n 2s2n

The extra fill-in for block D-ILU results also in extra computational
costs for solving Px = b. The cheapest preconditioned systems to solve, in
terms of flops, are those belonging to the lumped Jacobian and the block
diagonal.

4 Test Problems

Numerical tests are performed for two CVD processes, which are both
shortly described in this section. In the present paper we are only inter-
ested in solving the species equations

∂(ρωi)

∂t
= −∇· (ρvωi)+∇· [(ρD

′
i∇ωi)+(DT

i ∇(ln T))]+mi

K
∑

k=1

νikRg
k, (12)

and to study the transient behavior of the deposition rate along the wafer.
Since the reactants are highly diluted in the inert carrier gas helium, it is
justified to assume that the velocity-, temperature-, density- and pressure
fields are the steady state fields.

The computational domain for both processes is the same, i.e., both
processes occur in the same reactor. The reactor geometry and the matching

16 S. van Veldhuizen et al.

r

z

θ

susceptor

outflow

inflow

solid
wall

dT/dr = 0
v = 0
u = 0

Tin=300 K fSiH4
= 0.001 fHe= 0.999uin= 0.10 m/s

Ts=1000 K u, v = 0

dT/dz = 0
dv/dz = 0

0.175 m

0.15 m

0.
10

 m

Fig. 5 Reactor geometry and boundary conditions

boundary conditions are shown in Figure 5. As computational domain we
take, because of axisymmetry, one half of the (r-z) plane.

The pressure in the reactor is 1 atm. Through the inlet top plane of
the reactor a gas mixture, consisting of 0.1 mole% silane diluted in helium,
enters the reactor chamber with a uniform temperature Tin = 300 K and
a uniform velocity uin = −0.10m

s . At a distance of 0.1 m below the inlet a
susceptor of diameter 0.3 m is placed with temperature Ts. The susceptor
does not rotate. The outer walls of the reactor are adiabatic and do not
rotate.

4.1 Mathematical Model of CVD

The composition of the N -component gas mixture is described in dimen-
sionless mass fractions, which sum up to one. As initial condition we take a
steady state velocity and temperature field of a pure helium flow in the reac-
tor. These laminar flow and temperature fields are computed by respectively
the continuity eq., the Navier-Stokes eqs. and the transport eq. for thermal
energy, see [10] and [11]. At t = 0, an inlet mole fraction fSiH2

= 0.001 is
fed into the reactor.

We assume that in the gas-phase K reversible reactions of the form

N
∑

i=1

ν′
ikAi

kg

k,forward

⇄

kg

k,backward

N
∑

i=1

ν′′
ikAi (13)

take place. In (13) Ai are the species in the gas mixture, ν′
ik the forward

stoichiometric coefficient for species i in reaction k, ν′′
ik the backward stoi-

chiometric coefficient for species i in the kth reaction. The net stoichiometric
coefficient is defined as νik = ν′′

ik − ν′
ik. For the kth reaction the net molar

reaction rate Rg
k

(

mole
m3·s

)

is defined as

Rg
k = kg

k,forward

N
∏

i=1

(

Pωim

RTmi

)ν′

ik

− kg
k,backward

N
∏

i=1

(

Pωim

RTmi

)ν′′

ik

, (14)

Projected Newton methods for laminar reacting flow problems 17

where the forward reaction rate constant kg
k,forward is fitted according to a

modified Arrhenius expression

kg
k,forward(T) = AkT βke

−Ek
RT , (15)

where Ak, βk and Ek are fit parameters. The backward reaction rate con-
stants kg

k,backward are computed self-consistently from thermo-chemistry, ac-
cording to

kg
backward(T) =

kg
forward(T)

Kg(T)

(

RT

P 0

)

P

N
i=1

νik

, (16)

with Kg(T) the reaction equilibrium constants. To facilitate easy reproduc-
tion of the solutions presented in the present paper, the reaction equilibrium
constants are fitted to a modified Arrhenius expression

Kg(T) = AeqT
βeqe

−Eeq

RT , (17)

with Aeq, βeq and Eeq are fit parameters.

4.2 CVD process 1

The first CVD process considered in this paper is a 6 species/5 gas phase
reactions chemistry model, which was also considered in [18]. The 5 reactions
are listed in Table 3 in which also the fit parameters of (15) and (17) are
shown.

Table 3 Gas phase reaction mechanism and fit parameters for the 6 species/5
reactions model of Section 4.2. The parameters βk and βeq are dimensionless,
while Ek and Eeq have unit kJ

mol
. The dimensions of the parameters Ak and Aeq

depend on the order of the reaction, but are expressed in terms of mol, m3 and s.

Reaction Ak βk Ek Ak,eq βk,eq Ek,eq

SiH4 ⇄ SiH2 + H2 1.09 × 1025 −3.37 256 6.85 × 105 0.48 235
Si2H6 ⇄ SiH4 + SiH2 3.24 × 1029 −4.24 243 1.96 × 1012 −1.68 229
Si2H6 ⇄ H2SiSiH2 + H2 7.94 × 1015 0 236 3.70 × 107 0 187

SiH2+Si2H6 ⇄ Si3H8 1.81 × 108 0 0 1.36 × 10−12 1.64 −233

2SiH2 ⇄ H2SiSiH2 1.81 × 108 0 0 2.00 × 10−7 0 −272

4.3 CVD process 2

The other process considered in this paper is the well known 16 species/ 26
reactions chemistry model by [2]. In Table 4 the reactions and fit parameters
are listed. The fit parameters are taken from [11], in which steady state
benchmark solutions are presented for the present reactor geometry. Note

18 S. van Veldhuizen et al.

that the corresponding table in [11] contains a number of typographical and
printing errors, which have been corrected the present table.

In our prior work [19] we presented the transient deposition rates for
wafer temperatures varying from 900 K to 1100 K. In Figure 6, taken from
[19], total transient deposition rates on the symmetry axis are presented
for wafer temperatures in this range. In [19] it has been concluded that our
steady state growth rates agree excellently with the ones computed with the
software of Kleijn [11]; for all studied temperatures the steady state growth
rates were found to differ less than 5% from each other.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

Time (s)

D
ep

os
iti

on
 r

at
e

(n
m

/s
)

1100 K

1050 K
1000 K

950 K

900 K

Fig. 6 Transient total deposition rates on the symmetry axis for wafer temper-
atures varying from 900 K up to 1100 K. On the right vertical axis: steady state
total deposition rates obtained with Kleijn’s steady state code [11].

5 Numerical Experiments

Numerical experiments are done for the two CVD processes mentioned in
the previous section. Tests are done on three different grid sizes, namely, a
grid with nr = 35 grid points in radial direction and nz = 32 grid points
in axial direction, an nr = 35 by nz = 47 grid, and an nr = 70 by nz = 82
grid. In all grids the grid points in radial direction are equidistant. The grid
points in axial direction have a gradually decreasing grid spacing towards
the wafer surface. For the finest grid, i.e., the 70×82 grid, the axial distance
from the wafer to the first grid point equals 1 · 10−6 m, and thereafter the
grid space gradually increases to ∆z = 5 · 10−3 m for z ≥ 0.04 m. For
the coarsest grid the distance between the wafer and the first grid point is
2.5 · 10−4 m. The 35× 32 grid is illustrated in Figure 7.

Projected Newton methods for laminar reacting flow problems 19

Table 4 Fit parameters for the forward reaction rates (16) and gas phase equi-
libria constants (17) for the benchmark problem. The parameters βk and βeq are
dimensionless, while Ek and Eeq have unit kJ

mol
. The dimensions of the parameters

Ak and Aeq depend on the order of the reaction, but are expressed in terms of
mol, m3 and s.

Reaction Ak βk Ek Ak,eq βk,eq Ek,eq

SiH4 ⇋ SiH2 + H2 1.09 × 1025 −3.37 256 6.85 × 105 0.48 235
SiH4 ⇋ SiH3 + H 3.69 × 1015 0.0 390 1.45 × 104 0.90 382
Si2H6 ⇋ SiH4 + SiH2 3.24 × 1029 −4.24 243 1.96 × 1012 −1.68 229
SiH4 +H ⇋ SiH3 + H2 1.46 × 107 0.0 10 1.75 × 103 −0.55 −50

SiH4 +SiH3 ⇋ Si2H5 + H2 1.77 × 106 0.0 18 1.12 × 10−6 2.09 −6
SiH4 +SiH ⇋ Si2H3 + H2 1.45 × 106 0.0 8 1.82 × 10−4 1.65 21

SiH4 +SiH ⇋ Si2H5 1.43 × 107 0.0 8 1.49 × 10−10 1.56 −190
SiH2 ⇋ Si + H2 1.06 × 1014 −0.88 189 1.23 × 102 0.97 180
SiH2 + H ⇋ SiH + H2 1.39 × 107 0.0 8 2.05 × 101 −0.51 −101

SiH2 + H ⇋ SiH3 3.81 × 107 0.0 8 2.56 × 10−3 −1.03 −285

SiH2 + SiH3 ⇋ Si2H5 6.58 × 106 0.0 8 1.75 × 10−12 1.60 −241
SiH2 + Si2 ⇋ Si3 + H2 3.55 × 105 0.0 8 5.95 × 10−6 1.15 −225
SiH2 + Si3 ⇋ Si2H2 + Si2 1.43 × 105 0.0 68 2.67 × 100 −0.18 59
H2SiSiH2 ⇋ Si2H2 + H2 3.16 × 1014 0.0 222 1.67 × 106 −0.37 112
Si2H6 ⇋ H3SiSiH + H2 7.94 × 1015 0.0 236 1.17 × 109 −0.36 235
H2 + SiH ⇋ SiH3 3.45 × 107 0.0 8 1.42 × 10−4 −0.52 −183

H2 + Si2 ⇋ Si2H2 1.54 × 107 0.0 8 7.47 × 10−6 −0.37 −216
H2 + Si2 ⇋ SiH + SiH 1.54 × 107 0.0 168 1.65 × 103 −0.91 180
H2 + Si3 ⇋ Si+ Si2H2 9.79 × 106 0.0 198 1.55 × 102 −0.55 189
Si2H5 ⇋ Si2H3 + H2 3.16 × 1014 0.0 222 1.14 × 106 0.08 210

Si2H2+H ⇋ Si2H3 8.63 × 108 0.0 8 3.43 × 10−4 −0.31 −149
H + Si2 ⇋ SiH + Si 5.15 × 107 0.0 22 1.19 × 103 −0.88 29

SiH4 +H3SiSiH ⇋ Si3H8 6.02 × 107 0.0 0 7.97 × 10−16 2.48 −233

SiH2 +Si2H6 ⇋ Si3H8 1.81 × 108 0.0 0 1.36 × 10−12 1.64 −233
SiH3 + Si2H5 ⇋ Si3H8 3.31 × 107 0.0 0 1.06 × 10−14 1.85 −318

H3SiSiH ⇋ H2SiSiH2 1.15 × 1020 −3.06 28 9.58 × 10−3 0.50 −50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 7 Computational 35 × 32 grid. Species mass fractions are computed in the
cell centers (represented as dots).

20 S. van Veldhuizen et al.

5.1 Experiments for the 6 species/5 reactions problem

We present results for time accurate transient simulations that start from
the inflow conditions and run until the process is in steady state. For these
simulations we allow the maximum number of time steps to be 1000, whereas
the default maximum number of Newton iterations is 80. The latter seems to
be rather large, but in our simulations we experienced that the strong non-
linear reaction terms cause difficulties to find the correct search direction.
Mostly, it is found within 10 Newton steps and converges then towards a
solution. However, in the time frame right before steady state is reached, we
experienced that finding the correct search direction might take some extra
Newton steps. For simulations on the 35 × 32 grid the wafer temperature
was set to 1000 K. In Table 5 relevant integration statistics are presented
for the Euler Backward method, with a Globalized Inexact Newton (GIN)
method, or Globalized Inexact Projected Newton (GIPN) method, equipped
with the presented preconditioners. The number of function evaluations, by
which we mean the evaluations of the right hand side in (12) with the reac-
tion terms included, are for all preconditioners between 180 and 300, except
for the block diagonal preconditioner; the number of function evaluations
is in the order of 2300 for the GIN, and 280 for the GIPN. The number of
time step rejections for the block diagonal preconditioner is due to multiple
time step rejections caused by negative species concentration in the solution
vector. As a result, the total computational costs are an order of magnitude
higher for the GIN combined with a block diagonal preconditioner. The bold
face numbers between brackets in Table 5 are the numbers belonging to the
GIPN simulations for the cases where they differ from the simulations with
GIN.

For the mid-size grid, 35 × 47 grid points, the behavior is found to be
similar. In Table 6 the most relevant integration statistics are listed. The
wafer temperature for the simulations on the 35 × 47 grid was set to 950
K. It has to be remarked that the different wafer temperature does not
influence the behavior of the present computational method; it has been
done to present different deposition rates for various temperatures to the
reader. On the finest grid we found that for the block diagonal and lumped
preconditioner the solution was not in steady state after 1000 time steps. For
both preconditioners series of repeated time step rejections are obtained as
a result of negative solution components. These preconditioners combined
with the GIPN give multiple Newton divergence per time step, resulting in
very small time step sizes. Therefore, we omit these results from Table 7.
The wafer temperature for the simulations on the 70 × 82 grid was set to
900 K.

5.2 Experiments for the 16 species/26 reactions system

For time accurate simulations on the classical 16 species/26 reactions sys-
tem, see also [19,21], generally the same behavior in the integration statistics

Projected Newton methods for laminar reacting flow problems 21

Table 5 Number of operations for the 6 species/5 reactions problem with various
preconditioners. Grid size: 35 × 32. Wafer temperature: 1000 K. Forcing term 1
refers to Eq. (3); forcing term 2 refers to Eq. (4). The ordinary numbers are for
GIN, whereas the bold face numbers are for GIPN.

Precond ILU(0) Lumped Jacobian
Forcing term 1 2 1 2
Newton iter 113 (102) 106 (100) 175 (149) 143 (137)

Negative 1 (0) 1 (0) 2 (0) 2 (0)
Acc timestep 38 (36) 38 (36) 39 (36) 39 (36)
line search 13 (12) 14 24 22
lin iters 821 (722) 940 (960) 3,862 (3,734) 3,549 (3,571)

CPU time (sec) 180 (170) 175 (170) 300 (260) 250 (240)
Precond block D-ILU block diag

Forcing term 1 2 1 2
Newton iter 86 (81) 86 (80) 165 (161) 144 (148)

Negative 1 (0) 1 (0) 0 1 (0)
Acc timestep 38 (36) 38 (36) 36 38 (36)
line search 9 9 24 (20) 19 (22)
lin iters 389 (367) 461 (430) 3,442 (2,948) 3,315 (3,386)

CPU time (sec) 150 (140) 152 (140) 300 (290) 270 (260)

Table 6 Number of operations for the 6 species/5 reactions problem with various
preconditioners Grid size: 35×47. Wafer temperature: 950 K. Forcing term 1 refers
to Eq. (3); forcing term 2 refers to Eq. (4). The ordinary numbers are for GIN,
whereas the bold face numbers are for GIPN.

Preconditioner ILU(0) Lumped Jacobian
Forcing term 1 2 1 2
Newton iter 114 102 437 (441) 453 (371)

Negative 0 0 4 (0) 9 (0)
Acc time step 36 36 100 (103) 111 (96)

line search 18 15 15 (17) 18 (15)
lin iters 1,028 (1,026) 1,010 95,029 (105,486) 106,306 (94,306)

CPU time 270 250 1,700 (1,800) 1,875 (1,600)
Preconditioner block D-ILU block diag
Forcing term 1 2 1 2
Newton iter 96 (100) 89 442 (385) 322 (341)

Negative 0 0 1 (0) 1 (0)
Acc time step 36 36 103 (93) 87 (90)

line search 6 (7) 6 27 (13) 12 (17)
lin iters 1,175 (1,231) 1,154 (1,137) 105,547 (96,764) 79,159 (89,593)

CPU time (sec) 250 230 1,900 (1,700) 1,400 (1,500)

Table 7 Number of operations for the 6 species/5 reactions problem with various
preconditioners Grid size: 70×82. Wafer temperature: 900 K. Forcing term 1 refers
to Eq. (3); forcing term 2 refers to Eq.(4). The ordinary numbers are for GIN,
whereas the bold face numbers are for GIPN.

Preconditioner ILU(0) block D-ILU

Forcing term 1 2 1 2

Newton iter 102 89 102 91
Negative 0 0 0 0

line search 5 5 8 7
lin iters 1,108 1,206 909 1,003

CPU time (sec) 650 580 760 690

22 S. van Veldhuizen et al.

can be found. As in the previous section, we tested on three grid sizes, where
for the finer grids the wafer temperature was set to lower temperatures. Re-
markable is the consistent behavior of the block D-ILU preconditioner for
all grid sizes. The number of function evaluations remains the same for all
grids, and even more important for the CPU time, the number of Jacobian
evaluations remains low for finer grids. For the finer grids the extra fill-in,
with regard to ILU(0), for this preconditioner pays off with respect to the
number of Bi-CGSTAB iterations.

The block diagonal preconditioner combined with forcing term 2 (4),
which inverts the reaction terms per grid point, performs very badly if
no projection is applied in the Newton method. Repeated negative species
concentrations drive the time step size to such small values, that no steady
state solution is obtained within the maximum allowed number of 1000
time steps, see Table 8 and 9. However, when GIPN is used, for all grids
except the finest one, block diagonal performs much better, and might even
compete with the block D-ILU in simulations with large number of species
and fine (3D) grids.

Again, on the finest grid both the lumped Jacobian and the block diag-
onal preconditioner result in multiple Bi-CGSTAB and (projected) Newton
divergence, such that the solution is not computed until steady state within
1000 time steps. For the 70 × 82 grid the grid cell sizes along the reacting
surface are considerably smaller than for both other grids, causing a much
stiffer problem. Consequently, the condition numbers of the Jacobian grow
several orders of magnitude over the ones for simulations on coarser grids.
The lumped Jacobian and block diagonal preconditioners are not capable
to reduce these huge condition numbers to enable fast Bi-CGSTAB conver-
gence, and thus (projected) Newton diverges. For this reason, we present
only results for the ILU(0) and block D-ILU, see Table 10.

Table 8 Number of operations for the 16 species/26 reactions problem with var-
ious preconditioners. Grid size: 35×32. Wafer temperature: 1000 K. Forcing term
1 refers to Eq. (3); forcing term 2 refers to Eq. (4). The ordinary numbers are for
GIN, whereas the bold face numbers are for GIPN.

Preconditioner ILU(0) Lumped Jacobian
Forcing term 1 2 1 2
Newton iter 108 (101) 101 (94) 152 (149) 149 (127)

Negative 1 (0) 1 (0) 0 2 (0)
Acc time step 38 (36) 38 (36) 37 (36) 41 (36)

line search 9 (6) 9 (7) 13 (17) 16
lin iters 848 (825) 1,129 (1,009) 4,987 (4,654) 7,927 (5,819)

CPU time (sec) 300 (270) 265 (235) 470 530 (410)
Preconditioner block D-ILU block diag
Forcing term 1 2 1 2
Newton iter 111 (97) 104 (93) 149 (133) 1379 (125)

Negative 2 (0) 2 (0) 1 (0) 403 (0)
Acc time step 39 (36) 39 (36) 38 (36) 724 (36)

line search 5 6 (4) 10 (15) 7 (16)
lin iters 624 (556) 838 (718) 4,219 (4,313) 13,371 (6,275)

CPU time (sec) 330 (290) 320 (270) 460 (410) 3610 (450)

Projected Newton methods for laminar reacting flow problems 23

Table 9 Number of opertations for the 16 species/26 reactions problem with
various preconditioners Grid size: 35 × 47. Wafer temperature: 950 K. Forcing
term 1 refers to Eq. (3); forcing term 2 refers to Eq. (4). The ordinary numbers
are for GIN, whereas the bold face numbers are for GIPN.

Preconditioner ILU(0) Lumped Jacobian
Forcing term 1 2 1 2
Newton iter 205 (211) 194 (202) 1,241 (250) 1,391 (196)

Negative 0 1 (0) 96 (0) 122 (0)
Acc time step 36 38 (36) 177 (38) 221 (40)

line search 54 (51) 49 (61) 44 (41) 32 (33)
lin iters 2,073 (2,086) 2,541 (2,505) 72,091 (10,655) 106,833 (23,598)

CPU time (sec) 630 (650) 610 (640) 4,600 (1,080) 6000 (1,020)
Preconditioner block D-ILU block diag
Forcing term 1 2 1 2
Newton iter 153 148 285 (290) 2,054 (223)

Negative 0 0 2 (0) 583 (0)
Acc time step 36 36 43 1,000 (43)

line search 29 28 47 (46) 0 (37)
lin iters 772 859 22,498 (25,605) 28,140 (29,253)

CPU time (sec) 480 470 1,260 (1,320) 6,720 (1,240)

Table 10 Number of operations for the 16 species/26 reactions problem with
various preconditioners Grid size: 70 × 82. Wafer temperature: 900 K. Forcing
term 1 refers to Eq. (3); forcing term 2 refers to Eq. (4). The ordinary numbers
are for GIN, whereas the bold face numbers are for GIPN.

Preconditioner ILU(0) block D-ILU
Forcing term 1 2 1 2
Newton iter 353 (385) 395 (351) 325 (308) 299 (306)

Negative 0 3(0) 0 0
Acc time step 37 41 (37) 37 37

line search 127 (145) 136 (128) 101 (95) 101 (96)
lin iters 7,522 (7,930) 11,100 (8,895) 2,069 (1,921) 2,144 (2,290)

CPU time (sec) 5,900 (4,875) 5,420 (6,000) 5,300 (4,280) 4,175 (4,350)

5.3 Discussion on the integration statistics

It can be seen from the simulations with GIN that simulations on finer
grids are more sensitive with respect to positivity, see the number of re-
jected time steps due to negativity. For the incomplete factorization based
preconditioners this is not harmful, but for the lumped Jacobian and block
diagonal preconditioners it is. However, when using GIPN instead of GIN,
then the integration statistics are better for all methods, and in particular
we see that the block diagonal preconditioner improves considerably.

Despite the fact that per Newton iteration the amount of flops to build
the block D-ILU preconditioner and to solve a preconditioned system is the
highest, it performs the best in terms of computational time. Besides the
fewer number of linear iterations needed in the transient simulation, it also

24 S. van Veldhuizen et al.

needs fewer Jacobian evaluations. The latter is probably the most important
factor to reduce the computational costs, in particular for finer grids and a
large amount of species, e.g., compare the difference in integration statistics
between the 6 species problem and the 16 species problem.

Another interesting issue is the role of the forcing term. It is not obvious
to choose the one or the other. For sure is that forcing term 2, see Eq. (4), is
in general tighter than forcing term 1, see Eq. (3), which sometimes results
in negative species concentrations, see for instance Table 9. In particular
the lumped Jacobian and the block diagonal preconditioner have many re-
jections due to negative concentrations. Combined with projected Newton
it gives satisfying results, enabling us to overcome this undesired result. For
the finer grids, forcing term 2 of Eq. (4) gives the best results.

A validation of the steady state solutions obtained has been done in [19],
in which the steady solutions obtained by this code are compared with the
steady state solutions of the steady state code developed by [11]. As far as
we know, no other references on time accurate transient results are known
on problems of the same kind of complexity.

6 Conclusions

In this paper we proposed a collection of preconditioners for transient lam-
inar reacting gas flow simulations. Moreover, we proposed an extension of
Newton’s method to overcome difficulties with positivity. From the numer-
ical experiments, which are performed for two CVD processes on various
computational grids, it can be concluded that for most preconditioners
tested in this paper, the total computational costs decrease when using pro-
jected Newton methods. Moreover, the usage of projected Newton methods
increases the robustness of the Euler Backward solver. The incomplete fac-
torization based preconditioners perform excellent in terms of efficiency. In
particular, with the block D-ILU preconditioner, see Section 3.4, the fewest
number of Jacobian evaluations and Bi-CGSTAB iterations are needed to
compute a time accurate solution of both CVD processes presented in this
paper. Moreover, for this preconditioner, combined with projected Newton
methods, we measured the shortest CPU times. Taking all these arguments
together, makes the block D-ILU the best preconditioner for type of prob-
lems.

Acknowledgements S. van Velhuizen is supported by the Delft Center of Com-
putational Science and Engineering.

References

1. D. P. Bertsekas. Projected Newton methods for optimization problems with
simple constraints. SIAM J. Control Optim., 20:221–246, 1982.

Projected Newton methods for laminar reacting flow problems 25

2. M. E. Coltrin, R. J. Kee, and G. H. Evans. A mathematical model of the fluid
mechanics and gas-phase chemistry in a rotating Chemical Vapor Deposition
reactor. J. Electrochem. Soc, 136:819–829, 1989.

3. R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods.
SIAM J. Numer. Anal., 19:400–408, 1982.

4. I. S. Duff and J. Koster. The design and use of algorithms for permuting
large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl.,
20(4):889–901, 1999.

5. S. C. Eisenstat and H. F. Walker. Globally convergent Inexact Newton meth-
ods. SIAM J. Optimization, 4:393–422, 1994.

6. S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact
Newton method. SIAM J. Sci. Comput., 17:16–32, 1996.

7. R. Hertz-Fischler. A mathematical history of the golden number. Dover Pub-
lications, Inc., Mineola, NY, 1998.

8. M. L. Hitchman and K. F. Jensen. Chemical Vapor Deposition- Principles

and Applications. Academic Press, London, 1993.
9. C. T. Kelley. Solving Nonlinear Equations with Newton’s Method. Fundamen-

tals of Algorithms. SIAM, Philadelphia, 2003.
10. C. R. Kleijn. Transport phenomena in Chemical Vapor Deposition reactors.

PhD thesis, Delft University of Technology, Delft, 1991.
11. C. R. Kleijn. Computational modeling of transport phenomena and detailed

chemistry in Chemical Vapor Deposition- A benchmark solution. Thin Solid

Films, 365:294–306, 2000.
12. C. R. Kleijn, R. Dorsman, K. J. Kuijlaars, M. Okkerse, and H. van San-

ten. Multi-scale modeling of chemical vapor deposition processes for thin film
technology. J. Cryst. Growth, 303:362–380, 2007.

13. D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey
of approaches and applications. J. Comput. Phys., 193:357–397, 2004.

14. J. N. Shadid, R. S. Tuminaro, and H. F. Walker. An inexact Newton method
for fully coupled solution of the Navier-Stokes equations with mass and heat
transport. J. Comput. Phys., 137:155–185, 1997.

15. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,
New York, 1980.

16. R. S. Tuminaro, H. F. Walker, and J. N. Shadid. On backtracking failure in
Newton-GMRES methods with a demonstration for the Navier-Stokes equa-
tions. J. Comput. Phys., 180:549–558, 2002.

17. H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.

Comput., 13(2):631–644, 1992.
18. S. van Veldhuizen, C. Vuik, and C. R. Kleijn. Numerical methods for reacting

gas flow simulations. In V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, and
J. Dongarra, editors, Computational Science–ICCS 2006: 6th International

Conference, Reading, UK, May 28-31, 2006. Proceedings, Part II, pages 10–
17, Berlin, 2006. Springer. Lecture Notes in Computer Science 3992.

19. S. van Veldhuizen, C. Vuik, and C. R. Kleijn. Comparison of numerical meth-
ods for transient CVD simulations. Surf. Coat. Technol., 201:8859–8862, 2007.

20. S. van Veldhuizen, C. Vuik, and C. R. Kleijn. Numerical methods for reacting
gas flow simulations. Internat. J. Multiscale Eng., 5:1–10, 2007.

21. S. van Veldhuizen, C. Vuik, and C. R. Kleijn. Comparison of ODE methods
for for laminar reacting gas flow simulations. Num. Meth. Part. Diff. Eq.,
2008. DOI: 10.1002/num.20305.

