
Journal of Computational Physics 229 (2010) 1724–1738
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
On projected Newton–Krylov solvers for instationary laminar
reacting gas flows

S. van Veldhuizen a, C. Vuik a,*, C.R. Kleijn b

a Delft University of Technology, Delft Institute of Applied Mathematics and J.M. Burgers Centre for Fluid Mechanics, Mekelweg 4, 2628 CD Delft, The Netherlands
b Delft University of Technology, Department of Multi Scale Physics and J.M. Burgers Centre for Fluid Mechanics, Prins Bernardlaan 6,
2628 BW Delft, The Netherlands
a r t i c l e i n f o

Article history:
Received 6 April 2009
Received in revised form 15 September
2009
Accepted 3 November 2009
Available online 11 November 2009

Keywords:
Inexact projected Newton methods
Positivity
Stiff systems
Preconditioned Krylov methods
Laminar reacting flows
Chemical vapor deposition
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.11.004

* Corresponding author.
E-mail addresses: c.vuik@tudelft.nl (C. Vuik), c.r.
a b s t r a c t

Numerical aspects of computational modeling of chemical vapor deposition are discussed.
Large sparse strongly nonlinear algebraic systems are to be solved per time step. For this,
inexact Newton methods and preconditioned Krylov subspace methods are suitable. To
ensure positivity of concentrations, we propose a novel approach, namely a projected inex-
act Newton method. Unlike the commonly used method of clipping, this conserves mass.
Efficiency of several preconditionings is compared. Our numerical tests culminate in an
unusually large computation, namely a three-dimensional case with 17 species and 26
reactions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Multi-dimensional simulation of laminar reacting flow, such as for chemical vapor deposition (CVD) [8] and flows with
combustion [19] requires the simultaneous solution of many strongly coupled advection–diffusion–reaction equations. Here
we discuss only CVD, but our methods and considerations apply to laminar combustion as well.

Assuming continuum flow, the mathematical model consists of the Navier–Stokes equations accompanied by the energy
equation and a usually large number (typically 10–100) of advection–diffusion–reaction equations that model the interac-
tion of the reactive species, of the following form (for species with label i):
@ðqxiÞ
@t

¼ �r � ðqvxiÞ þ r � ðqDirxiÞ þ r � ðDT
irðln TÞÞ þmi

XK

k¼1

mikRg
k; ð1Þ
where xi is the ith species mass fraction, q the density of the gas mixture, v the mass averaged velocity, Di the effective
ordinary diffusion coefficient for species i [12], DT

i the thermal diffusion coefficient for species i, T the temperature, mi molar
mass of species i, K the number of gas phase reactions, mik the stoichiometric coefficient of species i in the kth reaction, and Rg

k

the reaction rate of gas phase reaction k. Further details on Rg
k are presented in Section 4.

Often, the reactive gases in CVD are highly diluted in an inert carrier gas, such that the dilute mixture approach can be
used, see [10]. Under those conditions the time evolution of the gas species can be computed from solving only the system of
species equations (1) in time, whereas for the Navier–Stokes and energy equations the steady state solution suffice. Further
. All rights reserved.

kleijn@tudelft.nl (C.R. Kleijn).

http://dx.doi.org/10.1016/j.jcp.2009.11.004
mailto:c.vuik@tudelft.nl
mailto:c.r.kleijn@tudelft.nl
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1725
details are given in Section 4 of this paper and in [18]. Under these circumstances most of the computing work is consumed
by solving the system of Eq. (1). Due to large disparity in timescales for advection, diffusion and reaction, equations (1) are
very stiff. In that case, most commercial CFD codes fail to solve Eq. (1) with acceptable efficiency. No successful computations
of multi-dimensional, multi-species and multi-reaction CVD flow using commercial CFD codes have been reported in liter-
ature. Moreover, virtually all published multi-species, multi-reaction CVD simulations have been limited to two spatial
dimensions and steady state. In our prior work [18] and this paper we aim at two-dimensional and three-dimensional insta-
tionary CVD simulations. In [18] we have shown that careful numerical analysis results in successful determination of time
accurate solutions. However, in [18] we did not discuss efficient linear solvers. This is one of the topics of this paper.

For stability, temporal discretization of (1) has to be implicit, and for positivity of species concentrations it has to be first
order [18]. We therefore use the first order Euler backward method. Hence, in each time step a large sparse strongly non-
linear algebraic system has to be solved. Usually, an initial guess sufficiently close to the solution for Newton’s method to
converge is not available. Application of direct solvers inside Newton’s iteration is ruled out by the size of the systems in-
volved. The linear systems generated by the Newton iteration will be solved iteratively with limited precision, resulting
in what is called an inexact Newton method [4]. Because of inexactness, positivity of concentration is not guaranteed, leading
to an unacceptable risk of breakdown of the computation. To prevent this we propose a projected Newton method, combined
with backtracking algorithms, such that the returned solutions are guaranteed to be positive. This is the second topic of this
paper, discussed in Section 2. In Section 3 we explore various preconditioning techniques and the way to use them in the
context of chemically reacting flows. We conclude with test computations, including a three-dimensional case with 17
gas-phase species, 26 gas phase reactions and 14 surface reactions.

2. Nonlinear solver

2.1. Inexact Newton methods

Because of strong stiffness the species equations (1) are discretized implicitly in time. As a consequence a large strongly
nonlinear algebraic system has to be solved in each time step. In a previous study [18] we found Newton’s method to be
more efficient than modified Newton methods. We denote a nonlinear algebraic system as FðxÞ ¼ 0. Using Newton’s meth-
ods, we have to solve
F 0ðxkÞsk ¼ �FðxkÞ: ð2Þ
For the sake of efficiency we solve (2) only approximately when far from convergence. This results in what is known as an
Inexact Newton method, see for instance [4]. Independently of which approximation method is used, the convergence cri-
terion to solve Eq. (2) approximately is
kFðxkÞ þ F 0ðxkÞskk 6 gkkFðxkÞk; ð3Þ
for a certain ‘forcing term’ gk 2 ½0;1Þ. The local convergence behavior, which depends on the choice of gk, is discussed in [4].
When the initial guess x0 is not close enough to the solution x� the (inexact) Newton method may diverge. We therefore

augment Newton’s algorithm and inequality (3) with an extra condition giving global convergence. We use backtracking
methods as in [6]. The resulting method is presented as Algorithm 1.

In the while-loop, each k is chosen to minimize the quadratic polynomial model of /ðkÞ ¼ kFðxk þ kskÞk2
2, subject to the

safeguard that k 2 ½kmin; kmax�. How to build this quadratic polynomial model is discussed in [9]. In the numerical experiments
of Section 5 we used the safeguard k 2 ½1=10;1=2�. Regarding this safeguard, it is important to choose the lower bound not
too small, since it will lead to poor Newton updates, and, ultimately divergence. For any choice kmax 2 ½1=2;1Þ in this safe-
guard, the convergence speed will not be influenced.

How to choose the forcing term in inequality (3) is the central theme in [7], where it is found that for a wide range of PDE
problems the following two forcing terms give optimal Inexact Newton convergence:

� Choose the initial forcing term equal to g0 ¼ 1=2,
� Choice 1: Given g0, then choose gk for k P 1 as
gk ¼
kFðxkÞk � kFðxk�1Þ � F 0ðxk�1Þsk�1k
�� ��

kFðxk�1Þk
; ð4Þ
� Choice 2: Given g0, then choose for k P 1
gk ¼ c
kFðxkÞk2

kFðxk�1Þk2 ; with c 2 ½0;1Þ: ð5Þ
If the initial iterate x0 is sufficiently near the solution x�, then the sequence fxkg produced by Algorithm 1 and forcing terms
(4) and (5), converges super-linearly towards a solution. Details on the convergence speeds are found in [7]. Further, a safe-
guard is implemented to avoid solving the Newton equation with more accuracy than necessary. Details on this safeguard
are found in [7,17].

1726 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
Algorithm 1. Globalized inexact Newton
1:
 Let x0; gmax 2 ½0;1Þ; t 2 ð0;1Þ and 0 < kmin <
kmax < 1 be given.

2:
 for k ¼ 1;2; . . . until ‘convergence’ do

3:
 Choose, using (4) and (5), gk 2 ½0;gmax� and find
sk that satisfies

4:
kFðxkÞ þ F 0ðxkÞskk 6 gkkFðxkÞk.

5:
 while kFðxk þ skÞk > ð1� tð1� gkÞÞkFðxkÞk do

6:
 Choose k 2 ½kmin; kmax�

7:
 Set sk ksk and gk 1� kð1� gkÞ

8:
 end while

9:
 Set xkþ1 ¼ xk þ sk.

10:
 end for
2.2. Globalized projected Newton methods

Maintaining non-negativity of species concentrations while solving the species Eq. (1) is crucial to avoid breakdown of the
computation. In this study spatial and temporal discretization ensure positivity for all mesh sizes and time step sizes. But
solving the resulting implicit relation inexactly may result in violation of positivity of species concentrations as has also been
confirmed by numerical experiments, see Section 5.

We therefore adapt the globalized inexact Newton method to preserve positivity. A sequence fxng in the positive orthant
is generated that converges to a solution x� of the nonlinear problem FðxÞ ¼ 0, by a so-called projected Newton method. Pro-
jected Newton methods originate from nonlinear optimization problems with constraints, and were first proposed by Bertse-
kas [2]. To the authors’ knowledge, these kind of method have not been applied to PDEs. The idea is to replace negative
elements in a new iterand xk þ sk by zero and to check whether this projected iterand satisfies the following sufficient de-
crease condition:
kFðPðxk þ skÞÞk 6 ð1� tð1� gkÞÞkFðxkÞk; ð6Þ
where P is the projection on the positive orthant and t a small parameter. The ith entry of PðxÞ is defined by
PiðxÞ ¼
xi if xi P 0
0 if xi < 0

�
ð7Þ
When condition (6) is not satisfied, the search direction sk and gk are adjusted by means of a backtracking procedure as de-
scribed in Algorithm 1. The resulting algorithm, called globalized inexact projected Newton, is presented below as Algorithm
2.
Algorithm 2. Globalized inexact projected Newton
1:
 Let x0; gmax 2 ½0;1Þ; t 2 ð0;1Þ and 0 < kmin <
kmax < 1 be given.

2:
 for k ¼ 1;2; . . . until ‘convergence’ do

3:
 Find some gk 2 ½0;gmax� and sk that satisfy

4:
 kFðxkÞ þ F 0ðxkÞskk 6 gkkFðxkÞk.

5:
 while kFðPðxk þ skÞÞk > ð1� tð1� gkÞÞkFðxkÞk do

6:
 Choose k 2 ½kmin; kmax�

7:
 Set sk ksk and gk 1� kð1� gkÞ

8:
 If such k cannot be found, terminate with failure.

9:
 end while

10:
 Set xkþ1 ¼ Pðxk þ skÞ.

11:
 end for
We cannot prove that inequality (6) can always be satisfied, except in the case that xk þ sk is in the positive orthant. Then,
the standard convergence theory of inexact Newton methods with backtracking applies [6]. Neither can we derive conditions
for which it surely does not hold. However, in practice we find it a useful extension. It is straightforward to prove the fol-
lowing when the augmented sufficient decrease condition (6) is satisfied and Algorithm 2 does not break down: If the iter-
ates have a limit point interior to the positive orthant at which F 0 is non-singular, then that point must be a solution and the
iterates must converge to it. The proof is analogous to the proof of Theorem 3.4 in [6], except that the sufficient decrease
condition has to be replaced by the augmented sufficient decrease condition (6).

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1727
Often, positivity is achieved by clipping, i.e., replacing after completion of a time step negative concentrations by zero.
Although this produces correct steady state solutions, it violates mass conservation during transients. The above approach
conserves mass and is found to be more accurate than clipping in tests in Section 5.

3. Preconditioned linear solver

The Newton step (2) is approximated by a preconditioned Krylov subspace method. The partial derivatives of the chem-
istry terms cause the Jacobian matrix to be non-symmetric. Generally speaking, for non-symmetric linear systems there are
three classes of methods: the class of GMRES methods [13], the class of Bi-CGSTAB methods [13], and IDR methods [14].

The convergence speed of Krylov solvers depends mainly on the preconditioner. For the type of problems considered in
this study preconditioned GMRES and Bi-CGSTAB have a similar convergence behavior. Therefore, it is expected that the class
of IDR methods will not perform significantly better. From the point of view of memory usage the Bi-CGSTAB method is
favorable over the GMRES method, i.e., the number of vectors in memory are seven whereas the number of vectors in mem-
ory and the work for GMRES depends on the number of linear iterations. Moreover, in this study the matrices are structured,
and thus the matrix–vector product is relatively cheap. All the above led to the choice of Bi-CGSTAB as the iterative linear
solver in our codes.

3.1. Condition of the Newton equation

The large disparity in timescales for advection, diffusion and reaction leads to entries in the Jacobian matrix differing or-
ders of magnitude from each other. Hence, a large spread in the eigenvalue distribution of the Jacobian might occur.

Definition 3.1. The condition number for matrix inversion with respect to a matrix norm k � k of a square matrix A is defined
by jðAÞ ¼ kAk � kA�1k, if A is non-singular; and jðAÞ ¼ þ1 if A is singular.
In [17] we computed the typical order of magnitude of the condition number of the Jacobian as a function of real time for
the two-dimensional benchmark of Kleijn [11]. The Euler Backward time integration method was used, such that the time
step size remains relatively large, and a projected Newton method was used to maintain positive approximated solutions. If
more than one Newton equation per time step had to be solved, then the average of these condition numbers was taken. In
particular, when the chemistry is most active, the condition numbers shoot up to Oð1011Þ. Therefore, application of Bi-
CGSTAB without preconditioning is ruled out.

3.2. Ordering of unknowns

Essential for the performance of direct linear solvers and iterative linear solver combined with an incomplete factoriza-
tion type preconditioners is the ordering of unknowns. For the reacting flow problems studied here, the number of un-
knowns is equal to N � n, where N is the number of species in the gas mixture and n the total number of gridpoints
resulting from a multi-dimensional spatial discretization.

The natural ordering of the unknowns is per species equation. The corresponding nonzero pattern, from a two-dimen-
sional example, is illustrated in Fig. 1. Along the diagonal blocks, which are of dimension equal to the number of grid points,
we find the partial derivatives of the discretized advection, diffusion and reaction term with respect to of that particular spe-
cies. The partial derivatives of the reaction terms in Eq. (1) with respect to the remaining ðN � 1Þ species appear as extra sub-
or superdiagonals. For multi-dimensional computational meshes with n grid points the bandwidth of the Jacobian matrix is
then ðN � 1Þn.

The bandwidth decreases considerably by ordering the unknown species mass fractions per grid point. For a two-dimen-
sional computational grid with nr grid points in radial direction and nz grid points in axial direction, the bandwidth of the
Jacobian matrix equals nr � N. Remark that in this case we label the unknowns first in radial direction and thereafter in axial
direction. The corresponding nonzero pattern of the Jacobian is shown in Fig. 2.

3.3. Incomplete LU factorization preconditioners

Since the computational grids are regularly structured, the Jacobian matrix is regularly structured as well. This property
can be exploited to formulate incomplete LU factorization preconditioners in a simple way. In standard texts like that of Bar-
ret et al. [1] or Saad [13], this has been illustrated for the inhomogeneous steady state advection–diffusion equation on a
rectangular domain. Spatial discretization is done by central Finite Volumes, where of course it is assumed that this discret-
ization is stable.

These algorithms are easily extended for the species equations (1) with a number of species larger than one. The extra
nonzero sub- and superdiagonals should be treated in the same way as the off-diagonals for the advection–diffusion case
described above. For both orderings discussed in Section 3.2 with corresponding nonzero structures as in Figs. 1 and 2, this
extension is straightforward.

Fig. 1. Nonzero pattern of the Jacobian-matrix for N ¼ 6 and the unknowns ordered in a natural way. The circles are partial derivatives with respect to
advection and diffusion. In the case of ‘lumping’ this matrix, see Section 3.4.1, these diagonals marked by circles are added to the main diagonal.

Fig. 2. Nonzero pattern of the Jacobian-matrix for N ¼ 6 for the per grid point ordering.

1728 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
Basic iterative methods like Jacobi or Gauss–Seidel converge more quickly if the diagonal entry is relatively large com-
pared to the off-diagonals in its row or column. Techniques like block iterative methods can benefit if the entries in the diag-
onal blocks are large. For preconditioning techniques it is intuitively evident that large diagonals should be beneficial, see [5].
Comparing both orderings, it is seen that for the per grid point ordering, the partial derivatives of the reaction terms are clus-
tered in the diagonal blocks, see Fig. 2. Numerical experiments reveal that this ordering indeed enhances the convergence
speed of the iterative linear solver. The results are presented in Section 5.

3.3.1. Block incomplete factorization
For both orderings there is a natural block structure in the nonzero pattern of the Jacobian matrix. For the natural order-

ing, see Fig. 1, a block structure with blocks of dimension n, with n the number of grid points, over the species is present.
Building an incomplete factorization on block level for this nonzero structure converts the diagonal blocks in the strictly low-

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1729
er triangular part of the nonzero structure into band submatrices. For fine multi-dimensional meshes, and a large number of
reactive species in the gas mixture, it is impossible to store the strictly lower triangular part in computer memory.

Building an incomplete LU factorization on block level for the per grid point ordering appears to be efficient. In this sec-
tion it will be illustrated for a rectangular computational grid on which the species Eq. (1), in cylindrical coordinates, are
discretized by means of the hybrid Finite Volume scheme [11,18].

Denote nr as the number of grid points in radial direction and nz the number of grid points in axial direction, such that the
total number of grid points is n ¼ nr � nz. Ordering the unknown species mass fractions per grid point generates a Jacobian ma-
trix with a nonzero structure consisting of blocks with a dimension equal to the number of species N. The blocks on the diagonal
Aii; i ¼ 1; . . . ;n, are full. The off-diagonal nonzero blocks Ai�1;i;Ai;i�1;Ai�nr;i and Ai;i�nr are diagonal (sub)matrices, see Fig. 2.

The Jacobian matrix can be split into three matrices, namely,

1. a matrix D, containing all blocks Aii on the main diagonal,
2. the strictly upper part U, containing the blocks Ai�1;i and Ai�nr;i, and,
3. the strictly lower part L, containing the blocks Ai;i�1 and Ai;i�nr .

The block incomplete LU factorization preconditioner is then written as
P ¼ ðDþ LÞD�1ðDþ UÞ; ð8Þ
where D is the block diagonal matrix containing the block pivots generated. Since the upper and lower triangle parts of the
matrix remain unchanged, only storage space for D is needed. Its construction is described in Algorithm 3

Algorithm 3. Block ILU

Put Dii ¼ Aii for all i ¼ 1; . . . ;n
for i ¼ 2; . . . ;n do

if modði;nrÞ– 0 then

Diþ1;iþ1 ¼ Diþ1;iþ1 � Aiþ1;iD
�1
ii Ai;iþ1

end if
if iþ nr 6 N � n then

Diþnr;iþnr ¼ Diþnr;iþnr � Aiþnr;iD
�1
ii Ai;iþnr

bf end if
end for

The preconditioning step Px ¼ b within Bi-CGSTAB is solved using the equivalent formulation: First solve z from

ðDþ LÞz ¼ b, then solve x from ðI þ D�1UÞx ¼ z. It is outlined in Algorithm 4.

Algorithm 4. Preconditioner solve of a system Px ¼ b, with P ¼ ðDþ LÞD�1ðDþ UÞ

for i ¼ 1; . . . ;n do
Solve Diizi ¼ bi �

P
j<iLijzj

end for
for i ¼ n; . . . ;1 do

Solve Diiy ¼
P

j>iUijxj

Put xi ¼ zi � y
end for

For the right multiplication of D�1 and the diagonal matrix A , as found in Algorithm 3, we proceed as follows. The in-
ii i;iþ1

verse of Dii is computed exactly using the Gauss–Jordan decomposition, see for instance [15]. The resulting inverse matrix is
then multiplied by the diagonal matrix Ai;iþ1. Consequently, to compute the solutions of the linear systems
Diiy ¼
X
j>i

Uijxj; and Diizi ¼ bi �
X
j<i

Lijzj; ð9Þ
in Algorithm 4, the inverse matrices of Dii are reused.
An alternative approach to compute D�1

ii Ai;iþ1 is to build the LU factorization of Dii and subsequently solve N linear sys-
tems. In terms of floating point operations (flops), this approach costs 2=3N3 þ N � N2 ¼ 5=3N3 flops. The approach using
the Gauss–Jordan decomposition needs N3 flops to compute the exact inverse, and N2 for the multiplication with the diag-
onal matrix. Based on the amount of flops we choose the Gauss–Jordan decomposition.

3.4. Block diagonal preconditioners

Using the per grid point ordering of unknowns an alternative approximation of the Jacobian matrix is the block diagonal
matrix, obtained by omitting the off-block diagonal elements. The resultant approximate Jacobian is easily invertible, be-
cause it consists of small, easily factorizable subsystems on the diagonal blocks.

1730 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
3.4.1. Lumping
By ‘lumping’ the Jacobian matrix, where it is important to lump the same species, a block diagonal nonzero structure is

obtained as well. Thus, for the nonzero structure as in Fig. 2 the four off-block diagonals are added to the main diagonal.
Mathematically, the off-block diagonal elements represent the contributions of the discretized advection–diffusion oper-

ator of the neighboring points of a certain grid point C in the computational grid. Since these approximations are mostly sec-
ond order accurate, such a contribution of a neighbor point of grid point C equal to the value of the solution in grid point C up
to a first order truncation error. Thus, the contribution of this neighbor can be replaced by this first order approximation.
Hence, a first order accurate approximation of the Jacobian matrix has been constructed.

This lumping approach can also be applied to the Jacobian matrix with the unknowns ordered in the natural ordering, see
Fig. 1. In that case, the diagonals marked by circles in Fig. 1 should be added to the main diagonal. When constructing the
resulting lumped matrix, which is a matrix with ðN � 1Þ superdiagonals and ðN � 1Þ subdiagonals, the LU factors have the
same nonzero pattern as the lumped matrix. However, the implementation for this ordering is more difficult than for the
per grid point ordering.

3.5. Comparison of costs: flops

To indicate the amount of work for the above preconditioners, we present for each of them the number of floating point
operations (flops) needed to build the preconditioner P and to solve Px ¼ b. Note that per Newton iteration the precondition-
er is built once, and that Px ¼ b is solved twice in each Bi-CGSTAB iteration. From Table 1 it is concluded that the lumped
Jacobian and the block diagonal are, in terms of flops, the cheapest to build, i.e., the number of flops scales linearly in the
total number of grid points n and cubically in the number of gas-phase species N. The most expensive preconditioner to build
is the ILU(0) preconditioner.

The extra fill-in for block ILU results also in extra computational costs for solving Px ¼ b. The preconditioned systems that
are the cheapest to solve, in terms of flops, are those belonging to the lumped Jacobian and the block diagonal.
4. Test problems

Numerical simulations presented in Section 5 are done for the CVD process of silicon from silane. The gas phase and sur-
face chemistry are modeled according to the classical model as published by Coltrin and coworkers [3], which includes 17
gas species, 26 reversible gas phase reactions and irreversible 14 surface reactions. Reaction rate constants and thermochem-
ical data have been taken from [3] as well. The general form of the gas phase reaction term in species Eq. (1) is
Table 1
Numbe
of speci

ILU(

Bloc

Lum

Bloc
Rg
k ¼ A

qx1

m1

� �b1

� � � qxN

mN

� �bN

Td expð�E=RTÞ; ð10Þ
where A; bi; d and E are fit parameters, R the universal gas constant and T the local temperature. The exact fit parameters for
the forward reaction rates and the thermochemical data used to compute the backward reaction rates can be found in Table
1 in [16]. At the wafer surface it is assumed that irreversible, unimolecular decomposition reactions take place. Detailed
descriptions of the surface chemistry model are found in [3,11,16,18].

4.1. Reactor configurations

For the two reactor configurations considered in this paper the reactor inlet gas mixture consists of 0.1 mole% silane di-
luted in the inert carrier gas helium. Further, the inflow temperature of the gas mixture is 300 K, and the susceptor is heated
up to 1000 K. The pressure in the reactor is equal to the atmospheric pressure.

4.1.1. Two-dimensional reactor
The first reactor configuration is illustrated in Fig. 3. As computational domain has been taken, because of axisymmetry,

one half of the (r–z) plane. The boundary conditions are summarized in Fig. 3 as well. The susceptor at the bottom of the
reactor is not rotating.
r of floating point operations to build the preconditioner P and to solve Px ¼ b. The total number of grid points is denoted as n and N denotes the number
es.

Building P Solving Px ¼ b

0) 8N3n 2ðN2 þ 4NÞn
k ILU 2ðN3 þ 3N2Þn 6N2n
ped Jacobian 2=3N3n 2N2n
k diagonal 2=3N3n 2N2n

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1731
Because we use the dilute mixture approach [10], the flow fields can be considered in steady state during the instationary
calculations. The streamlines and temperature field are shown in Fig. 3.

4.1.2. Three-dimensional reactor
The reactor configuration resulting in a three-dimensional computational domain is illustrated in Fig. 4. The boundary

conditions for inflow, outflow, solid walls and reacting surface, are identical to those imposed on the two-dimensional
reactor.

The streamlines and temperature distribution for the reactor, without inflow- and outflow pipes, are shown in Fig. 5.
5. Numerical experiments

This section is organized as follows. In Section 5.1 integration statistics are presented for the two-dimensional computa-
tional domain. In our prior work [18] the solutions of the two-dimensional problem have been validated. In Section 5.2 the
projected Newton approach is compared with the clipping approach. The strength of the projected Newton method is even
more clearly visible in the three-dimensional case, of which solutions and integration statistics are presented in Section 5.3.

5.1. Two-dimensional simulations

The simulations in this section run from inflow conditions until the steady state solution is reached. In all these simula-
tions we allow the maximum number of time steps to be 1000. With respect to the number of allowed Newton iterations per
time step we remark the following. In the time frame right before steady state is reached, we experienced that to find the
correct search direction might take a few extra Newton iterations. Therefore, the maximum number of Newton iterations is
set to 50.

The computational grids are equidistant in radial direction, whereas the grid spacing in axial direction gradually de-
creases towards the wafer surface. We consider three different grids, namely a grid with nr = 35 grid points in radial direction
and nz = 32 in axial direction, an nr = 35 by nz = 47 grid, and an nr = 70 by nz = 82 grid.

In Tables 2 and 3 some relevant statistics are listed for the various forcing terms and preconditioners. Further, in Fig. 6 the
total CPU times are shown. With respect to total CPU time it can be concluded that the incomplete factorization precondi-
Fig. 3. Reactor geometry, dimensions, boundary conditions, streamlines and temperature field in Kelvin.

Fig. 4. Side and bottom view of the three-dimensional reactor geometry. Due to two symmetry planes the computational domain can be restricted to one
quarter of the reactor.

1732 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
tioners perform significantly better than the block diagonal preconditioners. On the finest grid the solver equipped with
these preconditioners do not converge in the purely transient phase. The block incomplete factorization preconditioner is
favorable over the ILU(0) preconditioner, when looking to CPU times. Furthermore, note that for most preconditioners using
projected Newton instead of globalized inexact Newton leads to a slight improvement in terms of computational efficiency.
However, combining the projected Newton method with the block diagonal preconditioners and forcing term (5) gives a con-
siderable improvement of the computational effort needed.

From Tables 2 and 3 it can clearly be seen that for larger meshes the number of Bi-CGSTAB and Newton iterations in-
creases considerably. Looking to the results of the ILU(0)- and Block ILU preconditioner, it can be concluded that both behave
well with respect to positivity, and thus the differences between the projected and regular Newton method are minimal. As
remarked above, the Block ILU preconditioner is overall computationally cheaper than ILU(0). This can be explained by the
fact that a considerably less amount of linear iterations is needed, see Tables 2 and 3. For finer grids the ratio

Fig. 5. Streamlines and temperature distribution in Kelvin for a quarter of the reactor chamber of Fig. 4, without inflow and outflow regions.

Table 2
Number of Bi-CGSTAB and Newton iterations for forcing terms Choice 1 (4) and Choice 2 (5) and preconditioners on three computational grids for the globalized
inexact Newton method. If a steady state has not been reached then we write nf in the corresponding entry. Further, the number of rejected time steps due to
negative species, denoted as # Neg., are specified.

35� 32 35� 47 70� 82

lin. it. # Newt. # Neg. # lin. it. # Newt. # Neg. # lin. it. # Newt. # Neg.

Choice 1
ILU(0) 848 108 1 2073 205 0 7522 353 0
Block ILU 624 111 2 772 153 0 2069 325 0
Lump 4987 152 0 72,091 1241 177 nf nf nf
Block diagonal 4219 149 1 22,498 285 2 nf nf nf

Choice 2
ILU(0) 1129 101 1 2541 194 1 11,100 395 3
Block ILU 838 104 2 859 148 0 2144 299 0
Lump 7927 149 2 106,833 1391 122 nf nf nf
Block diagonal 13,371 1379 403 28,140 2054 583 nf nf nf

Table 3
Number of Bi-CGSTAB and Newton iterations for forcing terms Choice 1 (4) and Choice 2 (5) and preconditioners on three computational grids for the globalized
inexact projected Newton method. If a steady state has not been reached then we write nf in the corresponding entry.

35� 32 35� 47 70� 82

lin. it. # Newt. # lin. it. # Newt. # lin. it. # Newt.

Choice 1
ILU(0) 825 101 2086 211 7930 385
Block ILU 556 97 772 153 1921 308
Lump 4654 149 10,655 250 nf nf
Block diagonal 4313 133 25,605 290 nf nf

Choice 2
ILU(0) 1009 94 2505 202 8895 351
Block ILU 718 93 859 148 2290 306
Lump 5819 127 23,598 196 nf nf
Block diagonal 6275 125 29,253 223 nf nf

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1733
ILUð0Þ preconditioned Bi-CGSTAB iters
Block ILU preconditioned Bi-CGSTAB iters

ð11Þ
increases, which means that Block ILU performs better for finer grids. Apparently, the extra fill-in generated by the Block ILU
preconditioner, which is a combination of large and small entries, gives a much better approximation of the Jacobian matrix
than the ILU(0) preconditioner.

103

104

35 x 32 35 x 47 70 x 82

C
PU

 ti
m

e
(s

)

(a) Forcingterm1

103

104

35 x 32 35 x 47 70 x 82

C
PU

 ti
m

e
(s

)

(b) Forcingterm2

Fig. 6. Total CPU times for different grids and forcing terms. Solid lines correspond to the projected Newton method, whereas dotted lines correspond to the
regular Newton method. Line mark � corresponds to ILU(0) preconditioning, � corresponds to block-ILU, � corresponds to lumping and � corresponds to
block diagonal preconditioning.

1734 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
The block diagonal and lumping precondioner perform bad with respect to positivity, in particular combined with forcing
term (5). In this case the projected Newton method brings relief. The computational costs decrease by a factor 10, but are still
higher than for the incomplete factorization type preconditioners. Mainly, this is due to the total number of linear iterations,
which is between a factor of 5–10 higher. Probably, the fact that the inverse of the Jacobian is approximated by inverting only
the ‘large’ terms, is not good enough.

Furthermore, we remark that for the simulations without projected Newton, and in which the number of time step rejec-
tions is equal to zero, the integration statistics are not necessarily equal to those with projected Newton. In between not
converged globalized inexact Newton iterations the species concentrations may be negative. The projected Newton does
not allow these negative entries, and, hence, different integration statistics are found. Compare, for example, the results
for the 70 � 82 grid in Tables 2 and 3.

To conclude, in Table 4 we compare the integration statistics of the incomplete LU factorization for the natural and per
grid point ordering. It is quite clear that the different orderings have significant effect on the total computational effort
needed to perform the simulation. Mainly, the computational costs are due to the linear solver. When less Bi-CGSTAB iter-
ations are needed to find the solution, up to a certain accuracy, the total costs are expected to be lower. From Table 4 it can be
seen that the total number of linear iterations for the per grid point ordering is significantly less than for the natural ordering.
Moreover, the approximated linear solutions obtained in the per grid point ordering are more accurate than those obtained
with the natural ordering. This results in a lower number of Newton iterations.

5.2. Comparing projected Newton methods with clipping

Although both approaches compute identical steady states, differences are found when calculating the instationary solu-
tion. To show the differences between the clipping on time level and the projected Newton method we compare mass bal-
ances at time t = 2 s for the atoms e = Si, H and He. At time t = 2 s we compute for atom e
Table 4
Integra

Mes

F
F 0

New
Line
Lin.
R 2
0 Q in;e � Q dep;e � Q out;e dt �

R
reactor ceð2; r; zÞdSR 2

0 Q in;e dt
; ð12Þ
where Q in;e is the molar inflow rate of atom e in the inlet, Q dep;e the molar deposition rate of atom e, Q out;e the molar outflow
rate of atom e in the outlet and ceð2; r; zÞ the molar concentration of atom e in the reactor at time t = 2 s and spatial coordinate
tion statistics for globalized inexact Newton combined with ILU(0) as preconditioner for two orderings of the unknowns.

h size Per grid point Natural

35� 32 35� 47 70� 82 35� 32 35� 47 70� 82

203 407 675 205 476 811
108 213 353 114 252 461

ton 108 213 353 114 252 461
search 9 61 124 8 76 138
it. 848 2111 7171 1131 2455 7942

Table 5
Values of expression (12) for the Si, H and He atoms on different grids.

35� 32 35� 47

Si �2:3 � 10�2 �1:02 � 10�2

H �3:1 � 10�2 �2:4 � 10�2

He Oð10�10Þ Oð10�10Þ

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1735
ðr; zÞ. For simulations with the projected Newton method on the 35 � 32 and 35 � 47 grids the absolute value of expression
(12), which should be zero, is of order Oð10�8Þ for all atoms e. However, when using the clipping strategy, in which mass is
added when negative species concentrations are set to zero, the values found for expression (12) are listed in Table 5.

Thus, on the 35 � 32 grid 2% is added to the total moles of silicon atoms that entered the reactor, and 3.1% is has been
added to the total moles of H atoms that entered the reactor. On the 35 � 47 grid this is 1% and 2.4% for the silicon and
hydrogen atoms respectively. This result clearly shows that the projected Newton method preserves mass, whereas clipping
fails. We believe that larger differences are found when performing numerical experiments for inherently transient chem-
ically reacting flow problems.
5.3. Three-dimensional experiments

To the authors’ knowledge, similar results for three-dimensional transient simulations with a chemistry model with 17
species/26 gas phase reactions/14 surface reactions, or a problem of similar complexity are not published. First, a validation
of the steady state solution is done.
5.3.1. Validation of 3D steady state solution
In Fig. 7 we compare some selected species mass fractions along the intersection of the two symmetry planes with the

two-dimensional axisymmetric solution at the symmetry axis at r ¼ 0. Physically, it is expected that both solutions agree
well. Since both steady state solutions agree well, we conclude that the three-dimensional solution found in our computa-
tions is correct.

In Fig. 8 the total deposition rate, the deposition rate due to the most important growth species along the diagonal from
the center of the wafer to the cornerpoint of the wafer, as well as the radial deposition profiles from the two-dimensional
axisymmetric simulations are shown. Comparing the two-dimensional and three-dimensional deposition profiles in the
neighborhood of the symmetry axis it is concluded that all deposition rates agree very well. Towards the boundary of the
wafer the flow fields of the two-dimensional and three-dimensional simulations differ too much to expect agreement on
the deposition rates.
5.3.2. Transient solutions
In Fig. 9 the transient total deposition rate of solid silicon on 2 locations on the wafer are displayed. The deposition rates

are monotically increasing in time. At the corner point of the wafer it takes much longer for the deposition rate to reach its
steady state value.
0 0.0025 0.005 0.0075 0.01 0.0125 0.015
10−12

10−10

10−8

10−6

10−4

10−2

Height above Susceptor (m)

Sp
ec

ie
s

M
as

s
Fr

ac
tio

ns
 (−

)

SiH4 H2

H2SiSiH2
Si2H6

Si2

Si

SiH2

Fig. 7. Axial steady state concentration profiles along the intersection of the two symmetry planes. Solid lines are the profiles belonging to the three-
dimensional simulations, circles are profiles along the symmetry axis belonging to the two-dimensional axisymmetric case.

0

0.5

1

1.5

2

2.5

3

(0.05.0.05) (0.10.0.10) (0.15.0.15)

Total

Si2H2

H2SiSiH2

SiH2

Fig. 8. Solid lines are steady state deposition rates along the intersection of the origin and the cornerpoint of the wafer (i.e., ðx; y; zÞ ¼ ð0:15; 0; 0:15Þ). The
circles are radial steady state profiles belonging to the two-dimensional axisymmetric case.

10−1 100 101 1020

0.5

1

1.5

2

2.5

3

3.5

D
ep

os
iti

on
 ra

te
 (n

m
/s

)

Time (s)

center
corner

Fig. 9. Transient total deposition rate on the center and on the corner (that is ðx; y; zÞ ¼ ð0:15;0; 0:15Þ) of the susceptor.

1736 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
5.3.3. Integration statistics
Numerical experiments with globalized inexact Newton methods and Euler Backward time integration reveal that sim-

ulations running from inflow conditions to steady state give multiple time step rejections due to negativity for all precon-
ditioners presented in Sections 3.3 and 3.4. Negativity was mostly observed for species having small concentrations.
Incidentally, especially during the transient part of the simulation, before reaching steady state, and in certain grid cells
in the vicinity of the reacting surface, negativity was also observed for species present in larger concentrations, like silane.
For all simulations on the three-dimensional meshes no solutions are found without application of the inexact projected
Newton method.

Numerical experiments have been carried out on an 35 � 32 � 35 grid and an 70 � 70 � 70 grid. The integration statistics
for the simulations from inflow conditions until steady state with the Euler Backward solver combined with the globalized
inexact projected Newton method for the coarse grid are listed in Table 6, and in Table 7 for the 70 � 70 � 70 grid.
Table 6
Number of operations for the 17 species and 26 reactions problem on the three-dimensional computational grid consisting of 35 � 32 � 35 grid cells. The wafer
temperature has been set to 1000 K.

ILU(0) Block ILU Lumped Jacobian Block diagonal

Newton 239 156 332 327
Linesearch 51 20 31 29
Newt. Diver. 3 0 0 0
Acc. time step 44 43 43 43
Lin. it. 3196 2481 17,472 18,392
CPU (s) 20,100 17,500 28,000 29,000

Table 7
Number of operations for the 17 species and 26 reactions problem on the three-dimensional computational grid consisting of 70 � 70 � 70 grid cells. The wafer
temperature has been set to 1000 K.

ILU(0) Block ILU Lumped Jacobian Block diagonal

Newton 539 436 366 367
Linesearch 223 142 114 107
Newt. Diver. 11 11 9 9
Acc. time step 55 53 52 52
Lin. it. 7830 5525 47,105 48,810
CPU (h) 200 167 203 260

S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738 1737
Clearly, from Tables 6 and 7 it can be seen that two components of the solver cause increasing computational costs. First,
effective preconditioning drops the number of preconditioned Bi-CGSTAB iterations. In Table 7 we see that the total compu-
tational costs are mainly determined by the number of linear iterations, i.e., for the block diagonal preconditioners the num-
ber of Newton iterations is low and linear iterations is high.

On the other hand, per Newton iteration the Jacobian is evaluated analytically. For the numerical experiments in the pres-
ent paper the partial derivatives of the chemistry term can be calculated at low cost, such that the exact Jacobian matrix is
relatively cheaply assembled. For the experiments on the course grid we see an increasing number of Newton iterations for
the ‘weaker’ block diagonal preconditioners compared to the incomplete factorization preconditioners. Again, this will in-
crease the computational costs for the block diagonal preconditioners. For the numerical experiments on the fine grid we
observe larger number of Newton iterations for the incomplete factorization preconditioners. Apparently, for these effective
preconditioners in some time steps the Newton step was oversolved. For the ILU(0) preconditioner this phenomena leads to
somewhat longer simulation times.

To summarize, looking at computational time the Block ILU preconditioner combined with the globalized inexact pro-
jected Newton method is the best method to compute a fully time-accurate transient solution of laminar reacting gas flow
problems. Further, the reduction of computational costs is most effectively done by reducing the computational costs of the
linear solver by effective preconditioning.
6. Conclusions

In this paper two topics considering the efficient time accurate solution of laminar reacting gas flows are investigated. To
conserve the non-negativity of the species concentrations we propose to use inexact projected Newton methods instead of
regular inexact Newton methods. Projected Newton methods are widely applied in constraint optimization, but are generally
unknown in the field of PDEs and reacting flow simulations. Numerical experiments revealed that this inexact projected
Newton method combined with various preconditioners, while leading to slight improvement in computational efficiency
for two-dimensional simulations, is indispensable for three-dimensional simulations. Further, we have shown through
numerical experiments that traditional clipping methods, which are not mass conserving, give less accurate time dependent
solutions than the projected Newton methods, which conserve mass.

The total computational costs are also determined by the efficiency of the linear solver. In this paper preconditioned Kry-
lov solvers are used, and various preconditioners are presented and compared. Choosing the block ILU preconditioner com-
bined with the project Newton methods enables us to compute time dependent solutions, from inflow until steady state, on a
70 � 70 � 70 grid with 17 reactive species.
Acknowledgment

The work of S. van Veldhuizen was supported by the Delft Centre for Computational Science and Engineering. We grate-
fully acknowledge Professor Piet Wesseling for the helpful discussions and suggestions during the preparation of this work.
References

[1] R. Barret, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H.A. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] D.P. Bertsekas, Projected Newton methods for optimization problems with simple constraints, SIAM J. Control Optim. 20 (1982) 221–246.
[3] M.E. Coltrin, R.J. Kee, G.H. Evans, A mathematical model of the fluid mechanics and gas-phase chemistry in a rotating Chemical Vapor Deposition

reactor, J. Electrochem. Soc. 136 (1989) 819–829.
[4] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400–408.
[5] I.S. Duff, J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl. 20 (4)

(1999) 889–901.
[6] S.C. Eisenstat, H.F. Walker, Globally convergent Inexact Newton methods, SIAM J. Optim. 4 (1994) 393–422.
[7] S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput. 17 (1996) 16–32.
[8] M.L. Hitchman, K.F. Jensen, Chemical Vapor Deposition – Principles and Applications, Academic Press, London, 1993.
[9] C.T. Kelley, Solving Nonlinear Equations with Newton’s Method, Fundamentals of Algorithms, SIAM, Philadelphia, 2003.

1738 S. van Veldhuizen et al. / Journal of Computational Physics 229 (2010) 1724–1738
[10] C.R. Kleijn, Chemical vapor deposition processes, in: M. Meyyappan (Ed.), Computational Modeling in Semiconductor Processing, Artech House, Boston,
1995, pp. 97–229. Chapter 4.

[11] C.R. Kleijn, Computational modeling of transport phenomena and detailed chemistry in Chemical Vapor Deposition – A benchmark solution, Thin Solid
Films 365 (2000) 294–306.

[12] K.J. Kuijlaars, C.R. Kleijn, H.E. A van den Akker, Multi-component diffusion phenomena in multiple-wafer chemical vapour deposition reactors, Chem.
Eng. J. 57 (1995) 127–136.

[13] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, 2003.
[14] P. Sonneveld, M.B. van Gijzen, IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems, SIAM J. Sci. Comput. 31

(2008) 1035–1062.
[15] G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, Massachusetts, 2003.
[16] S. van Veldhuizen, C. Vuik, C.R. Kleijn, Numerical methods for reacting gas flow simulations, Int. J. Multiscale Eng. 5 (2007) 1–10.
[17] S. van Veldhuizen, C. Vuik, C.R. Kleijn, A class of projected Newton methods to solve laminar reacting flow problems. Report 08-03, Delft University of

Technology, Delft Institute of Applied Mathematics, Delft, 2008.
[18] S. van Veldhuizen, C. Vuik, C.R. Kleijn, Comparison of ODE methods for laminar reacting gas flow simulations, Numer. Meth. Part. Diff. Eq. 24 (2008)

1037–1054.
[19] J. Warnatz, U. Maas, R.W. Dibble, Combustion, second ed., Springer-Verlag, Heidelberg, 1999.

	On projected Newton–Krylov solvers for instationary laminar reacting gas flows
	Introduction
	Nonlinear solver
	Inexact Newton methods
	Globalized projected Newton methods

	Preconditioned linear solver
	Condition of the Newton equation
	Ordering of unknowns
	Incomplete LU factorization preconditioners
	Block incomplete factorization

	Block diagonal preconditioners
	Lumping

	Comparison of costs: flops

	Test problems
	Reactor configurations
	Two-dimensional reactor
	Three-dimensional reactor

	Numerical experiments
	Two-dimensional simulations
	Comparing projected Newton methods with clipping
	Three-dimensional experiments
	Validation of 3D steady state solution
	Transient solutions
	Integration statistics

	Conclusions
	Acknowledgment
	References

