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Abstract

A general model for the dissolution of stoichiometric particles in multi-component alloys is proposed and analysed. We
introduce the concept of mass-conserving solutions and give a self-similar solution for the resulting Stefan-problem. Furthermore,
we show that particle dissolution in multi-component alloys can under certain circumstances be approximated by a model for
particle dissolution in binary alloys. Subsequently, we propose a numerical method to solve the coupled dissolution problem. We
end with some examples of hypothetical applications from metallurgy. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the thermal processing of both ferrous and non-
ferrous alloys, homogenisation of the existing mi-
crostructure by annealing at such a high temperature
that unwanted precipitates are fully dissolved, is re-
quired to obtain a microstructure suited to undergo
heavy plastic deformation as an optimal starting condi-
tion for a subsequent precipitation hardening treat-
ment. Such a homogenisation treatment, to name just a
few examples, is applied in hot-rolling of Al killed
construction steels, HSLA steels, all engineering steels,
as well as aluminium extrusion alloys. Although precip-
itate dissolution is not the only metallurgical process
taking place, it is often the most critical of the occur-
ring processes. The minimum temperature at which the
annealing should take place can be determined from
thermodynamic analysis of the phases present. The
minimum annealing time at this temperature, however,
is not a constant but depends on particle size, particle
geometry, particle concentration, overall composition
etc.

Due to the scientific and industrial relevance of being
able to predict the kinetics of particle dissolution, many
models of various complexity [1–17] have been pre-
sented and experimentally validated. In recent years,
the simpler models covering binary and ternary alloys
have been extended to cover multi-component particles
[18–20]. These advanced models cover a range of phys-
ical assumptions concerning the dissolution conditions
and the initial microstructure. Furthermore, mathemat-
ical implications (such as a possible bifurcation of the
solution, monotonicity of the solution and well-posed-
ness) are addressed and mathematically sound exten-
sions to the case of n compound particles, with proven
theorems concerning existence of mass-concerning solu-
tions and solution bounds, have been derived.

The current paper does not aim at being mathemati-
cally rigorous but merely aims at being descriptive
about the implications of the developed mathematics of
these more complex models. First we formulate the
model for particle dissolution in multi-component al-
loys. Subsequently, we give asymptotic solutions for
both the planar and spherical particle. This asymptotic
solution is used to verify numerical computations. Fur-
thermore, we show that the multi-component problem
(a ‘vector-valued’ Stefan problem) can be approximated
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by a binary problem (‘scalar’ Stefan problem) under
certain circumstances. Next, we give a numerical
scheme to solve the mathematical problem for more
general cases. Subsequently, some test-cases are
shown using some hypothetical experimental data. We
end up with a discussion and some conclusions.

2. Basic assumptions in the model

We consider a particle of a multi-component �-
phase surrounded by a ‘matrix’ of phase �, of uni-
form or non-uniform composition. The boundary
between the �-particle and �-matrix is referred to as
the interface. The metal is divided into cells in which
a particle of phase � dissolves in a �-matrix. Particle
dissolution is assumed to proceed by subsequent steps
[9,11], decomposition of the particle, crossing of the
interface by atoms from the particle and long-distance
diffusion in the �-phase. We assume in this work that
the first two mechanisms proceed sufficiently fast with
respect to long-distance diffusion. Hence, the interfa-
cial concentrations are those predicted by thermody-
namics (local equilibrium). In [20], we considered the
dissolution of a stoichiometric particle in a ternary
alloy. The hyperbolic relationship between the interfa-
cial concentrations for ternary alloys is derived using
a three-dimensional Gibbs space. For the case that
the particle consists of n chemical elements apart
from the atoms that form the bulk of the �-phase, a
generalisation to a n-dimensional Gibbs hyperspace
has to be made. The Gibbs surfaces become hypersur-
faces. We expect that similar consequences follow and
that hence the hyperbolic relation between the interfa-
cial concentrations remains valid for the general stoi-
chiometric particle in a multi-component alloy. We
denote the chemical species by Spi, i�{1, …, n+1}.
We denote the stoichiometry of the particle by
(Sp1)m 1

(Sp2)m 2
(Sp3)m 3

(…) (Spn)mn
. The numbers m1,

m2, …, are stoichiometric constants. We denote the
interfacial concentration of species i by c i

sol and we
use the following hyperbolic relationship for the inter-
facial concentrations.

(c1
sol)m1(c2

sol)m2(…)(cn
sol)mn=K=K(T). (1)

The factor K is referred to as the solubility
product. It depends on temperature T according to
an Arrhenius relationship.

We denote the position of the moving interface be-
tween the �-particle and �-phase by S(t). Consider a
one-dimensional domain, i.e. there is one spatial vari-
able, which extends from 0 up to M. Since particles
dissolve simultaneously in the metal, the concentra-
tion profiles between consecutive particles may inter-
act and hence soft-impingement occurs. This

motivates the introduction of cells of finite size over
whose boundary there is no flux. Hence, the cell size
M is finite. For cases of low overall concentrations in
the alloy, the cell size M may be large and the solu-
tion resembles the case where M is infinite. The latter
case can be treated easily with (semi) explicit expres-
sions. The spatial co-ordinate is denoted by r, 0�
S(t)�r�M. This domain is referred to as
�(t)�{r�R:0�S(t)�r�M}. The �-matrix where
diffusion takes place is given by �(t) and the �-parti-
cle is represented by the domain 0�r�S(t). Hence
for each alloying element, we have for r��(t) and
t�0 (where t denotes time)

�ci

�t
=

Di

ra

�

�r
�

ra �ci

�r
�

, for i�{1, …, n}. (2)

Here Di and ci, respectively, denote the diffusion
coefficient and the concentration of the species i in
the �-rich phase. We assume that diffusion of each
alloying element is independent of the presence of the
other alloying elements. Hence, we set all cross-diffu-
sion coefficients equal to zero. We expect this to be a
good approximation for most (dilute) commercial al-
loys. Furthermore, experiments with differential scan-
ning calorimetry by Chen et al. [15] support this
assumption. Hence, Eq. (2) is a simplification of the
more general multi-component diffusion equation as
stated by Kirkaldy and Young [21]. The geometry is
planar, cylindrical and spherical for a=0, 1 and 2,
respectively. Let c i

0 denote the initial concentration of
each element in the �-phase, i.e. we take as initial
conditions (IC) for r��(0)

(IC)
�ci(r, 0)=c i

0(r) for i�{1, …, n}
S(0)=S0

We omit the more general case in [18] where we
consider the possibility of two simultaneously dissolv-
ing/growing particles. At a boundary not being an
interface, i.e. at M or when S(t)=0, we assume no
flux through it, i.e.

�ci

�r
=0, for i�{1, …, n}. (3)

Furthermore, at the moving interface S(t) we have
the ‘Dirichlet boundary condition’ c i

sol for each alloy-
ing element. The concentration of element i in the
particle is denoted by c i

part, this concentration is fixed
at all stages. This assumption follows from the con-
straint that the stoichiometry of the particle is main-
tained during dissolution in line with Reiso et al. [16].
The dissolution rate (interfacial velocity) is obtained
from a mass-balance. Summarised, we obtain at the
interface for t�0 and i, j�{1, …, n}.
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�
�

�

�

�

ci(S(t), t)=c i
sol

dS
dt

=
Di

ci
part−c i

sol

�ci

�r
(S(t), t)

�
Di

ci
part−c i

sol

�ci

�r
(S(t), t)

=
Dj

cj
part−c j

sol

�cj

�r
(S(t), t).

(4)

The right part of above equations follows from local
mass-conservation of the components. Above formu-
lated problem falls within the class of Stefan-problems,
i.e. diffusion with a moving boundary. Since we con-
sider simultaneous diffusion of several chemical ele-
ments, it is referred to as a ‘vector-valued Stefan
problem’. The unknowns in above Eqs. (3) and (4) are
the concentrations ci, interfacial concentrations c i

sol and
the interfacial position S(t). All concentrations are
non-negative. For a mathematical overview of Stefan
problems we refer to the textbooks of Crank [22],
Chadam and Rasmussen [23] and Visintin [24].

3. Analysis of the model

In this section, we consider some general mathemati-
cal properties of the dissolution model. For the diffu-

sion equation with appropriate boundary conditions
there exists exactly one solution ci that is continuous at
least up to the first and second derivative with respect
to, respectively, time t and position r. Protter and
Weinberger [25] prove that these smooth solutions sat-
isfy a maximum principle, i.e. the global extremes of ci

occur either at the boundaries (r=S(t), r=M) or at
t=0. For the vector-valued Stefan problem the interfa-
cial concentrations are coupled via the right part of Eq.
(4).

3.1. Mass conser�ing solutions

We require that the total mass of all chemical ele-
ments is constant in the whole dissolution cell, i.e. over
0�r�M. Further, let c i

0 be constant over �(0), then�M

0

ci(r, t)ra dr=c i
part S0

a+1

a+1
+c i

0 Ma+1−S0
a+1

a+1
.

Subtraction of�M

0

c i
0ra dr=c i

0(Ma+1/a+1)

from both sides of above equation gives�M

0

(ci(r, t)−c i
0)ra dr= (c i

part−c i
0)

S0
a+1

a+1
. (5)

All solutions of the Stefan-problem have to satisfy
this condition. We use an intuitive argument to show
that some Stefan-problems do not have solutions that
satisfy mass-conservation and hence are ill-posed. A
mathematical theorem is rigorously proven in [18].

Suppose that c i
0�c i

part�c i
sol, i.e. the interfacial con-

centration exceeds the initial concentration (see Fig. 1).
From t=0 the interfacial concentration can increase
(build up) only due to transport of atoms from the
particle to the interface and matrix (since concentration
gradients and reactions are absent initially). This im-
plies that the total number of atoms of the alloying
elements in the particle must decrease.

On the other hand from the maximum principle of
the diffusion equation follows that �ci

�r (S(t), t)�0.
Hence, the total number of atoms of the alloying
element in the matrix increases. Furthermore, we have
c i

part−c i
sol�0, which implies dS

dt �0, hence the total
number of atoms of the alloying elements in the particle
increases. This gives a contradiction.

Both the interfacial movement due to growth and the
increase of the total number of atoms of the alloying
element are sketched in Fig. 1. Mass can not be con-
served for this case.

Similar arguments can be used to show that the other
case c i

sol�c i
part�c i

0 also violates mass-conservation
(see Fig. 2). This statement can be generalised in the
following result.

Fig. 1. The hypothetical case ci
0�ci

part�ci
sol which gives growth of

the �-phase and violation of the mass-balance, (a) shows the initial
situation and (b) shows a situation at some time t�0.

Fig. 2. The hypothetical case ci
sol�ci

part�ci
0 which gives growth of

the �-phase and violation of the mass-balance, (a) shows the initial
situation and (b) shows a situation at some time t�0.
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Claim. Let all concentrations be non-negati�e, then the
following combinations gi�e non-conser�ing solutions in
the sense of Eq. (5),
� c i

sol�c i
part�c i

0;
� c i

0�c i
part�c i

sol (see Figs. 1 and 2 for both cases).

This result is used to reject possible (numerical)
unphysical solutions that result from the vector-valued
Stefan-problem. Furthermore, negative concentrations
are unphysical and hence rejected.

3.2. An asymptotic solution for the planar case

Here we consider the case of a �-particle dissolving in
an unbounded domain, i.e. M=� and �(t) is un-
bounded at the right side. Furthermore, the domain is
planar, i.e. a=0 in Eq. (2). The interfacial concentra-
tions c i

sol satisfy Eq. (1). For completeness we start with
the derivation of the self-similar solution for the one-
component problem. As far as we know, Weber was the
first to derive such solution for the freezing problem
[26].

3.2.1. The one-component problem
Suppose that the interface concentration of a certain

component is known, say c(S(t), t)=c sol for a same
component. Then, we have to solve the following prob-
lem (we refer to this problem as (P1)).

(P1)

�
�
�
�
�
�
�
�
	

�c
�t

=D
�2c
�r2

dS
dt

=
D

cpart−c sol

�c
�r

(S(t), t)

c(S(t),t)=c sol

c(r, 0)=c0=c(�, t), S(0)= (S0)

.

Here, we omit the subscript i. As in [18] we search a
self-similar solution for the function c=c(r, t) and for
S=S(t) we state a square-root behaviour as a function
of time. Trial of c=c(r−S0

2�Dt
) shows that these expres-

sions satisfy the differential equations in (P1). Setting
�= r−S0

2�Dt
gives the following differential equation for

c=c(�) with general solution

−�c �=c
 � c=c(�)=A erfc(�)+B.

The complementary error function is defined as

erfc(x)�1−erf(x)= (2/�)
��

x

e−y2
dy.

Trial of S=S0+k�t, substitution of c(S(t), t)=c sol

into above solution and use of the initial condition
gives

A erfc
� k

2�D

�
+B=c sol

limx��erfc(x)=0 � B=c0
.

Solving for A and B gives the Neumann-solution as
derived in [27]

c(r, t)=
c0−c sol

erf c( k

2�t
)

erfc
�r−S0

2�Dt

�
+c0

Above solution and S=S0+k�t are substituted
into Eq. (4) to give the following expression for the
constant k.

c0−c sol

cpart−c sol

�D
�

e−k2/4D

erfc( k

2�D
)
=

k
2

(6)

above equation is solved for k using a standard zero-
point iteration method. The physical model in which
the solubilities are coupled hyperbolically, see Eq. (1), is
valid only for the dilute regime [21]. Therefore, in most
cases we have ci�c i

part. Hence, in general we have
� csol−c0

c part−c sol��1. From above equation it can be shown
that k is then approximated by (we refer to [27] for
more detail)

k= −2
c sol−c0

cpart−c sol

�D
�

. (7)

This gives the classical formula for the interfacial
velocity that has been obtained by Aaron and Kotler
[10] using Laplace transforms

dS
dt

= −
c sol−c0

cpart−c sol

�D
�t

. (8)

We remark that the derivation of above equation
using the Laplace transform contains the assumption
that the interface moves very slowly compared with the
rate of diffusion, i.e. it is a so-called ‘frozen profile’
approach. For most cases of particle dissolution in solid
metals and alloys, the frozen profile approach is a
reasonable approximation. Therefore, above approxi-
mation is used in the present paper for the extension to
the multi-component problem.

3.2.2. The multi-component problem
As a trial solution for the planar case in a semi-un-

bounded region, we take the interfacial concentrations
to be constant (these concentrations are not constant in
time for other cases). Eq. (4) has to be fulfilled, hence
combined with Eq. (6) one obtains the following system
of non-linear Equations to be solved for k and c i

sol for
i�{1, …, n}.

�
�
�
�
	

c i
sol−c i

0

c i
part−c i

sol

�Di

�

e−k2/(4Di )

erf c(k/2�Di)
=

k
2

for

i�{1, …, n},(c1
sol)m1(c2

sol)m2(c3
sol)m3(…)=K. (9)
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The first set of Eq. (9) represents the coupling be-
tween the interfacial concentrations of the alloying
elements. Due to the non-linear nature of above equa-
tions, the solution is in general not unique. Above set
of equations provides an exact solution for the ‘vector
valued’ Stefan-problem in the parameters k and c1

sol,
c2

sol, …, cn
sol. Due to its complexity, we rely on numeri-

cal solution techniques to obtain its solution. This
solution is referred to as the ‘Neumann ’ solution for the
planar case. Instead of Eq. (6), we use Eq. (8) as an
approximation for the case that � ci

sol−ci
0

ci
part−ci

sol��1. This
gives the following set of equations to be solved in k,
c1

sol, c2
sol, …, cn

sol:

�
�
�
�
	

k=2
c i

0−c i
sol

c i
part−c i

sol

�Di

�
for i�{1, …, n},

(c1
sol)m1(c2

sol)m2(c3
sol)m3(…)=K

. (10)

Note that above equation is accurate whenever
� ci

sol−ci
0

ci
part−ci

sol��1. For cases where this inequality does not
hold, then the above set of equations should be re-
placed by system (Eq. (9)). To illustrate the fact that
more solutions can occur, we consider a hypothetical
ternary alloy with m1=1=m2, c1

part=50, c2
part=1,

c1
0=2 and c2

0=30 and D2=2D1, then after some calcu-
lation one obtains two solutions for the interfacial
concentrations and rate factor k

Both solutions conserve mass and hence are well-
posed. Note that the ‘fast’ solution does not satisfy
�c i

sol−c i
0/c i

part−c i
sol��1 and hence the use of above

equations gives an inaccurate value for the ‘fast’ solu-
tion. We remark here that this has only been given for
illustrational purposes. Real-world alloys do not fall
into this class since the model is only valid in the dilute
solution regime, i.e. ci�c i

part, i�{1, …, n} for t�0,
r��(t). For the interested reader, we refer to [27] where
several computations have been done to determine the
two solutions for a ternary alloy. The same computa-
tions for the ‘exact’ Neumann solution are done in [27]
in which the set of equations (Eq. (9)) is used instead of
system (Eq. (10)). Furthermore, in [18] it has been
shown that the interfacial velocity has the following
upper and lower bound.

c i
0−c i

sol

c i
part−c i

sol

�Di

�t
�

dS
dt

�
c i

0−c i
sol

c i
part−c i

0

�Di

�t
. (11)

This gives two easy bounds for the solution of the
interfacial concentrations and hence the dissolution rate
can be estimated very quickly.
3.2.2.1. The ‘dilute’ case. We consider the case that the
particle concentration is much larger than the interface
concentration. Furthermore, we assume that the initial

concentration is almost equal to zero, i.e. c i
part	c i

sol	
c i

0
0. From the upper and lower bounds in above
expression, it follows that the interface velocity can be
approximated by

dS
dt

= −
c i

sol

c i
part

�Di

�t
for i�{1, …, n}. (12)

Since this has to hold for all i�{1, …, n} it follows
that all interfacial concentrations can be expressed in
terms of, for instance, the interfacial concentration
corresponding to the first element, i.e.

−
c i

sol

c i
part�Di= −

c1
sol

c1
part�D1 � c i

sol=
c i

part

c1
part

�D1

Di

c1
sol

We substitute all these expressions for c i
sol into the

hyperbolic relation for the interfacial concentrations
(Eq. (1)) to obtain a simple exponential equation for
c1

sol whose non-negative real-valued solution gives

(c1
sol)�

�c2
part

c1
part

�D1

D2

�m2�c3
part

c1
part

�D1

D3

�m3

···
�cn

part

c1
part

�D1

Dn

�mn

=K

�c1
sol=

c1
part

�D1

	
i=1
n ��Di

ci
part

�mi

K
n1/�

(�R0
+).

where �i=1
n fi� f1f2, …, fn and ��m1+m2+ ···+mn.

Note again that we consider only non-negative and
real-valued concentrations. The solution for c1

sol is sub-
stituted into Eq. (12) to obtain the interface velocity

dS
dt

= −
c eff

sol

c eff
part

�Deff

�t
with c eff

sol�K1/�,

c eff
part�

	
i=1
n (c i

part)mi
n1/�

, Deff�
	
i=1

n (Di)
mi
n1/�

.

(13)

We see that for this case particle dissolution in a
multi-component alloy is mathematically reduced to
particle dissolution in a binary alloy. The effective
parameters (particle concentration and diffusion coeffi-
cient) are equal to geometric averages with weights
according to stoichiometry. Above differential equation
is solved to give the following dissolution time �

�=
�(c eff

part)2S0
2

4(c eff
sol)2Deff

.

We consider an example with three components. Let
the particle concentrations of species 1 and 2 be equal,
c1

part=33 wt.%=c2
part, for the first two species. The

particle concentration of the third component, c3
part, is

allowed to vary. When the stoichiometry is unchanged
for all configurations, then the variation of the particle
concentration reflects the molecular weight of the third
component. Further, let the initial concentration in the

�c1
sol=11.72680603, c2

sol=25.58241343, k= −0.2867679473 ’slow’ solution
c1

sol=42.43150941, c2
sol=7.070217490, k= −6.027895861 ’fast’ solution

.
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Fig. 3. The dissolution time � as a function of the diffusion coefficient
of the third element D3 for consecutive values of the particle concen-
tration of the third element c3

part. The diffusion coefficient and time
are given in the units �m2 s−1 and s. The solid and dotted curves,
respectively, correspond to the approximate solution and the exact
solution.

dissolution time. As can be seen from substitution into
above relation, the dissolution time �(s) varies with the
diffusion coefficient of the third component according to
a reciprocal power of one third, i.e. �� (D3)−1/3. Fig. 3
shows the variation of the dissolution time with the value
of the third diffusion coefficient for relatively low values.
Both the approximate solution, based on Eq. (12), and
the ’exact’ Neumann solution of system (Eq. (9)), are
plotted in Fig. 3 for consecutive particle concentrations.
It can be seen that the difference is small.

From Fig. 3, it can be seen that the dissolution time
is highly sensitive to changes of the diffusion coefficient
of the third component, D3, when D3 is small. A small
value of D3 corresponds to the addition of a slowly
diffusing third component. Hence dissolution times are
long when a slowly diffusing third component is added.
Furthermore, it can be seen from Fig. 3 that the
dissolution time increases for increasing particle concen-
tration of the third component.

Fig. 4 shows a similar picture in the top-left as in Fig.
3, however, the diffusion coefficient of the third compo-
nent is varied over a larger range and the particle
concentration of the third component is set equal to 3,
i.e. c3

part=3 wt.%. In Fig. 4, we see that the interfacial
concentration of the first component increases for in-
creasing D3. Hence, the difference c1

part−c1
sol decreases

and therewith �c1
sol−c1

0/c1
sol−c1

0� increases and hence
�c1

sol−c1
0/c1

sol−c1
0��1 is no longer true. However, the

interfacial concentration of the second component de-
creases and hence �c1

sol−c1
0/c1

sol−c1
0��1 decreases. This

implies that these two effects work against each other,
and this supports the small difference between the exact
‘Neumann ’ solution and approximate solution (Eq. (11)),
also for high values of D3. Note, however, that the
difference in Fig. 4 is more significant than in Fig. 3. For
completeness, we also give the evolution of the velocity
coefficient, k, as a function of the diffusion coefficient of
the third component.

When we increase the diffusion coefficient D3 suffi-
ciently, then c1

sol, as predicted by Eq. (11) exceeds the
value of c1

part. Therewith, one enters the region of
ill-posedness (mass is no longer conserved). Of course
Eq. (11) cannot be used for this case. So this behaviour
of �� (D3)−1/3 breaks down for large D3. This break-
down takes place when c1

sol becomes significant with
respect to c1

part. Eq. (10) is used as an initial guess for the
‘exact’ Neumann solution (Eq. (9)), obtained from nu-
merical solution of this system. We also observed that
when c1

sol, as determined from approximation (Eq. (11))
and used as an initial guess for the solution of Eq. (6),
exceeds c1

part no convergence is obtained when Eq. (6) is
solved numerically. It is shown in [27] that also no
Neumann solutions exist in this range.

In Figs. 3 and 4, we see that the dissolution time as
predicted by the Neumann solution is smaller than for
the quasi-binary approach. This is explained as follows:
consider Eq. (6), we see that convergence to Eq. (7)

Fig. 4. Top-left, the dissolution time as a function of the diffusion
coefficients of the third component for larger values. The dotted and
solid lines, respectively, correspond to the exact and approximate
solution. Top-right, the interfacial concentration of the first compo-
nent as a function of the diffusion coefficient of the third component.
Bottom-left, the interfacial concentration as a function of the diffu-
sion coefficient of the third component. Bottom-right, the velocity
coefficient k as a function of the diffusion coefficient of the third
component. Calculations have done with particle concentrations of 33
for the first two components, the particle concentration of the third
component is 3.

matrix be zero for all alloying elements, i.e. c i
0=0. The

solubility product is chosen equal to one, i.e. K=1. We
start with a layer of thickness S0=10−6 m. This data-set
gives c eff

sol=1. We start with diffusivities D1=10−13 m2

s−1 and D2=2×10−13 m2 s−1. The third diffusion
coefficient is allowed to vary to study its impact on the
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takes place as D3��. Since c i
0=0 and c i

sol�0 it
follows that (c1

sol−c1
0/c1

part−c1
sol)= ( ci

sol

ci
part−ci

sol)� ( ci
sol

ci
part).

Use of Eq. (8) shows that the Neumann solution time is
smaller than the quasi-binary dissolution time for D3

sufficiently large. Hence, ��0 as D3��.
We define the relative error made by the use of the

quasi-binary approach as

��
��N−�qb�

�N

,

where �N and �qb, respectively, correspond to the disso-
lution time as predicted by the use of the Neumann
solution and the quasi-binary approach. We plot the
relative error made by the use of the quasi-binary
approach as a function of the diffusion coefficient for
different particle concentrations in Fig. 5 on a double
logarithmic scale. It can be seen that the relative error
increases monotonically with D3. Furthermore, the rela-
tive error increases as the particle concentration of the
third component decreases. This is explained by the
increase of the significance of the interfacial concentra-
tion. The slope of all lines for consecutive particle
concentrations is the same. This suggests an approxi-
mate power behaviour for the relative error �� (D3)0.42.

When the assumption 0
c i
0�c i

sol�c i
part is relaxed,

both expressions in Eq. (10) can be combined to get a
polynomial equation of order �=m1+m2+…+mn in
c1

sol. A numerical zero-point method can be used to get
the solution. This more general case is omitted here,
since we are not able to find general expressions for the
zeros of the resulting polynomial.

3.3. An asymptotic solution for the spherical case

The diffusion equation for the spherical case in an
unbounded domain admits a similar self-similar solu-
tion, in terms of c=c(r/�t), as for the planar case.
However, one obtains incompatibility with the interface
rate equation. Therefore, we are not able to find a
solution of the type of the previous section. Using
Laplace transforms, Whelan [4] came up with the fol-
lowing expression for the interface velocity

dS
dt

= −
c i

sol−c i
0

c i
part−c i

sol

�Di

S
+
�Di

�t
�

. (14)

The interfacial position S(t) has been treated as a
constant during Whelan’s derivation. At early stages it
behaves like Aaron and Kotler’s [10] solution, i.e. the
second (planar) term dominates. At later stages as the
second term decreases, the first term becomes more
important during dissolution. Therefore, at some stage,
say t1� t� t2, we approximate the interfacial velocity
by

dS
dt

= −
c i

sol−c i
0

c i
part−c i

sol

Di

S
. (15)

Above equation is also obtained after solving of the
stationary diffusion and subsequent substitution of this
solution into the Stefan condition. We remark that this
solution becomes inaccurate again as blow up (�dS/
dt ��� as S�0) takes place. Similar to the planar case
we assume 0
c i

0�c i
sol�c i

part. After carrying out the
same analysis as before for the planar case, we see all
interfacial concentrations can be expressed in terms of
the interfacial concentration of the first element

c i
sol= −

c i
partD1

c1
partDi

c1
sol for i�{1, ..., n}.

Substitution of above relations into the hyperbolic
relation for the interfacial concentrations (Eq. (1)) gives
the following expression for the interfacial concentra-
tion of the first alloying element

c1
sol= −

c1
part

D1

	
i=1
n � Di

ci
part

�mi

K
n1/�

with

��m1+m2+…+mn.

Above expression is similar to the one for planar
geometry except for the absence of the square root for
the diffusion coefficients. This gives hence different
values for the interfacial concentrations c i

sol. So during
the dissolution process the values of the interfacial
concentrations converge from the values as determined
in the previous section to the values just mentioned.
Note that this holds for the case that the interfacial
position moves slowly, i.e. �(c i

sol−c i
0)/(c i

part−c i
sol)��1.

Let the time be in the interval t1� t� t2, then substitu-
tion of above expression into Eq. (15) gives for the
interfacial velocity

Fig. 5. The relative error of the dissolution time as predicted by the
quasi-binary approach as a function of the diffusion coefficient of the
third component for consecutive particle concentrations.
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dS
dt

= −
c1

sol

c1
part

D1

S
�

dS
dt

= −
c eff

sol

c eff
part

Deff

S
.

where the effective interfacial concentration, particle
concentration and diffusion coefficient are defined by
c eff

sol�K1/�, c eff
part� [�i=1

n (c i
part)mi ]1/�, Deff� [�i=1

n (Di)
mi ]1/

�. Solution of above equation is trivial. Note that these
effective parameters are equal to the ones that were
obtained for the planar case. Nevertheless, the interfacial
concentrations differ in both cases. Furthermore, it
should be noted that the approximations hold under
limiting assumptions.

For the more general case, where 0
c i
0�c i

sol�c i
part

does not hold necessarily and where we are in the range
of time where both terms in Eq. (14) are of same order,
the interfacial concentrations are continuous functions of
time. Their values start at the planar solution (see
preceding subsection) and converges towards the solution
obtained in this subsection (see above relation). The
evolution of the interfacial concentrations and interfacial
position is obtained by the use of the full Eq. (14) and
hyperbolic relation (Eq. (1)) for the interfacial concentra-
tions. The calculation of the interfacial concentrations is
straightforward.

4. Numerical method

Various numerical methods are known to solve Stefan-
problems, front-tracking; front-fixing and fixed domain
methods. Since the concentration at the interface varies
with time in our problem, we restrict ourselves to a
front-tracking method. Recently a number of promising
methods are proposed for multi-dimensional problems,
phase field methods and level set methods, such as in Eqs.
(1) and (2). However, imposing local equilibrium condi-
tion at the interface in such models is not as straightfor-
ward as in front-tracking methods that are used here. A
coupling between thermodynamics and a phase field
model is presented by Grafe et al. [28].

Our main interest is to give an accurate discretisation
of the boundary conditions for this Stefan-problem with
one spatial co-ordinate. Therefore, we use the classical
moving grid method of Murray and Landis [29] to
discretise the diffusion equations. In this paper we briefly
describe the method, for more details we refer to [18].

4.1. Discretisation of the interior region

We use an implicit finite difference method to solve the
diffusion equation in the inner region. An explicitly
treated convection term due to grid-movement is in-
cluded. Since the magnitude of the gradient is maximal
near the moving interface we use a geometrically dis-
tributed grid such that the discretisation near the interface
is fine and coarse farther away from the moving interface.

Furthermore, we use a virtual grid-point near the moving
boundary. The distance between the virtual node and the
interface is chosen equal to the distance between the
interface and the first grid-node. The resulting set of linear
equations is solved using a tridiagonal matrix solver.

4.2. Discrete boundary conditions at the interface

We define the discrete approximation of the concentra-
tion as c i,k

j , where j, i and k, respectively, denote the
time-step, the index of the chemical (alloying) element and
gridnode. The virtual gridnode behind the moving inter-
face and the gridnode at the interface, respectively, have
indices k= −1 and k=0. At the moving interface, we
obtain from discretisation of Eq. (4)

Di

ci
part−c i

sol

c i,1
j+1−c i,−1

j+1

2�r
=

Di+1

c i+1
part −c i+1

sol

c i+1,1
j+1 −c i+1,−1

j+1

2�r
,

for j�{1, ..., n−1}.

Note that the concentration profile of each element is
determined by the value of the interfacial concentration.
Above equation can be re-arranged into a zero-point
equation for all chemical elements. All interfacial concen-
trations satisfy the hyperbolic relation (Eq. (1)). Combi-
nation of all this, gives for i�{1, …, n−1} and i=n

fi(c i,0
j+1, c i+1,0

j )

�Di(c i,1
j+1−c i,−1

j+1)(c i+1
part −c i+1

sol )

−Di+1(c i+1,1
j+1 −c i+1,−1

j+1 )(c i
part−c i

sol)=0.

fn(c1
sol, …, cn

sol)� (c1
sol)m1(c2

sol)m2(…)(cn
sol)mn−K=0.

To approximate a root for the ‘vector-function’ f we
use Newton’s method combined with discrete approxima-
tions for the non-zero entries in the first n−1 rows of
the Jacobian matrix. The iteration is terminated when
sufficient accuracy is reached. This is explained in more
detail in [18].

4.3. Adaptation of the mo�ing boundary

The moving interface is adapted according to Eq. (4).
In [30] the forward (explicit) Euler and Trapezium time
integration methods are described and compared. It was
found that the (implicit) Trapezium method was superior
in accuracy. Furthermore, the iteration step to determine
the interfacial concentrations is included in each Trapez-
ium step to determine the interfacial position. Hence, the
work per time-iteration remains the same for both
time-integration methods. Therefore, the Trapezium rule
is used to determine the interfacial position as a function
of time. We terminate the iteration when sufficient
accuracy is reached, i.e. let � be the inaccuracy, then we
stop the iteration when the inequality



n

i=1

�c i
sol(p+1)−c i

sol(p)�+ �S j+1(p+1)−S j+1(p)�
S j+1−M

��
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Table 1
Input data

SI-unitPhysical quantity Value

D1 10−13 m2 s−1

m2 s−1D2 2×10−13

–1K
–c1

part 33
–33c2

part

0c1
0 –

–0c2
0

0c3
0 –

m1 –1
–2m2

10−6S0 M
10−4M M

5.1. Planar experiments

We consider the quasi-binary and multi-component
approach for the planar geometry. The configuration
entered here applies to a quaternary alloy. As input-
data we use the values as listed in Table 1.

We vary the diffusion coefficient and particle concen-
tration of the third component (D3 and c3

part). The
results are shown in Fig. 6 where we plot the interfacial
position as a function of time. For all these situations,
it can be seen that the quasi-binary solution and full
multi-component solution agree very well (see Fig. 6).
This agreement persists also for the higher diffusivities
of the third alloying element. This is in agreement with
the result shown in Fig. 4 for the case that the region is
unbounded.

Furthermore, one expects that the concentration at
the cell boundary (i.e. at r=M) is larger for cases
where the diffusion coefficient of the third component is
larger. However, both the penetration depth and the
interfacial position exhibit a square-root behaviour
with time. This implies that possibly the atoms from the
alloying elements reach the cell boundary M after com-
plete dissolution of the particle. This depends on the
cell size and geometry. Therefore, the observed differ-
ences in dissolution rate remain small for all cases
where the geometrical settings are equal.

Fig. 7 shows the same configuration as in Table 1
with c3

part=33 and D3=10×10−13 except all curves
correspond to cell sizes M=5×10−5 and M=2.5×
10−5. The bold lines correspond to the full multi-com-
ponent solution. Whereas the other lines are predicted
using the quasi-binary approach. It can be seen that the
difference between the quasi-binary approach and full
multi-component approach is more significant. This
significant difference has also been observed when non-
zero values for the initial concentrations are taken.

Fig. 6. The interfacial position as a function of time. All curves
correspond to the configuration as listed in Table 1. The bold and
ordinary curves, respectively, reflect the quasi-binary and full multi-
component solution. Curves I corresponds to c3

part=33 and D3=
0.1×10−13. Curve II reflects the case that c3

part=3 and
D3=0.1×10−13. Curve III displays the situation in which c3

part=33
and D3=10×10−13, whereas curve IV shows the configuration
c3

part=3 and D3=10×10−13.

Fig. 7. The interfacial position as a function of time. The bold curve
corresponds to the multi-component approach.

holds. Here, S j denotes the discrete approximation of
the interfacial position at time-step j. The integer p
represents the iteration number during the determina-
tion of the interfacial concentrations and position.

5. Numerical experiments

This section contains the numerical experiments done
with the finite difference method. We aim at a compari-
son between the quasi-binary solution and the full
multi-component solution. Experiments are done for
planar and spherical geometries. The input-data used is
hypothetical but the order of magnitude is comparable
to the case of commercial aluminium alloys.
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Fig. 8. The computed interfacial position by the quasi-binary ap-
proach as a function of the computed interfacial position using the
full multi-component approach for consecutive cell-sizes.

cell-boundary, the curve starts to deviate from a
straight line, similar to the case of a cell-boundary at
M=5×10−5. Subsequently, the matrix gets saturated
and dissolution stops, the dissolution rate converges
towards zero. The equilibrium state is not effected by
the use of the quasi-binary approach and the thereby
the curve converges back to the straight line.

5.2. Spherical experiments

We consider the dissolution of a spherical particle in
the multi-component and quasi-binary alloy. The
configuration entered here applies to a quaternary al-
loy. We use the same input-data from Table 1, except
for the geometry and the cell size, M=10−5, unless
stated otherwise. We vary the particle concentration
and diffusion coefficient of the third component.

For different diffusivities and particle concentrations
of the third component, the results are shown in Fig. 9.
The agreement between the quasi-binary approach and
the full multi-component solution is good. The differ-
ence between the two approaches is smallest for the
higher values of the diffusion coefficient of the third
component. As expected, the dissolution process takes
place relatively fast compared with the rate of penetra-
tion of the alloying elements from the particle into the
matrix, although the order of magnitude of the rate of
both processes is similar. Let Smc and Sqb be the
interfacial positions predicted using, respectively, the
multi-component and quasi-binary approach. We com-
pare the relative errors, defined by

� :=
�Smc−Sqb�

Smc

×100%

taken at the times when the multi-component solution
is nearest to Smc=0.5, we see that the errors for the
cases corresponding to curves I–IV in Fig. 9 are,
respectively, given by 9.94, 13.90, 4.23 and 3.87%. It
can be seen that the quasi-binary approach is most
accurate for cases where the diffusion coefficient of the
third component is large. This observation is contrary
to Fig. 5 where the error becomes more significant for
larger diffusion coefficients of the third component.
This discrepancy may be caused by the geometrical
differences between this situation and the situation in
Fig. 5 (sphere and bounded domain vs. plane and
unbounded).

Some dissolution curves are shown in Fig. 10 for
different values of the cell radius. Here we took a low
value for the diffusion coefficient of the third compo-
nent, being a case where the quasi-binary approach is
less accurate (compared with the case where the diffu-
sion coefficient of the third component is high). It can
be seen that the difference between the quasi-binary
and full multi-component approach is reasonably small.
However, for the case that M=4×10−6 the difference

Fig. 9. The interfacial position as a function of time for a spherical
dissolving particle. All curves correspond to the input-data from
Table 1. The bold and ordinary curve, respectively, correspond to the
quasi-binary and full multi-component approaches. Curves I corre-
spond to c3

part=33 and D3=10−14. Curves II depict the case that
c3

part=3 and D3=10−14. The situation with c3
part=33 and D3=

10−12 is shown by curve III. Whereas curves IV display the case that
c3

part=3 and D3=10−12.

Fig. 8 presents the interfacial position as computed
by the quasi-binary approach as a function of the
computed interfacial position by the full multi-compo-
nent approach. It can be seen that the curvature of the
line increases for smaller cell-sizes. This is attributed to
the accumulation of the atoms of the alloying elements
at the cell boundary. For the case of M=2.5×10−5 an
interesting behaviour is observed. At the early stages
where the atoms did not reach the cell-boundary yet,
the curve is straight. Later, as the atoms reach the
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is large. Apparently, the difference between both ap-
proaches is large when dissolution times are large, but
finite. In the case that M=2.5×10−6 full dissolution
does not take place. The difference between the differ-
ent approaches is large at early stages, but becomes less
significant as time proceeds; the curves reach the same
limit. This observation is similar to the observation in
the planar case (see Fig. 8). We remark that this
observation follows from experiment and that a more
mathematical basis is needed for a full understanding.

Finally, we show the interfacial position as a function
of time for different initial matrix concentrations in Fig.
11. For low initial matrix concentrations, the difference

between the quasi-binary and full multi-component ap-
proach is small. For larger concentrations, the differ-
ence increases and hence the quasi-binary approach
breaks down. This is attributed to the fact that the
difference between the interfacial concentration and
initial concentration becomes more significant (see Eq.
(15)).

6. Conclusions

A model, based on a vector-valued Stefan-problem,
has been developed to predict the dissolution of parti-
cles in general multi-component alloys. A remark has
been given concerning existence and well-posedness of
solutions of the vector-valued Stefan-problem. The re-
mark is motivated using a physical argument. For
general cases with one spatial co-ordinate the full vec-
tor-valued Stefan-problem is solved using finite
differences.

For some cases, when the difference between the
particle concentrations and interfacial concentrations
are large and when the initial matrix concentration is
negligible, the full multi-component (vector-valued) Ste-
fan-problem can be approximated accurately using an
averaging technique for the particle concentrations and
diffusion coefficients. This reduces the multi-component
problem to a quasi-binary problem. This approxima-
tion is essentially useful when more geometric flexibility
is included into the model (see for instance [7,14]). It
also turned out that this quasi-binary approach is accu-
rate for the spherical dissolving phases. We expect this
method also to be accurate for the case of dissolving
cylindrical phases in multi-component alloys.
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