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Abstract

A general model for the dissolution of stoichiometric particles, taking into account the influences of cross-diffusion, in multi-

component alloys is proposed and analyzed using a diagonalization argument. It is shown that particle dissolution in multi-

component alloys with cross-diffusion can under certain circumstances be approximated by a model for particle dissolution in

binary alloys. Subsequently, the influence of cross-diffusion on particle dissolution rate is analyzed for planar and spherical

particles. Further, we show some numerical simulations and conclude that cross-diffusion can be incorporated into multi-

component dissolution models.
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1. Introduction

In the thermal processing of both ferrous and non-

ferrous alloys, homogenization of the as-cast micro-

structure by annealing at such a high temperature that

unwanted precipitates are fully dissolved, is required to

obtain a microstructure suited to undergo heavy plastic

deformation. Such a homogenization treatment, to

name just a few examples, is applied in hot-rolling of

Al killed construction steels, HSLA steels, all engineer-

ing steels, as well as aluminium extrusion alloys.

Although precipitate dissolution is not the only metal-

lurgical process taking place, it is often the most critical

of the occurring processes. The minimum temperature at

which the annealing should take place can be deter-

mined from thermodynamic analysis of the phases

present. Another important quantity is the minimum

annealing time at this temperature. This time, however,

is not a constant but depends on particle size, particle

geometry, particle concentration, overall composition

etc.

Due to the scientific and industrial relevance of being

able to predict the kinetics of particle dissolution, many

models of various complexity have been presented and

experimentally validated. The early models on particle

dissolution based on long-distance diffusion were based

on analytical solutions in an unbounded medium under

the assumption of local equilibrium at the moving

interface, see Whelan [1] for instance. The model of

Nolfi et al. [2] incorporate the interfacial reaction

between the dissolving particle and its surrounding

phase. Later modeling particle dissolution has been

extended to the introduction of multi-component parti-

cles by, among others, Reiso et al. [3], Hubert [4]. All the

above mentioned models were based on viewing particle

dissolution as a Stefan problem. A recent approach is

the phase-field approach, which is derived from a

minimization of the energy functional. This approach

has, among others, been used by Kobayashi [5] to

simulate dendritic growth. A recent extension to multi-

component phase-field computation is done by Grafe et

al. [6], where solidification and solid state transforma-

tions are modeled. For the one-dimensional case they

obtain a perfect agreement between the phase-field

approach and the software package DICTRA which is

based on a sharp interface between constituent phases.

Some disadvantages of the phase-field approach are that
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(1) no simple quick estimates of the solution are

available and (2) physically justifiable parameter values

in the energy functional are not easy to obtain: generally

these quantities are to be obtained by using fitting
procedures that link experiment and numerical compu-

tation. Therefore, we limit ourselves in the present work

to model particle dissolution as a Stefan problem, where

a multi-component ‘generalized’ Fick diffusion equation

including cross-diffusion coefficients has to be solved

with a moving interface separating the constituent solute

and solvent phases.

Kale et al. [7] consider ternary diffusion in FCC
phases of Fe�/Ni�/Cr alloy systems. They compute

diffusion coefficients, including cross-diffusion coeffi-

cients, by using the thermodynamically based

Boltzmann�/Matano method. In their metallic systems

the cross-diffusion coefficients range in value up to

about a third of those of the diagonal diffusion

coefficients. Hence cross-diffusion should be taken

into account here. Vergara et al. [8] recently emphasized
the significance of cross-terms in the ‘generalized’ Fick

diffusion equation. They construct a model to evaluate

(cross) diffusion coefficients from experiments. They

apply their model to a reference system containing

Sodiumchloride in water, Travis and Gubbins [9]

compute cross-diffusion coefficients in graphite slit

pores using Monte-Carlo simulations. The formalism

of cross-diffusion in multi-component metallic alloys
has been motivated in terms of chemical potentials by

Kirkaldy and Young [10]. In their work, an analytical

solution of the obtained system of diffusion equations

has been given for a one-dimensional and unbounded

geometry. They note that the eigenvalues of the diffu-

sion matrix have to be real-valued and positive for an

acceptable physical problem. A more recent book where

cross-diffusion is also treated is the book of Glicksman
[11]. Here a self-similar solution of the equations is given

where the boundaries are fixed. A numerical solution of

the diffusion equations for fixed boundaries including

cross-diffusion was recently obtained by Naumann and

Savoca [12].

As far as we know, no extension to problems that

incorporate the movement of the interface has been

made yet. It is the aim of this work to analyze the
combination of a moving boundary with cross-diffusion

effects. Existence of (multiple) solutions when the

diffusion matrix is singular is stated and proven as

mathematical theorems in [13]. In the present study, we

give asymptotic solutions for the dissolution of a planar

and spherical particle. Furthermore, we show that under

certain circumstances the multi-component problem

with cross-diffusion terms (a strongly coupled ‘vector-
valued’ Stefan problem) can be approximated by a

binary problem (‘scalar’ Stefan problem). Subsequently

we present a numerical method that is used to solve the

Stefan problem and give some numerical results for

hypothetical alloys. Finally some conclusions are pre-

sented.

We remark that this study is an extension of earlier

work described in [14�/16] where influences of cross-
diffusion on the dissolution problem were not incorpo-

rated yet.

2. Basic assumptions in the model

The as-cast microstructure is simplified into a repre-
sentative cell containing the ‘matrix’ of phase a and a

single particle of phase b of a specific form, size and

location of the cell boundary. To avoid confusion we use

the notation ‘matrix’ for a phase surrounding the

dissolving particle and the notation matrix to indicate

the mathematical notion of a two-dimensional array of

numbers.

Both a uniform and a spatially varying initial
composition at t�/0 can be assumed in the model. The

boundary between the b-particle and a-‘matrix’ is

referred to as the interface. Particle dissolution is

assumed to proceed by a number of the subsequent

steps [2]: decomposition of the particle, atoms from the

particle crossing the interface and diffusion of these

atoms in(to) the a-phase. Here we take the effects of

cross-diffusion into account. We assume in this work
that the first two mechanisms proceed sufficiently fast

with respect to diffusion. Hence, the interfacial concen-

trations are those as predicted by thermodynamics (local

equilibrium).

In [15], we considered the dissolution of a stoichio-

metric particle in a ternary and a general multi-

component alloy. We denote the chemical species by

Spi , i � /{l, . . ., n�/1}, where Spn�1 is the ‘original’
solvent metallic a-phase in which the particle dissolves.

We denote the stoichiometry of the particle by

(Sp1)m
1
(Sp2)m

2
(Sp3)m

3
(. . .)(Spn)m

n
. The numbers m1, m2,

. . ., mn are stoichiometric constants. We denote the

interfacial concentration of species i by ci
sol and we use

the following hyperbolic relationship for the interfacial

concentrations:

(csol
1 )m1 (csol

2 )m2 (. . .)(csol
n )mn �K : (1)

The factor K is referred to as the solubility product. It
depends on temperature T according to an Arrhenius

relationship, in the present work, however, we assume it

to be constant.

We denote the position of the moving interface

between the b-particle and a-phase by S (t), where t

denotes time. Consider a one-dimensional domain, i.e.

there is one spatial variable, which extends from 0 up to

M (the cell size). Since particles dissolve simultaneously
in the metal, the concentration profiles between con-

secutive particles may interact and hence soft-impinge-

ment occurs. This motivates the introduction of a
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finitely sized cell over whose boundary there is no flux.

For cases of low overall concentrations in the alloy, the

cell size M may be large and the solution resembles the

case where M is infinite. The spatial co-ordinate is
denoted by r , 05/S (t )5/r 5/M . This domain is referred

to as V (t )�/{r � /R: S(t)5/r 5/M}. The a-‘matrix’,

where diffusion takes place, is given by V (t ) and the

b-particle is represented by the domain 05/r 5/S (t).

Keeping cross-diffusion in mind, we have for each

alloying element, with r � /V (t) and t �/0:

@ci

@t
�

Xn

j�1

1

ra

@

@r

�
Dijr

a @cj

@r

�
; for i � f1; . . . ; ng: (2)

The geometry is planar, cylindrical and spherical for,

respectively, a�/0, 1 and 2. The above equations follow

from thermodynamic considerations, their derivation

can for instance be found in [10]. Here Dij and ci ,

respectively, denote the coefficients of the diffusion

matrix and the concentration of the species i in the a-
rich phase. The diffusion matrix D is notated as follows:

D�
D11 . . . D1n

. . . . . . . . .

Dn1 . . . Dnm

0
@

1
A: (3)

The off-diagonal entries of D (i.e. Dij , i "/j), also

referred to as the cross-terms, are a measure for the

interaction of diffusion in the ’matrix; between con-

secutive alloying elements. When an alloying element is

dissolved in the a-‘matrix’ then the resulting stress and
elongations in the crystal structure facilitate or worsen

diffusion of the other elements. The off-diagonal entries

of D are a measure of for this mutual influence. When

Dij B/0, then alloying element j deteriorates diffusion of

element i in the a-‘matrix’, whereas Dij �/0 implies that

element j facilitates diffusion of element i in the a-

‘matrix’. An alternative formulation of cross-diffusion is

treated by Farkas [17] where only the diagonal entries of
the above diffusion matrix are used, however, these

diagonals are taken to depend on the concentration of

all the other species and hence a strong coupling arises

in a different way. We do not treat this approach in this

study but we will use the formulation of Eq. (2) that has

been motivated in [10]. We further assume that the

diffusion matrix does not depend on the concentration,

time and space, i.e. the matrix is treated as a constant in
the present work. We note that the matrix D generally

depends on time when the particle dissolves during a

non-isothermal heat treatment.

Let ci
0 denote the initial concentration of each element

in the a-phase, then we take as initial conditions (IC):

(IC)
ci(r; 0)�c0

i (r) for i � f1; . . . ; ng
S(0)�S0:

�
(4)

At a boundary not being an interface, i.e. at M or

when S (t )�/0; we assume no flux through it, i.e.:

Xn

j�1

Dij

@cj

@n
�0; for i � f1; . . . ; ng: (5)

Here n represents the outward normal vector of a cell.

When D is not singular, then Eq. (5) holds if and only if:

@ci

@n
�0; for i � f1; . . . ; ng: (6)

Furthermore at the moving interface S (t ) we have the
‘Dirichlet boundary condition’ ci

sol for each alloying

element. The concentration of element i in the particle is

denoted by ci
part, this concentration is fixed at all stages.

This assumption follows from the constraint that the

stoichiometry of the particle is maintained during

dissolution in line with Reiso et al. [3]. The dissolution

rate (interfacial velocity) is obtained from a mass-

balance of the atoms of alloying element i . The mass-
balance per unit area leads to:

(S(t � Dt) � S(t))

Dt
(cpart

i �csol
i )�

Xn

j�1

Dij

@cj

@r
(S(t); t): (7)

Subsequently we take the limit Dt 0/0 and we obtain

the following equation for the interfacial velocity:

(cpart
i �csol

i )
dS

dt
�

Xn

j�1

Dij

@cj

@r
: (8)

Summarized, we obtain at the interface for t �/0 and

i , j � /{1, . . ., n}:

ci(S(t); t)�csol
i

(cpart
i �csol

i )
dS

dt
�

Xn

j�1

Dij

@cj

@r
(S(t); t)

g
[

Xn

k�1

Dik

c
part
i � csol

i

@ck

@r
(S(t); t)

�
Xn

k�1

Djk

c
part
j � csol

j

@ck

@r
(S(t); t) (9)

The right-hand side of above equations follows from
local mass-conservation of the components. Above

formulated problem falls within the class of Stefan-

problems, i.e. diffusion with a moving boundary. Since

we consider simultaneous diffusion of several chemical

elements, it is referred to as a ‘vector-valued Stefan

problem’. The unknowns in above equations are the

concentrations ci , interfacial concentrations ci
sol and the

interfacial position S (t), All concentrations are by
necessity non-negative. The coupling exists in both the

diffusion equations, Stefan condition and the values of

the concentrations at the interfaces between the particle
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and a-rich phase. This strong coupling complicates the

qualitative analysis of the equations. For a mathema-

tical overview of Stefan problems we refer to the

textbooks of Crank [18], Chadarn and Rasnmssen [19]
and Visintin [20].

3. Analysis

In this section, we factorize the diffusion matrix by

use of its eigenvalues and (generalized) eigenvectors

according to standard linear algebra procedures. This is

done to facilitate the mathematical problem that has to

he solved. A direct consequence of the factorization is

that the cross-terms in the equations vanish and the

diffusion coefficients are replaced by the eigenvalues of

the diffusion matrix. In most cases the diffusion matrix
is diagonalizable and the strong coupling vanishes

between the diffusion equations. However, when the

diffusion matrix is not diagonalizable then some or one

diffusion equation is uncoupled whereas the rest of the

diffusion equations are coupled. Further, the solution of

the transformed diffusion equations in general no longer

satisfies a maximum principle and hence extremes away

from the boundaries may be present also for t �/0 when
the diffusion matrix is not diagonalizable. We refer to

[13] for a more extensive treatment. The analytical

solutions that we present here are based on self-

similarity and for an unbounded domain.

3.1. Decomposition of the diffusion matrix

First we write the equations in a vector-notation and

we define the vectors c
¯
�/(c1, c2, . . ., cn)T, c

¯

p�/(c1
part,

c2
part, . . ., cn

part)T and c
¯

s�/(c1
sol, c2

sol, . . ., cn
sol)T, then the

diffusion equations can be written as:

@

@t ¯
c�

1

ra

@

@r

�
raD

@

@r

�
¯
c: (10)

The boundary and IC follow similarly in vector

notation. The Stefan condition becomes in vector

notation:

(
¯
cp�

¯
cs)

dS

dt
�

@

@r
D

¯
c(S(t); t): (11)

We assume that the matrix D is diagonalizable. To

analyze Eq. (11) we use the Decomposition Theorem,

which can for instance be found in [21], page 317. The
theorem says that for each real-valued n �/n-matrix D

there exists a non-singular n �/n -matrix P such that:

D�PLP�1; (12)

where L is a diagonal matrix containing the eigenvalues

of matrix D :

L�

l1 0 0 . . . 0

0 l2 0 0 . . . 0

0 0 l3 0 . . .

0 . . . . . . . . . . . . ln

0
BB@

1
CCA: (13)

In our case the set {ln} correspond to the eigenvalues of

the diffusion matrix D .

The matrix P has columns that are formed by the

eigenvectors of D . The arrangement is in the same order

as the set {ln} in the matrix L , The eigenvalues and

eigenvectors are obtained from:

det(D�lI)�0; giving fl1; . . . ; lng (14)

D
¯
vi�li

¯
vi; (15)

note that some of the eigenvalues may be equal.

When the matrix D is not diagonalizable, we consider

an eigenvalue li of multiplicity p in Eq. (14). For this

case, we have lj �/li for j � /{i , . . ., i�/p}. The general-

ized eigenvectors that are substituted into the columns

of P are obtained from:

D
¯
vi�li

¯
vi; (16)

(D�liI)
¯
vj�1�

¯
vj; for j � fi; . . . ; i�p�1g: (17)

In the second equation above we assume that lj �/li

for all j � /{i , . . ., i�/p} and that v
¯
j depends linearly on its

preceding eigenvectors. In Eq. (17), I is the n �/n-

identity matrix. Further, L becomes a Jordan block
matrix when D is not diagonalizable. We refer to [13] for

a more extensive treatment of the case where D is not

diagonalizable.

We remark that Kirkaldy et al. [22] use a thermo-

dynamic argument to show that the eigenvalues of the

diffusion matrix are positive and real-valued. Therefore,

we limit ourselves to cases where the eigenvalues are

real-valued and positive.

3.1.1. An example for a ternary alloy

We consider a ternary example, with the following

real-valued matrix:

D�
D11 D12

D21 D22


 �
� (18)

From Eq. (14) follows that the eigenvalues are

determined from:

(D11�l)(D22�l)�D12D21�0U (19)

Ul�

D11 � D22 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(D11 � D22)2 � 4(D11D22 � D12D21)

q
2

(20)

We remark that when the trace of D is positive,

tr(D )�/D11�/D22�/0, and:
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det(D)�D11D22�D12D21 �



0;

tr(D)2

4

�
; (21)

then the eigenvalues of D are real and have a positive
value.

3.2. Transformation of the diffusion equations

For the remaining text we assume that the eigenvalues

of D are real and positive. Substitution of the decom-

position of D , Eq. (12) into Eq. (11) gives:

@

@t ¯
c�

1

ra

@

@r

�
ra @

@r

�
PLP�1

¯
cU

@

@t
P�1

¯
c

�
1

ra

@

@r

�
ra @

@r

�
LP�1

¯
c

(
¯
cp�

¯
cs)

dS

dt
�

@

@r
PLP�1

¯
c(S(t); t)UP�1(

¯
cp�

¯
cs)

dS

dt

�
@

@r
LP�1

¯
c(S(t); t): (22)

We define the transformed concentrations as:

¯
u�P�1

¯
c;

¯
us�P�1

¯
cs; up�P�1

¯
cp;

¯
u0�P�1

¯
c0:

(23)

Then the diffusion equation and equation of motion

change into:

@

@t ¯
u�

1

ra

@

@r

�
ra @

@r

�
L

¯
u (24)

(
¯
up�

¯
us)

dS

dt
�

@

@r
L

¯
u(S(t); t): (25)

Note that the system given in Eq. (24) is fully

uncoupled. The homogeneous Neumann conditions at
the non-moving boundary are similar for the trans-

formed concentrations. Further, we have for t�/0.

uj �
u0

j ; for r � (S(0); M];

u
part
j ; for r � [0; S(0)]:

j � f1; . . . ; ng
�

(26)

From
¯
c�P

¯
u[ci�a

n

j�1 pijuj; the coupling between

the interfacial concentrations via the hyperbolic relation

Eq. (1) changes into:
Xn

j�1

p1ju
s
j

�m1

Xn

j�1

p2ju
s
j

�m2

(. . .)


Xn

j�1

pnju
s
j

�mn

�K : (27)

The analysis is facilitated using the diagonalization of
the diffusion matrix. We see that the coupling between

subsequent concentrations only remains in the above

Eqs. (27) and (25).

4. Similarity solutions and asymptotic approximations

We consider analytical solutions satisfying Eq. (2) for

the concentrations. We illustrate the importance of
cross-diffusion in the above problem by the use of the

exact self-similar solution for problem (P1), which is

derived in [13] for the planar case, where a�/0 in Eq.

(24), Fig. 1 displays dissolution curves computed for

various values of cross-diffusion coefficient D12 where

we use the following data-set:

¯
c0�(0; 0)T

¯
cpart�(50; 50)T; D�

1 D12

D12 2


 �
;

K�1:
(28)

The above diffusion matrix is symmetric. From Fig. 1,

it is clear that the influence of the cross-terms is
significant. Since Kale et al. [7] indicate that the cross-

diffusion terms can have the same order of magnitude as

the diagonal terms in the diffusion matrix we choose the

values of D12 in the range [�/1, 0].

We, however, will use the approximation by Aaron

and Kotler [23] for the planar case and the approxima-

tion by Whelan [1] for the spherical case. Both

approaches are derived with the use of Laplace trans-
forms where the interfacial position is assumed to move

far more slowly than the rate of diffusion in the a-

‘matrix’. This turns out to be a good approximation

when jui
s�/ui

0j�/jui
p�/ui

sj. This is illustrated in some

examples in the remainder of this section. With both

approches an easy solvable problem arises for the

estimation of the dissolution rate for a planar and

spherical particle in a multi-component alloy with cross-
diffusion. We will only discuss this for the case of a

diagonalizable diffusion matrix. The case of a non-

diagonalizable matrix is more complicated but can be

treated analogously, see [13] for more details on the

mathematics for the non-diagonalizable case. For the

planar case, we give an estimate for the dissolution rate

in terms of a quasi-binary formulation of the multi-

component dissolution problem with cross-diffusion.
Finally, we use the Whelan [1] approach to obtain a

semi-analytical approach for the spherical case.

4.1. An asymptotic solution for the planar case

Suppose that jui
s�/ui

0j�/jui
p�/ui

sj then Aaron and
Kotler [23] give the following equation for interface

motion for a given combination of ui
s, ui

p and ui
0:

dS

dt
�

u0
i � us

i

u
p
i � us

i

ffiffiffiffiffi
li

pt

s
“

k

2
ffiffi
t

p : (29)

Since the solution for dS /dt should be the same for all

components i , this implies with combination with Eq.

(27) that the solution of problem (P1) is approximated
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by the solution for k and ui
s of:

(P1)

k�2
u0

i � us
i

u
p
i � us

i

ffiffiffiffiffiffi
li

p
;

s
for i � f1; . . . ; ng;


Xn

j�1

p1ju
s
j

�m1

Xn

j�1

p2ju
s
j

�m2

(. . .)


Xn

j�1

pnju
s
j

�mn

�K

8>>>><
>>>>:

The above problem follows from the approach due to

Aaron and Kotler [23] and can be solved by using a,

zero-point method. The derivation of this approach is

based on the Laplace transform of the diffusion

equation. The approach can also be derived from the
exact self-similar solution, this is done in [13]. We

continue on a simplification of the above problem to

obtain an explicit solution. Suppose that the initial

concentrations are zero, then
¯
u0�

¯
0 and hence that the

transformed particle concentration is much larger than

the transformed interfacial concentrations, i.e. ui
s�/ui

p

for i � /{1, . . ., n} then the first equation of (P1) with i�/1

becomes:

k:�2
us

1

u
p
1

ffiffiffiffiffi
l1

p

s
: (30)

Hence the equation of motion of the interface

becomes

dS

dt
:�

us
1

u
p
1

ffiffiffiffiffi
l1

pt

s
: (31)

Further, the following recurrence relation between the

transformed interfacial concentrations follows:

Substitution of above transformed interfacial concen-

trations into the second equation of (P2) gives the

following real-valued solution:

where we defined m�an
j�1mj: Above expression for the

transformed interfacial concentration is substituted into

Fig. 1. The interface position as a function of time for the exact self similar solution for several values of the cross-diffusion terms.

us
1�



K
Xn

j�1

p1j

u
p
j

u
p
1

ffiffiffiffiffi
l1

lj

s �m1

Xn

j�1

p2j

u
p
j

u
p
1

ffiffiffiffiffi
l1

lj

s �m2

(. . .)


Xn

j�1

pnj

u
p
j

u
p
1

ffiffiffiffiffi
l1

lj

s �mn

�1=m

; (33)

us
i �

u
p
i

u
p
1

ffiffiffiffiffi
l1

li

s
us

1: (32)
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the rate equation for the interface (Eq. (30)). This gives:

dS

dt
��

K1=m

u
p
1

�Yn

k�1

1

(
Xn

j�1

(pkj(u
p
j =u

p
1

ffiffiffiffiffiffiffiffiffiffiffi
l1=lj

q
)))mk

�1=m

�
ffiffiffiffiffi
l1

pt

s
: (34)

The above equation is referred to as the quasi-binary
approach or as the effective approximation. From the

above equation dissolution times of the particle can be

estimated easily using known parameters such as the

eigenvalues and eigenvectors of the diffusion matrix.

Furthermore, the solubilities obtained from the above

equations can be used as initial guesses for the zero-

point method to solve for the semi-explicit solution and

numerical solutions.
In Fig. 2 we show the interface position, computed by

the use of the exact ‘Neumann’ solution for the planar

case (see [13]), (P1) (the’Aaron’ approximation) and Eq.

(34) (the ‘effective’ approximation), as a function of time

for K�/1 and c
¯

p�/(50, 50)T, c
¯

p�/(15, 15)T and c
¯

p�/(5,

5)T. The other data are the same as in Fig. 1. It can be

seen that for high particle concentrations c
¯

p�/(50, 50)T

the difference between all the approaches is small.
Whereas for lower particle concentrations the difference

increases significantly. The results of the case that K�/

50 with otherwise the same data are plotted in Fig. 3.

For this case, the difference between the several

approaches is larger. This is due to the fact that ui
s

becomes large with respect to the transformed particle

concentration ui
p.

To illustrate that the difference between the various

approaches is hardly influenced by the value of the

cross-diffusion coefficient we plot the dissolution time as

a function of D12 in Fig. 4 with otherwise the same data

as in Fig. 1. Until now, the approach by the use of Eq.

(34) turned out to be an accurate approach for the

computation of dissolution times. However, when the

initial concentrations deviate from zero, as shown in

Fig. 5, where otherwise the same data-set is used as in

Fig. 1 with D12�/�/1, the approach with Eq. (34) breaks

down. Therefore, we conclude that the approach by

solving (P1) is robust. Its solution is a good approxima-

tion of the exact solution for the planar case. The quasi-

binary approach from Eq. (34) is recommended for use

only when the initial concentrations are very small.

When this is fulfilled then the approach from Eq. (34)

gives a quick qualitative insight into the dissolution

kinetics.

4.2. An approximate solution for the spherical case

We apply the approximation due to Whelan in the

computations for the dissolution of a spherical particle.

Fig. 2. The interface position as a function of time for the several approaches. The cross-diffusion coefficient D12�/�/1, K�/1 and otherwise the

same data set is used as in Fig. 1.
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This case is a little more complicated since the particle

radius, S (t ), is involved in the determination of the

interface concentrations. The problem that has to be

solved reads as:

Fig. 3. The interface position as a function of time for the several approaches. The cross-diffusion coefficient D12�/�/1 and the solubility product is

K�/50. Otherwise the same data set is used as in Fig. 1.

Fig. 4. The dissolution time as a function of the cross-diffusion coefficient D12 for the several approaches with otherwise the same data set as in Fig.

1.
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Fig. 5. The dissolution time as a function of the initial concentration ci
0�/c0 for D12�/�/1 with otherwise the same data as in Fig. 1.

Fig. 6. The interfacial position of a spherical particle as a function of time for the ‘Whelan’ solution for several values of the cross-diffusion terms.

Otherwise the same data set as in Fig. 1 is used.
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Find S (t ) and u
¯

s such that

dS

dt
�

u0
i � uS

i

u
p
i � uS

i


 ffiffiffiffiffi
li

pt

s
�

li

S

�

Xn

j�1

P1juS
j

�m1

Xn

j�1

P2juS
j

�m2

(. . .)


Xn

j�1

PnjuS
j

�mn

�K

8>>>><
>>>>:

(35)

The above problem is solved with the use of combina-

tion of a zero-point method to obtain uS
i combined with

a time-integration method to obtain S (t). We show

some results in Figs. 6 and 7 where we plot the sphere
radius and interface concentrations as a function of

time. In constrast to the planar case, it can be seen that

the interfacial concentrations do not stay constant.

However, we observed that the interface concentrations

and interface velocity are equal to the values from the

planar case at the very early stages of dissolution (as t 0/

0). This agrees perfectly with the expectations. Further-

more, a similar effective approach as in Section 4.1 can
be derived for the spherical case for sufficiently large t .

5. Numerical experiments

We solved the treated problem for particle dissolution

in multi-component alloys with cross-diffusion numeri-

cally for a bounded domain. The method is based on

Finite Differences combined with a classical moving grid

method for the determination of the interface position.

Further, the interface concentrations are obtained by an

approximate Newton method. The details are described

in [15,13].

This section displays some numerical simulations for

hypothetical alloys. First we treat an example where the
diffusion matrix is diagonalizable and subsequently a

non-diagonalizable case is considered.

5.1. The diagonalizable case

As a numerical experiment we show the computation

of the dissolution of a planar phase for the case that the

diffusion matrix is diagonalizable. Furthermore, we

compare the computed numerical solutions with the

self-similar solution as developed in Section 4. As input-

data we used

¯
c0�(0; 0)T;

¯
cpart�(50; 50)T;

D�
1 �1=4

�1=4 2


 �
; K�1:

(36)

The above matrix is diagonalizable. In Fig. 8, we plot

the interface as a function of time for the (approximate)

self-similar solution and the numerical solution. Since
cpart

i �/csol
i �/c0

i �/0 we can approximate the solution of

(P1) by the use of Eq. (34). Hence the analytical

approaches coincide. At early stages the concentration

Fig. 7. The interfacial concentrations as a function of time for the ‘Whelan’ solution for several values of the cross-diffusion terms. Otherwise the

same data set as in Fig. 1 is used.
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profiles resemble the profiles that are obtained from the

similarity solutions. As time proceeds the dissolution is

delayed by soft-impingement at the cell boundary. At

this stage, the curve that has been obtained from the

numerical computations starts to deviate from the

analytical approaches. This effect is clearly visible in

Fig. 8. The interfacial position as a function of time. The dotted curve corresponds to self-similar solution and the solid curve corresponds to the

numerical approach.

Fig. 9. The interface position as a function of time for the case that the diffusion matrix is not diagonalizable. The analytical and numerical solution

are shown.
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Fig. 8. From Fig. 8 it is concluded that the numerical

scheme is also applicable for cross-diffusion. It can also

be seen that the quasi-binary approach is very accurate

for this case.

5.2. The non-diagonalizable case

We show results from a computation on a planar

particle that dissolves. The diffusion matrix is not

diagonalizable for this case. The data-set that we used

is given by:

¯
c0� (0; 0)T;

¯
cpart�(50; 50)T; D�

2 1

0 2


 �
;

K�1:
(37)

The eigenvalue of the above matrix is equal to 2 and

the matrix is not diagonalizable. Further, the numeri-

cally computed interfacial position is plotted as the solid

line in Fig. 9. We also show the results for the exact

solution (see [13]) and the results for the asymptotic

approximation (i.e. the quasi-binary approach, see [13]).

Similarly as in the preceeding section, we have ci
part�/

ci
sol�/ci

0�/0 and hence the exact analytical solution can

be approximated by use of the effective concentrations.

Hence the analytical approaches co-incide well. Due to

soft-impingement at the cell boundary the numerical

curve starts to deviate as time proceeds. It can be seen

that the curves co-incide well and hence for this case the

asymptotic approach is accurate. In Fig. 10, we plot the

interface position as a function of time for a particle

concentration c
¯

part�/(15, 15)T. Hence now ci
part is not

much larger than ci
sol and ci

0 and hence the asymptotic
approximation deviates from the exact Neumann solu-

tion, see Fig. 10. The figure illustrates that the asymp-

totic solution becomes less accurate as ci
part tends to ci

0.

This motivates the restriction to use the asymptotic

solution only for cases whenever ci
part is very large

compared with the other concentrations in the ‘matrix’.

6. Discussion

We extended the models in [14,15] with aspects of
cross-diffusion. The developed analytical solutions agree

well with solutions obtained from Finite Volume

methods. The formalism of the model with cross-

diffusion can be found in the book of Kirkaldy and

Young [10] or Glicksman [11]. The incorporation of

cross-diffusion effects seems necessary from experimen-

tal studies of, among others, Kale et al. [7] and from

molecular dynamics simulations due to Travis and
Gubbins [9]. From our present computations follows

that cross-diffusion becomes important when the off-

diagonal entries in the diffusion matrix become compar-

able or larger than the diagonal entries.

The present paper does not contain any character-

istics due to the Gibbs�/Thomson effect. We remark here

Fig. 10. The interface position as a function of time for the case that the diffusion matrix is not diagonalizable. The analytical and numerical solution

is shown. The particle concentrations are c
¯

part�/(15, 15)T.
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that only dissolution is considered. We note that the

case of dissolution of a planar phase gives a stable flat

interface where the Gibbs�/Thomson effect is not

important at all stages of the dissolution process.

However, when considering growth, the interface geo-

metry becomes unstable with respect to perturbations,

which are present in physical metals as impurities, and
fingering starts to occur. We do not comment on this

further in the present paper, which covers particle

dissolution only.

When considering the dissolution of spherical parti-

cles, the Gibbs�/Thomson effect enters due to the one-

to-one coupling between the interface position and

particle curvature. For particles that are initially large,

the effect of curvature only comes in at the final stages
of the dissolution process. We present some examples in

Fig. 11 where we compute the dissolution of spherical

particles for different values of the surface tension,

where we take the following relation between the

solubility product and the interface curvature k :

K�K(k)�K� exp



2gVmk

RT

�
; (38)

where k is the local curvature and Vm , g , R , T denote

the molar volume, surface tension, ideal gas constant
and absolute temperature, respectively. From Fig. 11, it

can be seen that surface tension effects become impor-

tant when they are at least in the order of 10 J m�2.

Since this value is larger than realistic (which is in the

order of 0.2 J m�2), the influence of the surface tension

can be disregarded in the computations that were done

in the present paper. Note that the curves in Fig. 11

correspond to no cross-diffusion. We plot the interface

position as a function of time for the game input, data as

in Fig. 11 but now we use D12�/�/1�/D21 in Fig. 12.

Here the influence due to cross-diffusion is the same as

for the case where no surface tension is taken into

account. We note that surface tension is important for

growth of spherical particles, especially at the initial

stages of the growth process.

Of course for a spherical particle follows k�/1/S (t)

where S is the radius or interface position. The above

equation implies that the solubility product increases

when the particle radius decreases. This implies that the

interfacial (transformed) concentrations can become

such that a particle dissolves when the particle radius

is small and grows when its radius is large. This effect,

Ostwald-ripening, is well-known. Since our model is not

able to model ‘sub-critical’ growth we omit the compu-

tation of the growth kinetics of the particle, though later

stages of growth can be modeled by the use of the

present model.

To deal with cross-diffusion, we present an analytical

approach which can be used to determine easily the

influence of off-diagonal entries of the diffusion matrix.

We present an approach where dissolution times can be

Fig. 11. The interfacial position as a function of time for a spherical particle for several values of the surface tension. The same data set has been used

as for Fig. 1 (and Fig. 6) with D12�/0. In the computations we took Vm �/10�5 m3, R�/8.3 J mol�1 K�1, T�/800 K. Note that the geometry is

spherical.
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determined explicitly even without the use of a zero-

point method. This approach only holds when the initial

concentrations can be disregarded. The numerical Finite

Volumes approach is suitable for spherical, cylindrical

and planar phases with a finite cell size. This approach is
based on the full solution of diffusion equations with

moving boundary. Unfortunately, only one spatial co-

ordinate is implemented thus far. Both numerical and

analytical solutions are obtained for, respectively, the

bounded and unbounded domain. We refer to [13] for

the analytical solutions and approximations for the non-

diagonalizable case.

The here developed solutions can be used as input for
two-dimensional codes to approximate particle dissolu-

tion in two spatial dimensions including cross-diffusion

effects. However, a full comparison is still lacking.

7. Conclusions

A model, based on a vector-valued Stefan problem,

has been developed to predict dissolution kinetics of

stoichiometric particles in multi-component alloys.

Cross-diffusion of the alloying elements is taken into
account, which gives a strong coupling of the differential

equations. Using a diagonalization argument, the vec-

tor-valued Stefan problem with cross-diffusion is trans-

formed into a vector-valued Stefan problem where the

cross-terms vanish whenever the diffusion matrix is

diagonalizable. For the diagonalizable case, the numer-

ical solution procedure which is used for modeling

particle dissolution/growth when no cross-diffusion is

taken into account, can be used. Well-known mathema-

tical implications, concerning mass-conservation of the

Stefan problem and self-similarity solutions can be

recovered now also for the case of cross-diffusion. The

hyperbolic relation between the interfacial concentra-

tions becomes more complicated, however, since the

eigenvectors of the diffusion matrix have to be taken

into account as well. In spite of this complication, the

vector-valued Stefan problem can be approximated by a

quasi-binary problem in a similar way as for the case in

which no cross-diffusion is taken into account. The

advantages of the diagonalization procedure are.
(i) The eigenvalues give a quick insight into the well-

posedness of the problem, negative eigenvalues are not

allowed. Existence of solutions for singular diffusion

matrices has been analyzed in [13].

(ii) For the numerical computations the concentration

profiles can easily be computed using fully implicit

methods similarly to the case of multi-component

diffusion without cross-diffusion terms.

Similar as in the case of no cross-diffusion we obtain

expressions for the quasi-binary approach.

Fig. 12. The interfacial position as a function of time for a spherical particle for several values of the surface tension. The same data set has been used

as for Fig. 1 (and Fig. 6) with D12�/�/1. In the computations we took Vm �/10�5 m3, R�/8.3 J mol�1 K�1, T�/800 K. Note that the geometry is

spherical.
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