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ABSTRACT --- One of the physical processes during the homogenization treatment 
of 6xxx aluminum alloys is the transformation of plate-like β-Al5FeSi particles to more 
rounded shaped α-Al12(FeMn)3Si particles. The rate of this transformation determines 
the homogenization time. Mathematically the β to α transformation is treated as a 
Stefan problem where the concentration and the position of the interfaces, separating 
the Aluminum phase and the α or β phase, have to be determined. The boundary 
conditions are obtained from thermodynamical calculations, using the ThermoCalc 
package. A Finite element model and an analytical model, which mimic the growth of 
an α particle on a dissolving β plate, are proposed and compared. Finally, some 
metallurgical implications are given. 
______________________________________________________ 

 
 

INTRODUCTION 

The phase transformation of β-AlFeSi to α-
Al(FeMn)Si is an important process during the 
homogenization of cast AA 6xxx aluminum alloys. 
During this homogenization process, at 
temperatures between 530-600°C,[1] plate-like 
monoclinic intermetallic β-Al5FeSi particles transform 
to multiple rounded α-Al12(FexMn(1-x))3Si particles[2-4]. 
This phase transformation improves the 
processability of the aluminum considerably. The 
plate-like β-particles can lead to local crack initiation 
and induce surface defects on the extruded material. 
The more rounded α-particles in the homogenized 
material improve the extrudability of the material and 
improve the surface quality of the extruded 
material.[5,6] Additional processes, such as the 
dissolution of Mg2Si particles also occur during 
homogenization. Since the Mg2Si particles dissolve 
rather quickly, the β α transformation kinetics 
determine the minimum time that is needed to get a 
good extrudability.[7] Many process parameters, such 
as homogenization temperature,[8] as-cast 
microstructure,[9] and chemical compostion[10] 
influence the transformation rate. 

 
The morphological change of the intermetallics 

during the homogenization treatment has been 
described in a few papers. In the early stage of 

transformations it was found that α particles were 
nucleated on top and also on the rim of the β-
plate.[11,12] Small α nuclei, with an average size of 
half a micrometer, are observed on top of the β 
particles with a site density of approximately 0.2 µm-

2. Some of the particles observed were facetted 
whereas others exhibited a more rounded 
morphology. During the transformation, the β-AlFeSi 
phase is observed to remain plate-like with an 
approximately constant thickness,[4] leading to the 
conclusion that the β plate only dissolves at the rim, 
injecting Fe and Si into the Al-matrix. From TEM and 
SEM experiments, it is observed that the interface 
between the α-particle and β-plate does not move.[13] 
Hence, there is no mass transport across the 
interface between the α-particle and β-plate. Since 
the α particles grow by adsorption of Si, Mn and/or 
Fe, those elements must have been transported 
through the Al-matrix. 

 
      Until now, no physically based models have 
been found in the literature which predict the fraction 
transformed of the β to α transformation. Hence, 
modeling this transformation and looking at the 
influence of the process parameters poses a new 
challenge. 
 

In this paper, a model is proposed based on the 
hypothesis that the transformation is diffusion 



controlled. The transformation is mathematically 
treated as a Stefan problem,[34] where the 
concentration satisfies the diffusion equation and the 
position of the moving boundaries was determined 
from conservation of mass. This model can only be 
used in the beginning of the transformation. The 
reasons for this are: firstly, in the beginning the 
overall morphology is still stable, whereas the 
intermetallics break up to cylindrical shapes at later 
stages. Secondly, if the dissolving β-rim meets the 
growing α-particle, our model is no longer 
applicable. Despite this limitation, the model could 
provide some idea of the homogenization-time 
towards higher fractions (up to approximately 50 
percent).  

 
In this paper, a finite element and an analytical 

approach are presented which model the 
development of fraction transformed with time, by 
simulating the growth of an α particle on a β plate. 
For the boundary conditions of the model, 
thermodynamic calculations are used (Thermo-
Calc). The transformation fraction is calculated for 
several input parameter values estimated from 
experimental observations. The influence of some 
process parameters on the transformed fraction, 
such as the temperature and initial thickness of the β 
plates, are investigated in [34]. The finite element 
model and the analytical model are compared, and 
finally the model is validated with experimental data. 
The dependence of the transformation rate on the 
alloy content such as Mn and Si is also an important 
implication of the model, and will be described in 
more detail in [25]. 

 
THE TRANSFORMATION MODEL 

In our model, a solubility difference between the 
α interface and the β-interface rim gives a mass 
transport of Si and Fe through the Al matrix between 
the two phases. This leaves the α particle to grow 
and the β plate to dissolve. 

 
      For the present study only a uniform initial (at 
t=0) composition of the Al-rich phase is considered. 
It is assumed that the atoms of the alloying elements 
diffuse through the Al-rich phase. Further, atoms 
that originate from the α- and β-phase are assumed 
to cross the interface (α/Al phase or β/Al phase) at 
such a rate that bulk diffusion is the rate-controlling 
step in the transformation. From mass-conservation 
a Stefan problem results to determine the movement 
of the interface. Further based on experiments, we 
assume that the β plate only dissolves at its rim and 
the face of the β plate is unaffected. The initial 

matrix concentrations are determined from the 
Scheil model. We further assume that Si is uniform 
in the Al matrix. The rate of the transformation is 
assumed to be determined by diffusion of Fe. 
Alexander et al.[27] found that Mn diffusion is only a 
secondary effect on the transformation and hence it 
hardly controls the speed of the transformation. This 
is due to the low diffusivity of Mn. A final assumption 
is that the stoichiometries of the α and β phases are 
fixed during the transformation. For the 
determination of the interfacial concentrations, we 
use ThermoCalc and the multi-component model. 
Here the interfacial concentrations are determined 
such that the interface velocity is the same for all the 
alloying elements and such that the interface 
concentrations satisfy a solubility product. More 
details on the model are presented in [34]. 
 
Model Geometry 

 
For 6xxx alloys the α phase is stable with 

respect to the β phase. The nucleation of α-particles 
takes place preferentially on the β/Al interface rather 
than in the aluminum matrix, since the activation 
energy for nucleation of α particles on the β/Al 
interface is lower[29] than the nucleation energy in the 
Al-matrix. Therefore our model considers only this 
heterogeneous nucleation of α-particles on the β/Al 
surface. Experimentally, a distribution of nucleation 
distances was found, but for the sake of simplicity 
we only take the mean nucleation distance as model 
input parameter. 

l l

 
             (a)               (b) 
Figure 1. A scheme of  (a) an β plate with initial α 
nuclei in the non-homogenized state (b) A broken β 
plate with consisting α particles on top. The domain 
of computation is situated in the picture. 
 

The average plate length of the initial β-particles 
is approximately 20 µm, and the average nucleation 
distance is approximately 2 µm. It was found by 
experiment that β particles break up and transform 
to α-particles. Yet, it is not clear how the β plate 
breaks up during the transformation. In our model 
we propose that the β particles break up with the 
same length as the nucleation distance. This is 
illustrated in Figure 1. Figure 1a shows an initial β 
plate with α nuclei. Figure 1b shows the situation 
after a short homogenization time: The β plate 
breaks up, and the α particles start to grow. The 
domain of computation is indicated by the dotted 
box. 
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Figure 2. The geometry of the domain of 
computation of an α-particle on a β-plate in an Al-
phase. The parameters are explained in the text. 
 

Figure 2 shows the geometry of the model that 
mimics the growth of an α-particle on a dissolving β-
plate. 

 
The as-cast microstructure is simplified in the 

Finite Element Model to a representative cell 
containing the Al-rich phase, a single α particle and 
a single β-plate, which have a specific form and size. 
Furthermore, the cell size is chosen such that 
diffusion across cell boundaries is negligible.  In the 
FE-Model we calculate a cell area with the size of lcell 
× lcell. We assume cylindrical symmetry around the 
left vertical axis. A hemispherical α particle is 
situated on top of the plate-like β particle, and has a 
distance towards the rim of the β particle. The 
drawing is only schematic as the dimensions are not 
properly scaled according to those used in the 
calculations. 

 
The aluminum phase is indicated in Figure 2 by 

the domain Ω(t), in which diffusion of the alloying 
elements takes place. The time dependence of this 
domain is induced by the moving boundaries of the 
α-particle and the β-plate. Those moving boundaries 
are expressed by the segment CF, defined as Sα, 
and the line segment GJ, defined as Sβ. The unit 
normal vectors at the interfaces Sα and Sβ, pointing 
outward from the aluminum matrix, are denoted by 
nα and nβ respectively. Since the β face is 
unaffected the line segment, FG does not move. 

 
Line segment HK represents a symmetry line. 

Therefore the presented thickness of the β-plate in 
Figure 2 is only half of the modeled thickness of the 

β-plate, d. During this transformation this thickness 
remains constant, as also stated in assumption 1. 
Line segment AH represents the second symmetry 
line. For the Finite Element model, cylindrical co-
ordinates are used, where the α-particle represents 
a hemispherical shape and the β plate represents a 
disc-like shape in three dimensions. In the case of 
planar coordinates the α-particle represents an 
hemi-cylindrical shape and the β plate represents a 
rectangular shape in three dimensions. 
 
The Finite Element Model 

 
The Finite Element Model (FEM) is based on the 

solution of Fick’s second law for diffusion in two 
dimensions. Further, a mass conservation of 
argument leads to the Stefan condition, where the 
normal component of the interface velocity is 
proportional to the concentration gradient. On the 
fixed boundaries the normal derivative of the 
concentration field is zero. A more detailed 
description of the model is presented in [34]. 

 
    The presented mathematical problem has been 
implemented in the package SEPRAN, which has 
been developed at the Department of Applied 
Mathematical Analysis at the Delft University of 
Technology. The resulting discretized Stefan 
problem is solved by the use of a moving grid 
method, where the grid is adjusted according to the 
interface movement. The interface movement is 
determined in a conservative way. The method is 
described in detail by Segal et al. [30]. 
 

In the calculations it is assumed that the initial α-
particle is spherical with radius initrα and that the 
initial β-plate is cylindrical with radius l. The Gibbs-
Thomson effect only has a significant influence on 
the transformation kinetics when the radius of 
curvature is very small (typically in the order of 
nanometer). Since we consider only transformation 
behavior in a micrometer-scale, we neglect the 
Gibbs-Thomson effect in the computations. 
 
Analytical Approach 

 
The analytical approach is based on the 

assumption that diffusion in the horizontal direction 
(i.e. the r-direction) only plays a role (see Figure 2). 
To justify this, we show the concentration field, 
c(r,y,t), in the aluminum matrix in the vicinity of the 
interfaces in Figure 3. As the variation of the 
concentration in the vertical direction close to the β 
plate is very small, it is reasonable to assume that 
there the second derivative in the y-direction is 



negligible. This motivates the one-dimensional 
approach. Just as in the FEM calculations, the 
analytical model is based on volume diffusion, where 
only diffusion close to the β-plate is considered, 
such that a one-dimensional Stefan problem arises. 
A further assumption is that the time dependence in 
the diffusion equation is negligible. We summarize 
this as follows: 
 
Main Assumptions of the Analytical Model 
 
1.  The growth of the α- and β–phases is determined 

by the derivation of the growth of the interface 
position of the α particle at the triple point F, and 
the rim point G of the β-plate (Figure 2). 

 
2. The rate of interface movement is very small 

compared to the rate of diffusion in the  
α-matrix (steady state assumption). 
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Figure 3. Iso-contour plot of concentrations of Fe in 
a cylindrical symmetric situation on an alloy 
homogenized for 60 minutes at 580 °C, as obtained 
by FEM calculations. The model parameters are 
presented in Table 1. 

 
A consequence of the assumptions is that we 

have on the β plate surface between the points F 
and G 
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where the concentrations at F and G serve as 
boundary conditions.  
 

For its tractability we only treat the rectangular 
case here. The cylindrical case is dealt with in a 
similar manner. Combined with the boundary 

conditions at the moving interfaces the solution of 
the above equation is: 
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The Stefan condition for both moving interfaces 

reads as: 
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Combination of the expressions in the above 

equations with the solution gives after integration: 
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After some elementary algebra this will give 

equations for the interface positions. We see that the 
collision time tcol is proportional to the square of the 
initial distance between the reminiscent phases, 
Pβ (0)– Pα(0): 
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The analytical solutions are compared with the 
FEM solutions in the section of the discussion and 
results. 

 
EXPERIMENTAL DETAILS 

An Al-Mg-Si alloy (AA 6005 A) with an alloy 
composition of 0.70 wt.% Mg, 0.83 wt.% Si, 
0.27 wt.% Fe, and 0.18 wt.% Mn has been used for 
our investigations. All other chemical elements were 
present in weight percentages of at most 0.01 wt.%, 
hence their presence is ignored. The investigated 
alloy was DC-cast with a diameter of 254 mm.  

 
To investigate the β α transformation rate, 

series of samples were homogenized at 
temperatures of 540°C, 570°C and 580°C for various 
times ranging between 10 minutes and one day. The 
samples were homogenized in an air circulation 
oven, for which the maximum temperature deviation 
over all locations is 3 °C. The samples were taken 



from the billet at locations between 10 mm and 30 
mm from the rim of the billet. The microstructure of 
these samples, represent the typical microstructure 
of the billet. The experimental relative α-fraction was 
determined by using automatic SEM measurements 
in combination with Electron Dispersive X-ray 
Spectography (EDX). The α- and β- particles are 
classified by the difference of stoichiometric ratio of 
the total concentration of Fe and Mn versus the 
concentration of Si, which is determined by EDX. 
The method is described in more detail in [7]. 

 
At different distances of 20 mm, 50 mm and 75 

mm from the rim of the billet, the mean dendrite arm 
spacing (DAS) has been determined. Each DAS 
value was determined by averaging 50 separate 
DAS-spacings determined from five optical 
micrographs on the same polished sample.  

 
The samples were polished with one-fourth silica 

and subsequently electro-etched at 20 V during 30 
seconds in a mixture of 78 perchloric acid, 90 mL 
water, 730 mL ethanol and 100 mL butylglycol. SEM 
micrographs (JEOL 6500F) of these samples were 
used to measure the mean thickness of the β-plate. 
The thickness of the β-plates was determined by the 
use of SEM micrographs by averaging 50 individual 
thicknesses. The true thickness in 3-D was taken to 
be π/4 times the average thickness from the cross 
section images.  

 
The nucleation distance between individual α 

particles was measured on two fully homogenized 
samples, either homogenized for 32 hours at 
590 °C, or homogenized for 130 hours at 540°C. 
Each sample was polished with one-fourth Silica. 
Subsequently 20 optical micrographs were made on 
each sample. The distance between neighbouring α 
particles (l), which were located along a former β-
plate, was determined by the use of the sketch of 
Figure 4. The nucleation distance in polished plain is 
obtained from L/(n-1), where L represents the 
distance between the outside particles, and n is the 
number of particles on a sequence. The median 
nuclei distance, was determined by the use of 20 
measurements of α-particles. The true nuclei 
distance in 3D, l, was taken to be one half times the 
median nuclei distance from the measurements. 

 

L
l

 
Figure 4. Microstructure of the fully homogenized 
sample at 590°C. The method of the determination 
of the distances between the beads of the α 
particles on the former β plate is showed. 

 
RESULTS AND DISCUSSION 

In this section, first the analytical model will be 
compared with the results of the FEM model. Then, 
the experimental results will be compared with the 
results obtained by the mathematical models. Finally 
the metallurgical implications will be given. A 
detailed parametric study is presented in [34] and 
[25], where the influence of the temperature, initial 
concentrations, initial sizes of the α and β phases on 
the transformation rate is investigated. 

 
The simulation is done for an industrial 

temperature of 580°C, therefore the reported 
parameters are also obtained for this temperature 
(Table 1). We used the literature values of the 
densities of Al, α and β phases[31] for the derivations 
of the concentration of Fe inside the α and β 
particles. 

 
The Scheil[26,29] model derives the initial 

concentration of different elements in the Al-matrix 
close to the intermetallics. Since the FEM cell is 
relatively small compared to the DAS, and is 
situated close to the intermetallics, it is assumed that 
the initial concentration is homogeneously 
distributed in this FEM cell and is equal to the 
derived concentrations. By Scheil calculations in 
Thermo-Calc, which use the compositions of the 
experimental alloy as input, initial concentrations 
were found of 0

Fec =0.02 wt.%, 



0
Mgc = 0.6 wt.%, 0

Sic  = 0.5 wt.% and 
0
Mnc  = 0.25 wt.%. 

 
The concentrations on the interface of the β 

particles are determined by the multi-component 
model. The procedure is described in [34]. The 
geometric parameters, as presented in Table 1, are 
estimations from previous research.[4,12] 
 

Table 1. Basic Physical Parameters Used for the 
Model 

Parameter Symbol Value 
Diffusion coefficient (at 
T=580°C) 

DFe 0.0307 µm2/s 

Fe concentration in α 
particle [31] 

pcα  39.9 wt.% 

Fe concentration in β 
particle [31] 

pcβ  33.9. wt.% 

Fe content on interface 
of α particle 

scα  0 wt.% 

Fe content on interface 
of β particle 

scβ  0.0183 wt.% 

Initial radius of α 
particle  

initrα  0.25 µm  

Thickness of β-plate d 0.2 µm 
Diameter of initial β-
plate 

l 3 µm 

Cell size of aluminum 
matrix 

lcell 2.5 µm 

Initial iron concentration 
in matrix 

0
Fec  0.0200 wt.% 

Temperature T 580°C 
 

Comparison Between Both Approaches 
 
Figure 5 shows the evolution of the relative α-

fraction, fα, for the analytical, and FEM model, for 
both cylindrical and planar symmetry. For the 
analytical approach it is assumed that the α particle 
stays rounded during the transformation, and its 
radius is defined by the position of the triple point F. 
Figure 5 shows that for the calculation of the relative 
α-fractions in the early stage, the analytical model is 
a reasonable alternative to the FEM calculation. For 
later stages (higher than fα ≈ 0.40) the differences 
become too large. 
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Figure 5. The evolution of the relative α-fraction by 
the use of the analytical approach and by the use of 
FEM, for cylindrical (as denoted by the straight lines) 
and planar (as denoted by the dashed lines) 
symmetry. The model parameters are presented in 
Table 1. 

 
Model Versus Experiments 

 
In the previous sections, we showed that the 

model showed realistic characteristics. In this 
section we want to perform a more quantitative 
comparison of the model calculations versus 
experiments. For the model calculations a cylindrical 
geometry is used with geometrical dimensions as 
experimentally determined. All other parameters are 
as presented in Table 1.  

 
The mean thickness of the initial β-plate had a 

median thickness of 0.2 µm. This thickness of the β 
plate had a wide natural variation with a standard 
deviation of 0.15 µm. We did not find a statistically 
significant change in the mean thickness at later 
stages of homogenization (fα≈0.2 and fα≈0.5). This 
supports the hypothesis that the thickness does not 
change during the homogenization. Note that the 
thicknesses, found by SEM, are somewhat smaller 
than the thickness found by optical microscopy in [4] 
because SEM measurements also detect thinner β 
particles, which are not visible for optical 
microscopy. For the sake of simplicity, in this model 
we only consider the median thickness in 
calculations. 

 
The nucleation distance of the α particles was 

determined. For the fully homogenized sample at 
540°C the median distance was equal to 1.75 µm, 
and for a fully homogenized sample at 590°C this 
distance equals approximately 1.5 µm. There is a 



wide natural variation of the nucleation distances, 
with a standard deviation of 0.5 µm, but for the sake 
of simplicity, in this model we only take the 
nucleation density l=1.5 µm as a model parameter, 
and we neglect the temperature dependence.  Note 
that although the median nucleation distances were 
corrected for the 3D situation, the values still fall 
within the measured distribution of the nucleation 
distances in the 2-D plane. 

 
The average DAS was approximately 20 µm. In 

the numerical calculations, we found that the cell 
size hardly has any influence on the numerical 
results providing it is larger than the β plate. 
Therefore, to reduce the computational effort, we 
used a numerical cell size which is smaller than the 
dendrite arm spacing, lcell = 2.5 µm. 

 
     The morphology assumed in the model 
calculations was also validated against some SEM 
micrographs. In [34] we present some SEM 
micrographs of an α particle growing on top of a β 
plate. The morphology corresponds well with the 
FEM calculations. The micrographs also show that 
the α particle does not stay spherical during growth. 
The same behavior is observed for the FEM 
calculations. Secondly, the micrographs reveal that 
the interface between the α and β phases remains in 
its place. 
 

Figure 6 shows the relative α-fraction as a 
function of time computed by FEM and experiments. 
The time and temperature dependence of the 
relative α-fraction of the FEM model agrees well with 
the experiments. It should be pointed out that the 
model is capable of predicting the transformation 
fraction up to approximately fα=0.5. 
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Figure 6 The relative α-fraction as a function of time 
derived by the Finite Element Model (presented by 
the straight lines) compared with the relative α-
fractions, measured by experiments (presented by 
the separate points). The calculations and 
measurements are performed for three different 
temperatures.  
 
Metallurgical Implications  

 
A proper homogenization leads to a considerable 

increase in the extrudability and leads to fewer 
surface defects on the aluminum profiles. Therefore, 
an extrusion ingot is homogenized to attain a high 
relative α fraction, e.g., at least fα=0.8 and preferably 
more than fα=0.9.[1] Although the presented 
transformation model is not applicable to 
homogenization up to high relative α-fractions, still 
some important metallurgical implications can be 
extrapolated from the numerical experiments.  

 
Three aspects influence the homogenization 

process in particular: the homogenization 
temperature, the morphology of the intermetallics, 
and the alloy content. 

 
A high temperature dependence of the 

transformation rate was found in [34], both for 
numerical and experimental results. Industrial 
homogenization temperatures of extrusion ingots are 
typically at approximately 585ºC.[1] The model 
showed that a decrease of the homogenization 
temperature of, e.g., 5ºC leads to a considerable 
increase of the required homogenization time of 
approximately 20 percent. Therefore, accurate 
temperature control is a very important aspect to 
achieve efficient homogenization.  



The morphology of the intermetallics has an 
important effect on the transformation speed. A 
parameter study in [34] indicates that thin β-particles 
will transform faster than thick β particles. Therefore 
it is important that the as-cast structure contains 
more thinly distributed β particles, to achieve fast 
homogenization times. Grain refinement, alloy 
composition, and cooling speed mainly determine 
the coarseness of the β-AlFeSi particles, and 
therefore those parameters have to be optimised.  

 
The effect of the DAS was also investigated on 

the transformation speed. Experiments on the 
studied AA 6005A alloy indicates that the DAS 
ranges between 19 µm and 23 µm, within the DC-
cast billet. The results as given in [34] indicate that 
this slight variation in DAS does not lead to a 
significant effect on the transformation speed. The 
influence of the alloy composition was not 
investigated in this study and will be discussed in 
[25]. The model implies that Mn concentrations 
higher than 0.10 and Si concentrations lower than 
0.3 wt % increase the transformation speed. 

 
CONCLUSION 

A Finite Element Model has been presented 
which describes the initial stages of the β-AlFeSi to 
α-Al(FeMn)Si transformation. The model predicts a 
strong effect of temperature and intermetallic 
morphologies on transformation kinetics. In spite of 
major simplifications in initial morphologies of the 
intermetallics, the calculated FEM results agree over 
a large range of temperatures, with experimental 
data. A simple analytical model yielded qualitatively 
the same behavior, however, its quantitative 
agreement is rather poor. We conclude from the 
good agreement of the FEM calculations and 
experiments that the β α phase transformation 
kinetics is diffusion controlled. 
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