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Abstract. A general model for the dissolution of particles in multi-component alloys is
proposed and analyzed. The model is based on diffusion equations with cross-terms for the
various species, combined with a Stefan condition as the equation of motion of the interface
between the particle and diffusant phase. We analyze the existence of solutions of the
vector-valued Stefan problem with cross-diffusion for a singular diffusion matriz. Further,
we gwe a self-similar solution of the problem for an unbounded planar domain. This
solution is used to check the numerical solution at the early stages. To check the numerical
solution at the final stages we present an end-point condition for the interface position
and concentrations. Several numerical schemes for the solution of the Stefan problem are
proposed and compared. It turns out that diagonalization is usefull for numerical purposes.
We stress that in the present paper we only give the main results of the comparison of the
various numerical schemes.
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1 INTRODUCTION

In the thermal processing of both ferrous and non-ferrous alloys, homogenization of the
as-cast microstructure by annealing at such a high temperature that unwanted precipifates
are fully dissolved, is required fo obfain a microstructure suifed fo undergo heavy plastic
deformafion as an opfimal sfarting condifion for a subsequent precipifation hardening
treatment. Such a homogenization treatment, to name just a few examples, is applied in
hot-rolling of Al killed construction steels, HSLA steels, all engineering steels, as well as
aluminum extrusion alloys. Although precipitate dissolution and growth are not the only
metallurgical processes taking place, these are often the most crifical of the occurring
processes. The minimum femperature at which the annealing should take place can be
defermined from thermodynamic analysis of fthe phases presenf. The minimum annealing
time af this femperature, however, is not a constant buf depends on parficle size, particle
geomefry, particle concentration, overall composition efc.

Due fo fhe scienfific and industrial relevance of being able fo predict the kinefics of
parficle dissolution and growth, many models of various complexify have been presented
and experimentally validated. In recenf years fhe simpler models covering binary and
ternary alloys have been extended to cover multi-component particles. These advanced
models cover a range of physical assumptions concerning the dissolution conditions and
the initial microstructure. For a review and more physical background we refer to [1].
We remark that the impact of the Gibbs-Thomson effect due fo surface fension is disre-
garded in the present paper. Vermolen et al [1] describe the surface tension effects on the
dissolufion kinefics of spherical parficles.

In this paper we study several numerical methods for a model of parficle dissolufion
and growth in mulfi-component alloys, i.e. alloys with several alloying elements. The
model is based on a vector-valued Stefan problem where the effects of cross-diffusion
are taken info accounf. A self-similarify solution and asympfofic expressions for a one-
dimensional geometry are presented in [2]. The present paper is organized as follows:
The model equations are introduced first. Subsequently we present some analysis of the
equations. This is followed by the main results on stability and efficiency of several
numerical methods. For a mathematical justification of the theorems on the numerical
analysis we refer to [3]. Some numerical experiments are given and finally the conclusions
are presented.

2 MODEL

The vector-valued Stefan problem is based on (cross) diffusion of several chemical
species in the domain €Q(t), which varies with time due to the movement of boundary
S(t). This boundary S(t) separates the ’particle’ from diffusive phase Q(¢). In the par-
ticle we assume that the composition (stoichiometry) is constant at all the stages of the
modelled process. This composition is denoted by ¢?* for i € {1,...,n}. Furthermore,
we assume local equilibrium at the moving interface S(t). Through boundaries, not be-
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ing an interface, denoted by I'(¢), a no-flux condition is imposed. For more physical
justification of the model, we refer to [1].
Mathematically, this all boils down to the following problem for i € {1,... n}:

801 ZD”KCJ, for (z,y) € Q(t),t > 0, (1)

Ci(xa Y, O) = C?(xv y) for (I’, y) € Q<0)7 (2)
Je; - )

o 0, for (z,y) € I'(t),t > 0, (3)

ci(z,y,t) = &%, for (z,y) € S(t),t > 0. (4)

The initial position of the interface is known and denoted by S(0). The coefficients, D;;,
are the (cross) diffusion coefficients, which are the entries of the diffusion matrix, D. At
the moving inferface we have

() () ()G = K, (5)

where K is known and may depend on time ¢ for an non-isothermal Sfefan problem.
However, in fhe present study we fake if as a constanf. The normal componenf of the
inferface velocity is described by

((;E’Mt v, = Z Dw for ,y) € S(t),t > 0. (6)

The right-hand part of above equations follows from local mass-conservation of the com-
ponents. Note that if ¢?*" # ¢!, then from equation (6) follows

n

Dik 8Ck “ D ik ack
;m%:;ma , for (z,y) € S(t),t > 0. (7)
Above formulated problem falls within the class of Stefan-problems, i.e. diffusion with a
moving boundary. Since we consider simultaneous diffusion of several chemical elements,
it is referred to as a 'vector-valued Stefan problem’. The unknowns in the above equations
are the concentrations c¢;, inferfacial concenfrations ' and the inferfacial posiftion S(t).
All concentrations are non-negative. The coupling exisfs in both the diffusion equafions,
equaftion of motion and the values of the concentrations at the interfaces between the
particle and diffusive phase. We nofe here that the equafions are asymptotically stable
if and only if R{eig(D)} > 0. Hence only this case is considered in the present study.
For a mathematical overview of Stefan problems we refer to the textbooks of Crank [8],
Chadam and Rasmussen [9] and Visintin [10].
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3 ANALYSIS

In this section we consider some general mathematical properties of the vector-valued
Stefan problem in which we deal with the exfra coupling from cross-diffusion. We will
partly or enfirely decouple the diffusion equations depending on whether the diffusion
mafrix, D, is diagonalizable. Therefore, we first give some analyfical resulfs for the bi-
nary case, in which we consider diffusion of one alloying element only. Next we consider
the 'degenerate’ vector-valued Stefan problem where one of the diffusivities is zero, where
loss of uniqueness of the solution results. Subsequently we state the vector-valued Stefan
problem with the diffusion matrix. Here we deal with a factorization of the diffusion ma-
trix where we use Jordan decomposition or diagonalization. We end up with a self-similar
solution and an expression for the final posifion of the inferface and final concentration
profiles.

3.1 The binary case

First we consider the case that one of the diffusion coefficients is equal fo zero. The
freatment is binary, i.e. we consider only one diffusing alloying elemenf. The concentration
in this secfion is denoted by u. Lef the domain that includes the a-parficle and (-phase
be given by x € [0, M], then consider the following problem for ¢ > 0

( Ou 0%u
ou_pZt r € (S(2), M)
dS ou
part _  soly ™ _ e
()% = D2 (s5(1) 1)
w(S(1), 1) = w, (®)
ou
%(M, t) =0,
[ u = uPrt, z € [0,5(1)).

Here we assume fthat u! is a given consfanf. We now infroduce the definifion of a
mass-conserving solution:

Definition 1 A solution of the Stefan problem is called conserving if the solution satisfies
M
/ (u(z,t) — u)dz = (uP" — u®)S(t), vt > 0.
0

With this definifion of mass-conserving solutions we established the following proposifion
in [11]:
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Proposition 1 Let all concentrations, which are used in problem (8), be non-negative,
then the following combinations give non-conserving solutions in the sense of Definition
1:

° usol < upa'rt < UO,

° uO < upart < usol'

Further, we call a solution allowable if it satisfies the following definition:

Definition 2 A solution of the Stefan problem is allowable if and only if it is both mass
conserving in the sense of Definition 1 and asymptotically stable with respect to perturba-
tions.

Problems that have only non-allowable solutions are called ill-posed. Some results on
mass conserving solutions are proven in [11]. It is well-known that whenever the diffusion
coefficient D is negative, then the solution is not stable with respect fo perturbations.
This implies that the case D < 0 is ill-posed in the sense of Definifion 2.

Let us consider fhe case D = 0, which may happen affer a diagonalizafion when the
diffusion matfrix is singular. For D = 0, the one-dimensional version of problem (8)
changes info

( Ou
EZO, I€<S<t>,M>

u(S(t),t) = u,

u = uPt, x € [0,5(t)).

\

We assume that the function that describes the interface position S is smooth in a time-
interval [0, 77, i.e.

(C): S e€CH0,T)NC°0,17].
Now we show that D = 0 never allows growth of the (-particle. First, we need the
following Lemma for the proof of this assertion:

Lemma 1 Let S satisfy smoothness (C),

1. suppose S(t) > S(0), then there exists a minimal t = t, such that S(f) = S(t) and
S(t) < S(t) for allt € (0,1),

2. suppose S(t) < S(0), then there exists a minimal t = t, such that S(t) = S(t) and

S(t) > S(t) for all t € (0,1)
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Proof: Let V C (0,1] be the set that contains the times that S(t) > S(#), i.e.
Vi={t€ (0,4 :S(t) > S(t)}.

The existence of a minimal ¢ = ¢, amounts to the establishing of the existence of a
minimum for V. Since all ¢ are positive, t = 0 is a lower bound of V. Further ¢ € V and
thus V' # (). First we show that V is closed and since it has a lower bound, it follows
from the completeness axiom (see for instance [12]) that V' has a minimum. To show that
V is closed, we show that its complement within (0,#], V¢ := (0,#] \ V, is open. Suppose
that £ € V¢, then S(f) < S(#). Since S is continuous (see (C)), it follows that there exists
§ > 0 such that S(t) < S(#),V|t — f| < §. Since this holds for each € V¢, the set V¢
is open and hence V is a closed sef. This implies fhe existence of a minimum of V' and
hence 7 exists as a minimal ¢ such that S(t) < S(f) = S(t) for all ¢ € (0,#] and the first
part of Lemma 1 is proven. The proof of the second parf of Lemma 1 is analogous. O

Theorem 1 Let S(t) satisfy smoothness (C) and let the equations in (9) be satisfied, then

1. S(t) < S(0) for any t € [0,T] if uP™* # P,

2. S is undetermined if uPt = uP.

Proof: By contradiction, suppose S(t) > S(0) and suppose that S satisfies smoothness
(C), then, according to Lemma 1, there exists a ¢ € (0,) such that S(f) = S() and

S(t) < S(t) for all t € (0,1). Since u = uP*" whenever z € [0, S(t)), Definition 1 implies
uPtS(0) + (M — S(0))u® = S(#)uP™ + (M — S(t))u®,

implying )
(uPt —u")(S(0) — S(f)) = 0.

This implies either u® = uP™* or S(#) = S(0). First we assume that uP® #£ u° then
S(t) = S(0), which contradicts the assertion S() > S(0) and the first part of the theorem
is proven. Furthermore, if uP** = 4° holds, then S(f) is undetermined. This proves the
second part of the theorem. O

Theorem 2 Let S satisfy smoothness (C) and the equations in (9) be satisfied, then
1. S(t) = S(0) whenever u** # uPort 4 u°;

2. S(t) is undetermined, but S(t) < S(0), if u*® = uP** # u°.
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Proof: From Theorem 1 follows that S(f) < S(0) whenever uP** # u°. Suppose that
S(t) < S(0), then from Lemma 1 follows that there exists £ such that S(f) = S(#) and
S(t) > S(t) for all t € (0,%). From Definition 1 follows

i 5(0)
uP*™S(0) + (M — S(0))u® = S(t)uP™* + / u(z, t)dz + (M — S(0)u’,  (10)

S(f)

ou ~
Since — = 0 for x > S(t), the integral in the above equation can be writfen by

ot

S(0)
/S w(w, )z = (S(0) — S(B))u,

®)

and the equation of mass-conservation, equation (10), changes info
(%) (@ = uw)(S(0) - S(F)) = 0.

Hence u™' = wP*® or S(#) = S(0). Suppose that u*' # uP¥* then S(f) = S(0) and
the first part of the theorem is proven. Further, if u*®' = wP¥* then (*) holds for all
S(f) = S(#) and hence this quantity is undetermined, which proves the second part of the
theorem. Note from Theorem 1 that then S(#) < S(0). O

The above theorem implies that S(t) is non-moving if uP™® £ 4™! otherwise, whenever
uPt = Pt the function S is undetermined and hence uniqueness is violated. Similarly,
whenever uP* = ¢, the solution is undetermined. We state this result in the following
corollary:

l

Corollary 1 The solution of problem (9) is not uniquely defined when u®' = uP** or

0

upa'rt =u

3.2 The ’degenerate’ vector-valued Stefan problem

First we consider the planar version with one spatial co-ordinate of the vector-valued
Stefan problem, without cross-diffusion, i.e. D;; = 0 for i # j, as defined by equafions (1-
6). We start by analyzing the case that one of the diffusivities is equal fo zero, say D; = 0.
When one of the diffusivities is zero, we refer to the problem as being 'degenerate’. First
we remark that S(t) > S(0) gives a contradiction with regard to Theorem 1. Hence we
know that S(t) < S(0). We will now prove the following theorem:

Theorem 3 Let S(t) satisfy smoothness condition (C), then the problem as constituted
by equations (1-6), supplemented with initial conditions ug £ 0 forj €{2,...,n}, has a
solution, S(t) = S(0), when one of the diffusivities is zero, say Dy = 0.
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Proof: Suppose that S(t) = 5(0) for ¢t € [0,7], then S(¢) is known, and from relation (6)
follows when " # 1™

ol . D1 8u1 . Dj (3714]' .
0=5'(t) = 55 (S(,1) = = (S(0).1) for j € {2......m}.

1 1 J 7

Since generally D; # 0 for j € {2,...,n}, this implies

Ous
%(S(t),t) =0, forj € {2,...,n},t € [0.7].
Since %i = 0 for both z = S(t) = S(0) and = = M, and u;(z,0) = u for = € [0, M], it
follows from the maximum principle of the diffusion equation (see Protter and Weinberger
[4])

uj(z,t) = ug, for j €{2,...,n},
and

uSOI(aj t) =uj, for j € {2,...,n}.

The concentration u® is defermined from relation (5) using the above values for uj-(’l,

j €{2,...,n}. Further from relation (5) it is clear that when u$ = 0 for any j € {2,...,n}
S(t) = S(0) is not a solution (u® is not bounded then). O

Suppose now, under hypothesis of Theorem 2, S(t) < S(0) for 0 < t < T, suppose
further that there exists a t = ¢ such that S() < S(0), then from Lemma 1 there exists a

A,

€ (0,%) such that S(f) = S(f) and S(t) > S(f) for all t € (0,%). Definition 1 then gives

for mass-conserving solutions

B 5(0)
S0P 4 (M — S(0))ul = S(Pub™ + /S s (2, ) + (M = S(0))u

Ouy
Since u1(S(t),t) = ui® and —— = 0, the above equation changes info

ox

S(0)
(S(0) = S(B))ur™ — L Wz ).

Suppose u$® = ub™", then the above equation is satisfied. Knowing the value of u$®' =

ub™", then the other interfacial concentrations {uy, ..., u'} are defermined from the
ds
problem defined by equations (1-6). If the values of {u$’, ..., u'} are such that = <0

(see [11]), then from Theorem 1, there exists a solution S(t ) < S(0) and hence at least
fwo solutions are possible. Hence, uniqueness is violated for this case. Furthermore, there
possibly also exist non-monofonous solufions. We summaries this in the following remark:

8
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Remark 1 Under hypothesis of Theorem 3, the solution may not be unique.

s
We further remark that the condition of 'non-growing’ solutions, i.e. — < 0 implies that

the solutions are allowable in the sense of Definition 1 (see also Proposition 1). We just
established in this subsection that when one of the diffusivities is zero and when the initial
concenfrations are non-zero then a non-moving boundary is a possible solufion. Furfher,
under some circumsfances the solufion may nof be unique. Therefore, this is not likely
fo be a very inferesting case from a mefallurgical poinf of view.

3.3 The vector-valued Stefan problem: decomposition of the diffusion matrix

Subsequently, we change into a vector notation of the equations. We define the vectors

- T . (ppart part AVA — | | NT ¢ :
¢ = (c1,¢0y... €)', @ = (M, 0 A = (0 & ..., )", then the
diffusion equations become in vector notation
0
—c = DAc. (11)
ot~

In the above equation the diffusion maftrix, D, is assumed to be independent of the
concentrations, time and posifion. The boundary and initial condifions follow similarly
in vector notation. The equation of motion of the interface becomes in vector notation:

(P — ) ijf DSC for (z,y) € S(1).
Here n represent the unit outward normal vector.

To analyze equation (11) it is convenient to look at a decomposition of the diffusion
mafrix D. Therefore we use the Decompositfion Theorem in linear algebra, which says
that for each D € R™™ there exists a non-singular P € R™" such that A = P !DP,
where A represents a Jordan block-matrix. We refer to Birkhoff and MacLane [5] or Golub
and Van Loan [6] for the proof of the theorem. For cases where D has n independent
eigenvectors, i.e. D is diagonalizable, A is diagonal with the eigenvalues of D on the main
diagonal. Further, the columns of the matrix P consists of the eigenvectors of D. In the
more general case of a Jordan decomposition we have that the matrix P consists of the
generalized eigenvectors of D, which are obtained from solution of

(D — M)w;,, = w,;, with w; = v,

where [ € R™" is the identity mafrix and v and w, are an eigenvector and generalized
eigenvectors of D respectively, belonging fo the eigenvalue A whose geometric multiplicity
is less than the algebraic multiplicify. For the coming we assume fhat the eigenvalues are
real. Substitution of the decomposition of D info Eq.(11) gives

g _ 10 , 0
E EEPAP AC<:>8 P C—AAP C,

is 9 e wdS 0
(" —c )E %PAP c(S(t),t) & P~ (" =) — priirwel i c(S(t).1)
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In the above relations we assume that D is a constant matrix. Further, it is easily
shown for this case that D and the operator A commute. We define the transformed

concentrations as
S

=Pl u® = P!
) 1 0

P QO = P—I

118

then the diffusion equation and equation of motion change into

%QZAK@
(12)
» o dsS ou
(g —u ) E :A%a for (Qf/y) € S(t>

Above equations involve Jordan matrices with the eigenvalues of the diffusion matrix. For
non-defecfive mafrices, with n linearly independent eigenvecfors, the mafrix in the above
expressions is diagonal and the system is fully uncoupled. Hence the strong coupling in
the partial differential equations has been reduced herewith. The homogeneous Neumann
condifions at the non-moving boundary are similar for the transformed concentrations
due fo the linear nature of the transformation. Further, we have for ¢ = 0
ul, for z € Q(0),
uj = je{l,...,n}
uP™, for z € [0, M] \ Q(0).

J

n
From the decomposition of the diffusion matrix, with ¢ = Pu = ¢; = Zpijuj, the cou-
j=1
pling between the interfacial concentrations via the hyperbolic relation (4) changes into

(ZPUU?)W(ZP%U?)W(- : -)(anjuj-)m” = K = K(T). (13)

Although this condition becomes more complicated, the analysis is facilitated using the
diagonalization of the diffusion matrix.

In the Jordan-mafrix we have one uncoupled concentration for each eigenvalue of D.
This implies that whenever one eigenvalue is negative, an uncoupled diffusion equation
with a negaftive diffusivity resulfs for the decomposed system. In ofher words, we face the
following equafion

0“72
ot

It is well-known fhat the above equation is unsfable with respect fo perfurbafions and
hence the problem is ill-posed. This motivates the requirement that the eigenvalues of

= —pAu;, with p:= -\ <0, for z € Q(t),t > 0.

10
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the diffusion matrix have to be non-negative.

For the case that one of the eigenvalues is zero, then we have an uncoupled equation
without diffusion, i.e.

Ou,

8—7; =0, for z € Q(t),t > 0.
Theorem 4 Let S satisfy smoothness (C), then the problem as constituted by equations
(12) and (13), supplemented with initial conditions c? # 0 for j € {2,...,n} and homo-
geneous Neumann boundary conditions at x = M, has a solution S(t) = S(0) when one
of the diffusivities is zero, say Dy = 0.

Proof: The proof of the theorem is analogous fo the proof of the Theorem 3, where the

hyperbolic relation between the set {u$®, ... u'} differs and where we must have c? #0
for j € {2,...,n} to avoid a contradiction with the existence of a solution S(t) = S(0).
Note that u{ is allowed to be zero provided that ¢ # 0 for j € {2,...,n}. O

As a consequence of the above resulf, we will restrict ourselves fo the freatment of a
mafrices, D, which have real and posifive eigenvalues. If D is symmefric and diagonally
dominant, then if follows from Gerschgorin’s Theorem that fhe maftrix posifive definite
and hence ifs eigenvalues are posifive. We remark thaf complex eigenvalues of the diffusion
mafrix is a fopic of currenf reseach. For fhe non-moving inferface if is required that the
eigenvalues of the diffusion mafrix have a posifive real part for asymptotic stability. We
note that the eigenvalues of the overall diffusion system follow from a product of the
eigenvalues of the diffusion mafrix and the eigenvalues of the Laplacian.

Furthermore, from the Spectral Theorem in standard linear algebra follows that if
D € R™" is symmetric then D is diagonalizable, the eigenvalues are real and P~ = P7.
For this case above relation changes into

D = PAPT.
3.4 A self similar solution for R!

To facilitate the analysis we consider the transformed solution u. The components of
the vectors u, u?, u* and u” are denoted by the index 7 in subscript. To facilitate the
analysis we consider the Stefan problem on an unbounded domain where a = 0 (planar
case) in one co-ordinate:

(0 0?u
o= or
P){ ) B A% 5000
u(z,0) = u°, S(0) = Sy,
| u(S(),6) =,

11
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Here we only deal with the diagonalizable case where we consider an exact solution for
the infinite half plane. A self-similar solution, where the boundaries do not move, can be
found in the book of Glicksman [7], chapters 23 and 24.

As a ftrial solution of (P;) we look for solutions where the inferfacial concentrations
u® are consfant. Furthermore, we assume that the diffusion matrix, D, is diagonalizable.
Suppose that the vector u® is known then using a similar procedure as in [11], one obtains
the solution for each component:

forie {1,...,n}.

The assumption that S = Sy + k+/t gives the following expression for k

k:2
0_us [\ N k

i _1.67]625, fori e {1,...,n}.
ub — u s erfC(Q—\/A—i)

)

Above equation has fo be solved for the parameter k. However, the fransformed inferfacial
concenfrations u° are not known either and hence one is faced with the following problem

.
0

k2
u; — us A e k .
LA R i A S — forie{l,...,n}
p S k ) ) 3 )
uf — us moerfe(zs) 2

(Z pljuj)ml(z poju;) ™ (.. )(an]u;)mn - K.
Jj=1 =1 —

\

Here the unknowns are the transformed interfacial concentrations u® and rate-parameter
k. In above problem fhere is no time-dependence, hence the ansatz of time-independent
transformed inferfacial concentrations (and hence the physical interfacial concentrations)
is not confradicted. Due fo the non-linear nature of the equations, the solufion may be
nof unique. We apply a numerical zero-point method fo obfain the solufion.

As a fest problem we consider the following configuraftion:

QO — (0’ O)T, Qpart — (50’ 50)T’

10
(1Y), ke

From the above problem if follows fhat ¢ = 1.1885 (dissolution) or ¢§' = —1.193
(growth). Since we are inferested in non-negafive concentrations only, we reject the

12
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second case, i.e. we have ci°! = 1.1885. The constant interface concentrations are indeed
a solution of the planar semi-infinite case. For the spherical semi-infinite case the interface
concenfration is not constant. In fhe nexf section we show fhat for a finife cell radius in
a planar configuration the inferface concenfrations are no longer consfant either.

Some asymptotic solutions are derived and treated in [2]. Further, in that paper we
present the self-similar solutions for the case of the non-diagonalizable diffusion matrix as
well.

3.5 The final state

For simplicity we consider one spatial co-ordinate only where x € [0, M| for M > 0,
i.e. the cell radius is finite. For the scalar Stefan problem if can be shown by use of the
maximum principle of the diffusion equation [4] that for a constant interface concentration
the inferface posifion is monofonic in fime. Further, the final stage gives the final inferface
position, where S/ ranges from 0 till M, i.e. S/ € [0, M). This follows from the fact that
if ST = M for c®®* £ ¢ then mass would not be conserved, i.e. % fOM c(x, t)dx # 0, which
we reject as a physical solufion. We assume here that the solufion of the vector-valued
Stefan problem is monotonic and conserves mass in the sense of Definifion 2, hence there
exists a S/ € [0, M). Hence concentration gradients vanish as S(t) — S/ (¢t — oo). This
implies that as S — S/ # 0 the concentration between S/ and M fends fo a limit for
each chemical element, i.e. there exists c{ for all i € {1,...,n} such that c(z,t) — c{
as t — oo. If S = 0 then a homogeneous Neumann condition for all concentrations
arises. Whereas, if S/ > 0 then the final stage concentrations should satisfy hyperbolic
relationship, i.e. f(c],...,cl) = (e])™(c))™(...)(c])™ — K = 0. We summarize this in
the following problem:

Find c{, ...,cl and S7 such that
(Pp) ASI 4 I (M — §T) = P Sy + (M — Sp) fori € {1,...,n},  (14)

fledo ey = (e)m(e)m()(eh)m™ — K = 0.

The above problem applies for the case S/ > 0. For the case that S/ = 0 then the
condition f (c{ ,...,cl) =0 is dropped to avoid inconsistency. Further, we observe that
the final concentrations do not depend on the coefficients in the diffusion matrix.

The above insight is used to check whefher the numerical solufion conserves mass.
Of course existence and uniqueness are important ifems here. We illusfrate the above
concepts with the following example:

& =(0,0)7, Pt = (50,50)7,
1 —1/4
(LY. ke

13
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Further, Sp = 0.1 and M = 1. Then from problem (P) follows that the final interface
position is given by S/ = 0.0816 or S; = 1.176 with respectively c{ =1= cg or c{ =
-1 = cg , which both satisty problem (P). For physical reasons we assume that the
concentrations are non-negative and hence the second solution is rejected, i.e. S/ =
0.0816. This means fhat fthe parficle dissolves parfly. Similar considerations can be
writfen for more general geomeftries. Further, we observe that if for our parficular choice
of diffusion mafrix D fhe inferface concentrations are not constant at all stages of the
dissolution process (see the preceding subsection). We further remark that this is still

subject to research and hence the conclusions in this subsection are preliminary.

4 NUMERICAL METHOD

In general situations we are not able to give an analytical solution for the vector-valued
Stefan problem with cross-diffusion and hence a numerical method is used. The Stefan
problem considered in this paper contains two difficulties:

e fthe compufation of the moving interface;
e the occurrence of the cross-diffusion terms.

Our main inferest is fo give an accurate discretization of the boundary condifions for
this Stefan problem with one spafial co-ordinafe. Therefore we use the classical moving
grid method of Murray and Landis [13] to discretize the diffusion equations. For a survey
of ofher mefhods, such as the phase field method and the level-set method, we refer fo
[14, 15, 16, 17]. We sfress that this selection of references is far from complefe.

A complete descripfion of the numerical method fo solve the vector-valued Stefan
problem is given in [3]. There, the numerical treatment of the movement of the interface
position is described as well. Further, there the solution of the non-linear problem by
means of the Picard or quasi-Newton method is presented as well. Basically, in that paper
roughly two strafegies are compared: diagonalization of the diffusion matrix fo decouple
the diffusion equations due fo the various species and a direct solution procedure, which
does not make use of the decoupling. In this section we stafe the main resulf concerning
the direct approach in which no diagonalizafion is used. Here we distinguish fwo schemes:
The IMEX scheme and the (fully) implicit scheme (Euler backward). In the IMEX scheme
a decoupling of the diffusion maftrix is made: the main diagonal components are subject
to an implicit treatment, whereas the other coefficients are dealt with explicitly (i.e. at
the preceding time-step). In the implicit scheme the discretization from all the entries of
the diffusion matrix are treated implicitly. We remark that the eigenvalues of the overall
discretized follow from the fact that the overall discretization operator is a Knonecker
product of the diffusion maftrix and the discretized Laplacian. Then, fhe eigenvalues
of the overall discretizafion are given by fhe product of the eigenvalues of the diffusion
mafrix and fhe eigenvalues of the discrefized Laplacian.

14
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In [3] we prove the following stability properties of the methods for a 2 x 2 diffusion
matrix.

Theorem 5 Consider the time integration of equation (1), and let \ be an eigenvalue
of the discretized Laplace operator whose eigenvalues are all negative, D € R**? and
D11, Dys > 0, and let R(eig(D)) > 0, then;

1. The explicit time integration is stable if

2R(eig(D))
[Mleig(D)[*

2. The implicit time-integration is unconditionally stable and super stable.

At <

3. If 0 < |D12Ds1| < D11Day then the IMEX time-integration, given in eq. (?7),
is unconditionally stable and super stable. If |D19Dao1| > D13 Dag then the IMEX
time-integration is stable if

D11 + Doy

AMAL < —
A D11 Dgy + D13Doy

if D12Dg; <0,

and

D11+ Doy + \/(Dn + Dy;)? 4+ 4(D12D91 — D11Das)

if DioDor > 0.
D1sDa1 — D11 Do # DroDon

A AL <

As consequences of the above assertion one can easily prove the following statements:

Corollary 2 Let all hypotheses in Theorem & be satisfied, then

1. For all discretizations with a symmetric matrix, Theorem 5 holds.

2. A consequence of Theorem 5 is that the IMEX time integration is unconditionally
stable if the diffusion matriz is diagonally dominant and if the discretized Laplacian
18 symmetric.

Numerical experiments reveal that the derived criterion in Theorem 5 is sharp. In [3] the
above assertion is also extended to the Finite Element method.

In [3] it is motivated that the solution of the large system of linear equations for the
implicit method is less efficient than for the IMEX method for several arrangements of
the unknowns. There also some experimentally determined compufation fimes are given.

We finish here with a numerical experiment showing fhat af the early sfages the nu-
merically obtained inferface posifion co-incides well with the interface posifion from the
analytical solution for an unbounded domain. Further as the interface moves towards its
final position, we see in Figure 1 that the numerically obtained interface position tends
to its asymptotic value, which is derived in the Section 3. For the calculations we use the
configuration of Section 3.4.
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5 CONCLUSIONS

A model, based on a vector-valued Stefan problem, has been analyzed to predict dis-
solufion or growth kinefics of stoichiomeftric particles in mulfi-component alloys. Cross-
diffusion of fthe alloying elements is faken info account, which gives a strong coupling of
the differenfial equations. Using a diagonalization argument or a Jordan decomposifion
if necessary the vector-valued Stefan problem with cross-diffusion is transformed into a
vector-valued Stefan problem where the cross-terms vanish or at least as much as possi-
ble (for the Jordan decomposition). Well-known mathematical implications, concerning
mass-conservation of the Stefan problem and self-similarity solufions can be recovered
now also for fhe case of cross-diffusion. The hyperbolic relation between the inferfacial
concenfrations becomes more complicated, however, since the eigenvectors of the diffu-
sion mafrix have to be faken info account as well. In spite of this complication, the
vector-valued Stefan problem can be approximated by a quasi-binary in a similar way as
for the case in which no cross-diffusion is faken info account for the vecfor-valued Stefan
problem. For fhe case that the diffusion mafrix is singular, it is shown that the solufion
is not unique. Further, some expressions for an end sfafe for the inferface position and
concentrations are derived, which are used to demonstrate that the interface concentra-
tions are not constant during the dissolution or growth process when a bounded planar
computational domain is considered.

We summarize the resulfs of several analyzed numerical methods for the cross-diffusion
problem with a moving inferface. The Euler Backward fime infegration mefhod is un-
conditionally stable. A drawback is the long computafion time needed fo solve the large
system of linear equations from the spafial discrefization. A sfabilify criferion for some
cases of the IMEX method is given. The compufation fimes are smaller than for the fully
implicit method. If diagonalization is used fthen the IMEX and Euler Backward time-
infegration methods are equivalent combining the advantages of stability and efficiency.
Therefore we recommend the use of the diagonalization argument if the coefficients of D
are constant.
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Figure 1. The interface posifion as a funcfion of fime. The dotfed curve corresponds fo the self-similar
solution and fhe solid curve to the numerical approach.
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