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Abstract

A general model for the dissolution of particles in multi-component alloys is proposed and analyzed. The model
is based on diffusion equations with cross-terms for the several species, combined with a Stefan condition as the
equation of motion of the interface between the particle and diffusive phase. Several numerical schemes for the
solution of the Stefan problem are proposed and compared. It turns out that diagonalization is useful for numerical
purposes. However, for the case of position-dependent diffusion coefficients one has to use a different scheme. Here,
we analyze stability and workload of several time integration methods.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the thermal processing of both ferrous and nonferrous alloys, homogenization of the as-cast mi-
crostructure by annealing at such a high temperature that unwanted precipitates are fully dissolved, is
required to obtain a microstructure suited to undergo heavy plastic deformation as an optimal starting
condition for a subsequent precipitation hardening treatment. Such a homogenization treatment, to name
just a few examples, is applied in hot-rolling of Al killed construction steels, HSLA steels, all engineering
steels, as well as aluminum extrusion alloys. Although precipitate dissolution and growth are not the only
metallurgical processes taking place, these are often the most critical of the occurring processes. The
minimum temperature at which the annealing should take place can be determined from thermodynamic
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analysis of the phases present. The minimum annealing time at this temperature, however, is not a constan
but depends on patrticle size, particle geometry, particle concentration, overall composition, etc.

Due to the scientific and industrial relevance of being able to predict the kinetics of particle dissolution
and growth, many models of various complexity have been presented and experimentally validated. In
recent years the simpler models covering binary and ternary alloys have been extended to cover multi-
component particles. These advanced models cover a range of physical assumptions concerning the
dissolution conditions and the initial microstructure. The nature of the Stefan problem changes here: we
consider the simultaneous diffusion of several alloying elements. This gives rise to a nonlinear problem
to solve. For a review and more physical background of this problem we refgtjto

We will put the present paper into perspective of our previous papers on vector-valued Stefan problems.
In [18] the full numerical method for a vector-valued Stefan problem with two alloying elements (i.e.,

a ternary alloy) is presented. Further, numerical consequences of the presence of two separate moving
interfaces are analyzed there [19] a generalization to multi-component alloys is made. Further, some
mathematical properties concerning mass-conservation and existence of solutions are analyzed there. Ir
the preceding two papers the effects of cross-diffusion have been disregarffd.vire consider some
metallurgical implications from cross-diffusion on the rate of dissolution. This was a parameter study. In
[22] we present a self-similar solution based on Boltzmann transformation for the vector-valued Stefan
problem with cross-diffusion for an unbounded planar domain. This solution is used to check numerically
obtained results. The present paper consists of a comparison of several numerical methods to solve the
vector-valued Stefan problem with cross-diffusion. Also as an alternative to the Newton method with
approximated Jacobian, which converges fast but for which each iteration step is expensive, we present
the use of Picard’s method to solve the nonlinear problem.

In this paper, we study the performance of several numerical methods in terms of numerical stability
and efficiency for a model of particle dissolution and growth in multi-component alloys, i.e., alloys
with several alloying elements. The model is based on a vector-valued Stefan problem where the effects
of cross-diffusion are taken into account. A self-similarity solution for a one-dimensional geometry is
presented ij22]. The present paper is organized as follows: The model equations are introduced first.
Subsequently, we propose several numerical approaches. This is followed by a qualitative analysis interms
of numerical stability and efficiency. Some numerical experiments are given and finally the conclusions
are presented.

2. The model

The as-cast microstructure of the alloy is simplified into a representative cell containing a diffusive
phaseQ(r) and a single particle of a specific form, size and location. To avoid confusion we will refer
to the diffusive phase as the-phase. The particle is allowed to dissolve or grow due to diffusion of
several chemical elements in thephase. We assume that only diffusion determines the rate of growth
or dissolution. In the present paper, we take the effects from cross-diffusion into account. The boundary
between the particle and tilephase is referred to as the interface, denotesl(by Hence, in the&2-phase
we have from Fick’s second law

oci &
5 =Y DijAc; for (x.y) € Q). t>0. 1)
j=1
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In (1) ¢; denotes the concentration of alloying elementifer {1, ..., ny}. The coefficientsD;; are the

diffusion coefficients, wher®;; fori # j denote cross-diffusion coefficients.lf;; = 0 fori # j then

the classical diffusion equations are recovered. Further, we assume that the concentrations in the particle,
pa" , are given and fixed at all stages of the calculations. This directly follows from the assumption that

the partlcle remains stoichiometric during the process, which is in line with the treatment by Reiso et al.

[17] among others. Initially, a concentration profile is given in thphase

ci(x,y,00=c(x,y) for (x,y) € Q). )

The initial position of the interface is known and denoted$). At a boundary not being a moving
interface, we assume no flux through it, i.e.,

dci

ai:O for (x,y) e I'(¢), t>0. 3)
v

In (3) v represents the outward unit normal vectogf). Furthermore, at the moving interfaSér) we

denotecfo', for each alloying element, i.e.,
¢i(x,y,1)=c for (x,y) € S(r), t>0. (4)

We consider the dissolution or growth of a stoichiometric particle where we denote the chemical species
by Sp,i € {1,..., ns}, where Spﬁl is the ‘original’ solvent metalli@2-phase in which the particle is
allowed to grow or dissolve. We denote the stoichiometry of the partidl€py,,,, (Sp,),,, (. - D (SP )m,, -
The numbersny, ..., m,, are stoichiometric constants. For the interface concentratﬁ?hwe use the
hyperbolic relationship

(3" (372 ) () = K, (5)

ng

whereK is known and may depend on timidor a nonisothermal Stefan problem. However, in the
present study we take it as a constant. The above relation follows from thermodynamical arguments, see
for instance[10] for a justification. From a local mass balance, the outward normal component of the
interface velocityyp,, is described by

ng A
part  sol ocj
(" = %, = §._1j Dyj—= for (x,y) € S(t), 1>0. 6)

The above relation is referred to as the Stefan conditionvashehotes the unit outward normal vector
of Q(r) at S(r). Since the above relation holds foe {1, ..., ny}, the interface velocity is eliminated if
P £ 50l hence

lk _ ]k ack
Z part SOIE_Z sol o for (x,y) € S(r), 1>0. (7

Above-formulated problem falls within the class of Stefan-problems, i.e., diffusion with a moving
boundary. Since we consider simultaneous diffusion of several chemical elements, it is referred to as a
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‘vector-valued Stefan problem’. The unknowns in above equations are the concentratiaterfacial
concentration&fo' and the interfacial positiof§(z). All concentrations are nonnegative. The coupling
exists in both the diffusion equations (1), motion equations (7) and the values of the concentrations at
the interfaces between the particle and diffusive phase (5). We note here that the equations for the ‘linear
case’, where the boundary is fixed, are asymptotically stable if and ofiyeiig(D)} > 0. Hence only

this case is considered in the present study. For a mathematical overview of Stefan problems we refer to
the textbooks of Crans], Meirmanov et al[13], Chadam and Rasmusgéhand Visintin[23], between

others.

3. Numerical approaches

In general, situations we are not able to give an analytical solution for the vector-valued Stefan problem
with cross-diffusion and hence a numerical method is used. The Stefan problem considered in this paper
contains two difficulties

e the computation of the moving interface;
e the occurrence of the cross-diffusion terms.

Our main interest is to give an accurate discretization for this Stefan problem. Therefore, we use the
classical moving grid method of Murray and Langtisgl] to discretize the diffusion equations. For a
survey of other methods, we refer[8,9,11,16] The methods in the present paper are based on finite
differences with one spatial co-ordinate. A characteristic of the moving grid method is that the interface
position co-incides with a nodal point at each time-step. For completeness, we give a rough description
of the algorithm, which is the backbone of all the methods that we present in the present paper:

1. Compute the concentration profile from Fick’s second law (1), using a convective derivative, taking
into account the mesh displacement at each time-step;

2. Predict the interface position by use of the Stefan condition (6);

3. Redistribute the grid such that the interface position is a nodal point.

4. Returnto step 1.

In this section two numerical methods are presented. The first method is based on diagonalization
of the diffusion matrix. Then, it is straightforward to use an implicit time integration method, which
is unconditionally stable. For the first method, the vector-valued Stefan problem is solved by using the
method presented [19], except for the more complicated expression for the transformed interface con-
centrations. The second method solves the diffusion equations with cross-diffusion terms directly. Here,
we will give the discretization equations of three time integration methods. We note that the integration of
the vector-valued Stefan problem by the use of the diagonalization method (i.e., the first method) can be
recovered from the presentation of the second method by setting the off-diagonal coefficients in the dif-
fusion matrix to zero. A fully implicit time integration can be used then, however itis less straightforward
than in the first method. We conclude this section with the description of the application of the Newton
method with Finite Differences and (relaxed) Picard iteration method to solve the nonlinear problem for
the concentrations at the interface.
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3.1. The diagonalization approach

First, the eigenvalues and eigenvectors of the diffusion matrix are computed for the transformation
of the concentration. The particle concentrations are also transformed and the hyperbolic relation (5)
between the interfacial concentrations changes.

We change to a vector notation of the equations in the vector valued Stefan problem. We define the

vectors: := (c1,¢2, ..., ¢n) ', (D DA PN = (e, , 9T, We assume that

the matrixD is constant with positive real eigenvalues. We use the Decomposmon Theorem to diagonalize
D, i.e., there exists fob a nonsingulaP € R"s*" such thatt = P~1DP. Here is a diagonal matrix

with the eigenvalues dd if D is diagonalizable (i.e., iD hasn; linearly independent eigenvectors)Df

is not diagonalizable then is a block Jordan matrix arfélconsists of the generalized eigenvector®of

(see for instance Birkhoff and MacLafi]). Changing Egs. (1) and (6) to a vector-notation gives:

cl =

0
a—f = DAc for (x,y) € Q@t), 1>0, (8)
dc
(c? —cHv,=D 6__ for (x,y) € S(t), t>0. (9)
v

After defining the transformed concentrations by

=Pl u =P 1,
uP = p~ler, 40.=— p—1.0 (10)

the diffusion equations and equation of motion change into
u
6—; =AAu for (x,y) € Q(t), t>0, (1D

0
w? —u*)v, =4 (a—z for (x,y) € S(¢), t>0. (12)
v

Note that ifD is diagonalizable then there is no coupling in the diffusion equations via cross-terms of
The coupling between the various chemical species expresgednmains via Eq. (12) and the hyperbolic

relation fore$°, .. ., cﬁ?' in Eq. (5). Eq. (5) changes due to transformations (10) into
ng m ng mz ng Mg
dopuwy | (Do e | oD puuy | =K (13)
j=1 j=1 j=1

Although this last relation is more complicated, the analysis and numerical solution procedure are fa-
cilitated. For the analytical solutions of the cross-diffusion problem we refi@2joand Atkinson et al.
[1]. The self-similar solution is used for the validation of the numerical solution at the early stages of the
model.

Whether or not the diffusion matrix is diagonalizable, we always have at least one uncoupled diffusion
equation for each eigenvalue BDfand hence there is an entry of the transformed concentraijcius
which the diffusion equation is uncoupled. This implies that if one of the eigenvalues is negative, or has a
negative real part, then we face a diffusion equation with a negative diffusion coefficient, which is well-
known to be ill-posed. This motivates the requirement that the eigenvallesmabt be positive or have a
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positive real part. Further, complex eigenvalues give rise to oscillatory solutions for the concentrations. In
the present work, we limit ourselves to situations with real and positive eigenvalues. An analytical study,
where also the case of a singular diffusion matrix is treated, is in progress, the preliminary results are
described irj20]. After diagonalization of the diffusion matrix we apply the same discretization procedure
as for the vector-valued Stefan problem without cross-diffusion. For completeness we briefly summarize
the method, more details on the method can be fouitidh

For the determination of the interface velocity a discrete version of the Stefan condition (12) is used.
Since Eq. (12) holds for all components, elimination of the interface velocity leads-tal boundary
equations for the concentrations. These equations are supplemented with Eq. (13) to get a solution of
physical interest. Subsequently, the system of equations is solved by the use of a zero-point method to be
described later in this section.

In the present study, we limit ourselves to cases wheirg a constant matrix. For completeness, we
write some remarks on the case that the diffusion matrix depends on time and is diagonalizable, i.e.,
D = D(1) = P(1)A(t) P~1(¢). Then, we have

Z—f = P()AW)P L (t)Ac. (14)

Hence after left-multiplication wittP 1, this changes into

P11 a—i = A)AP L (t)c. (15)
0

In the last step we used that tReloes not depend on position and hence commutes with the Laplacian.
Definingu := P~1(t)c, we see from the product rule for differentiation that Eq. (11) does not hold any
longer. The only case of a time-dependent diffusion matrix for which Eq. (11) still hold®is&n be
written by D = D(r) = P~1A(t) P.

For the discrete problem the following notations are introduced. Denote the diffusion matrix, transfor-
mation matrix and the diagonal matrix with the eigenvalues at timej&tg ;, P; and4;, respectively.
Then we obtain the following discrete version for Euler backward time integration in matrix-notation:

I =c/ + MDA = + AP 1A AP T (16)
Left-multiplication of the above equation ti?/ljrll gives

P/t =P hel + M AP T (17)
In the above equation the concentrations of the several species are decoupled by the diagonalization.
However, if the transformation of the concentrations is defined’}ﬂ@ =: u/, then still¢/ is needed.

Hence it is possible to tred(¢) by diagonalization, however, at each time-step we need to carry out the
transformation and inverse transformation of the concentrations at each grid-node. We summarize this in
the following remark:

Remark 1. If the diffusion matrix depends on time then at each time step the diagonalization argument
can be applied successfully. However, the transformation (and its inverse) has to be applied at each
time-step and grid-node, which makes the method expensive.
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3.2. The direct numerical method

In this section, we describe the direct numerical solution of the vector-valued Stefan problems. The
description is for a situation in which we deal with one spatial co-ordinate on in{é\#l], whereM > 0
denotes the end-point of the domain of computation. We consider the particle with fixed concentration as
given by 0<x < S(r) and the diffusive phase given I8yr) < x <M. First, we describe the discretization
of the diffusion equations for which we remark that we refeflt@] for more details. Subsequently, the
discrete boundary conditions at the moving interface and the solution procedures to solve the resulting
nonlinear problem are treated. Finally, the adaptation of the moving boundary is described.

3.2.1. Discretization of the interior region

We use a finite difference method with a Euler forward or backward or IMEX time integration to solve
the diffusion equation in the inner region. For completeness we give the equations for the discretization
of the inner region for the three time integration methods only for the case of planar (rectangular)

geometry and an equidistant grid in which we consider two diffusing species onlud, &, c,i’l. and
xf respectively, denote the grid-spacing, time-step, numerical approximation of the concentration of

speciek at grid-node at time jAr and position of grid-nodeat time jAt. Then, for the Euler forward
(explicit) method one obtains

j+1 J j+1 J o J
‘i T X TN CLipn T CLi
At At 2Ax
J J J J J J
€11~ 201 € i1~ 20 T ¢
= D11 5 + D12 5 :
Ax Ax
j+1 J j+1 Jj o J
€2i TC%i _Xi  TX Ciy1 T %i-1
At At 2Ax
J J i J J J
€11 —2C1; +C1 41 Coi_1 =265, +Ci 1
= D 5 + D22 5 (18)
Ax Ax
Whereas for the Euler backward (implicit) method one gets
L _ j+1 i J
“Li T X TX i1 T i
At At 2Ax
j+1 J+L ., J+1 j+1 J+1 i+
c1i-1— 201 e ;i1 20+l
= D11 5 + D12 5 )
Ax Ax
jHL_ =R J
€2i TC%i _Xi  TX Ciy1 T %i-1
At At 2Ax
j+1 i+1 | j+1 j+1 i+l j+l
clita—2e1; +ciin 1= 2, + ¢y
= Dy1 + D . (29)

22
Ax? Ax?
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Finally, for the IMEX time integration, we have the following:

Jt1 J j+1 o R/
“Li T X TN iyl T CLia
At At 2Ax
j+1 1l 41 j j j
c1i1—201; +e1ih i1 — 25, +C;11
= D11 + D12 2 )
Ax? Ax
Jj+1 J j+1 joJ J
€2 T i X X i1 Qi1
At At 2Ax
J J J j+1 /+1 j+1
€11~ 201, €1 cil1— 205, + i
= D1 5 + D22 : (20)
Ax Ax

We note that it is straightforward to deal with cylindrical and spherical geometries as well. Further, a
geometrically distributed grid has been implemented where a mesh refinement is applied for the nodes
near the interface and the procedure is easily extended to more diffusing chemical elements. This is
described in more detail d9]. From the Egs. (18)—(20) it can be seen that an explicitly treated centrally
discretized convection term due to grid-movementis included. We use a virtual grid-point near the moving
boundary. The distance between the virtual node and the interface is chosen equal to the distance betweel
the interface and the first grid-node.

3.2.2. Discrete boundary conditions at the interface

We define the discrete approximation of the concentratimj’QSNherej, k andi, respectively, denote
the time-step, the index of the chemical (alloying) element and gridnode. The virtual gridnode near the
moving interface and the gridnode at the interface, respectively, have igice and 0. At the moving

interface, we obtain from discretization of the Stefan conditiorkfar{1, ..., n; — 1}
1 ns R 1 ns PR
1 p -1 p 1 p -1
—_ Dy 2 = E Diy1 . (21)
part I Z P part | +Lp
o —a | = 2Ax Cer1 — og1 | p=t .

Note that the concentration profile of each chemical species is determined by the value of the interfacial
concentration. Hence, all the concentrations that appear in the above equation and Egs. (18)—(20) depenc
on the interface concentrations. Above equation can be re-arranged into a zero-point problem for the
interface concentrations of the chemical elements. All interfacial concentrations satisfy the hyperbolic
relation (5). Combination of the above relation (21) and (5), give& fer{1, ..., ny, — 1}

soI soI art sol +1 i+1
Fele$® S =(cpt - k+1>Zka<cf )

part soI j+1 j+1
— (c} )Z Diy1p(c)ly — )7 =0
p=1
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and the equation
fns (ciOI, o Crsl:)l) — (Ciol)ml(cgol)mz(. ) .)(ci?l)m"s —K=0.

Here the unknowng$®, . .., ¢5% are to obtained from previous equations.
3.2.3. Adaptation of the moving boundary

The moving interface is adapted according to a second-order discretized version of the Stefan condition
(6) where the virtual gridnode is used [li8] the forward (explicit) Euler and Trapezium time integration
methods for the moving boundary condition are described and compared. It was found that the (implicit)
Trapezium method was superior in accuracy. Furthermore, we update the interfacial concentrations in
each Trapezium step. Hence, the work per time-iteration remains the same for both time-integration
methods. Therefore, the Trapezium rule is used to determine the interfacial position as a function of time.
We terminate the iteration at tinj¢ + 1) A+ when sufficient accuracy is reached, i.e.¢lbe the accuracy,
then we stop at iteratiop + 1 when the inequality

1S/ (p + 1) — ST+ (p)| .
Si—M

ng
S e+ - ()l +
k=1

holds. HereS/ denotes the discrete approximation of the interfacial position at timej-stg finally
remark that a numerical solution for diffusion in ternary alloys including cross-diffusion for fixed bound-
aries can also be found in Naumann and Saja6h They used an argument based on cross-diffusion
to avoid the need of dealing with composition-dependent diffusion coefficients. This is motivated by the
occurrence of negative concentrations otherwise.

3.3. Solution of the nonlinear problem

To approximate a root for the ‘vector-functidn= (f1, ..., f»,), in both the first and second method,
we use a humerical method. We compare the solution by using Newton’s method with finite differences
approximated Jacobian to the solution obtained by the Picard iteratiorgs:te(tcfo', e cﬁ?‘)T, then

= -1 fEh.

whereJ denotes the discretized Jacobian matrix, where central differences are used for the determination
of the derivatives of the firsi;, — 1 equations. The iteration is terminated when sufficient accuracy is
reached. This is explained in more detail[i®]. Note that for each Newton iteration five evaluations

of the concentration profiles are needed. Further, the initial guess must be close to the solution and
the convergence of the Newton iteration scheme is quadratic. Hence, if the method converges, then
convergence is fast. The ‘fixed point’ iteration scheme is based on

F=g(h),
where the vector—functiog is defined as:

K

(" (e ™2 () (egoly™ns

sol .
cl = 81 =
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art j+1  j+1
(" = DYy D1 pleyy — ) )

1 1 ’
Sy Depleh = el

sol part
Ck+1 =8k+1'=Cpyq —

kel{l, ... ,n,—1).

A disadvantage of the Picard-iteration scheme is that the convergence is linear. However, only one evalu-
ation of the concentration profile is needed per iteration, hence cost per iteration is reduced five times. A
criterion for convergence of the Picard iterations is that the spectral radius of the Jacobian of the function
g should be less than one. For large we observed that the method does not converge and that the
spectral radius becomes larger than one. For these cases a Picard iteration scheme with relaxation is usec
which reads as

§k+1 :ék + w(g(gk) _gk),

whereow is the relaxation parameter. For some- 0 a slightly better convergence is obtained, although
not for all 0< w < 1 the improvement is significant. Further, we see that the error, defingd by—z¢| 2,

gets less than 1@ after 31 iterations, whereas for the other simulations a standard maximum number of
20 iterations was used.

4. Comparison between the approaches

Inthis section, we compare both methods qualitatively in terms of stability and efficiency. First, stability
is analyzed for the direct method for several time integration schemes. A stability condition is derived
for the cross-diffusion problem with a nonmoving boundary. This criterion can be used as a necessary
condition for stability of the numerical solution of the vector-valued Stefan problem. We remark that in,
among otherg6] numerical stability of weak and variational methods for a (scalar) moving boundary
problem, is treated. However, a vector-valued Stefan problem is not considered there.

Subsequently, we compare the efficiency of the two methods qualitatively. Numerical experiments
to support the findings are given in the next section. In this section, we restrict ourselves to a vector
cross diffusion problem with fixed boundaries. Two methods can be used. First, if the diffusion matrix is
constant the diagonalization argument can be used (see Section 3). If this assumption does not hold a direc
numerical method for the diffusion equations should be used. In the first method (with diagonalization)
the stability properties of the time integration are well-known.

4.1. Stability of the direct method for the linear cross diffusion problem

Here, we investigate the stability properties for various time integration methods for the coupled
equations. For the stability analysis we again assumeDRhigt constant. The treatment is for finite
differences, volumes and elements with fixed boundaries. For finite element methods, it follows that the
stiffness matrix (the discretized Laplacian) is always symmetric positive definite. However, Egs. (27)
change due to the mass-matkikthat appears in the finite element formulation

M 0\dc (DuL DL (¢ (22)
0 M)dr \DaL DxL)\c,)’
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SinceM is nonsingular, the above equation is re-written as

de <D11M1L DlelL) (gl)

= _ 4 _1 . (23)

dr DoaM™"L DopM™"L ] \ ¢,
Now, we use symmetry and positive definitenedd ghencer /2 exists) to show tha¥ ~1 L has negative
(real-valued) eigenvalues. Singg 1L is similar toMY2M 1L M~1/2 = M~121. M~1/2 it can be seen
that the eigenvalues dff ~1L are real-valued due to symmetry &f1/21 M ~1/2, Next, we show that
M~1L has negative eigenvalues only. Siri¢e, x) <0 forallx # 0, we havg LM Y2y, M~1/2y) <0
forall y # 0 (M~Y2is nonsingular). Sinc#/ ~1/2 is symmetric, it follows thatM ~Y2LM =12y, y) <0
for all y # 0. Combined with symmetry this gives that all eigenvaluesfof/2L M ~/? are negative.
Hence, due to the similarity af/ ~1L to M~Y2LM~1/2, M~1L has negative (real-valued) eigenvalues
only. This implies that the stability analysis also applies for finite element methods and that for finite

elements the matrik in the treatment to follow should be replaced b 1L. We consider the time
integration of

ocy

i D11Ac1 + D12Acy, (24)
oc
(3_1‘2 = D21Ac1 + Do2Aco. (25)

Since the Laplacian operator is negative and self-adjoint, we assume that the discretization matrix for
denoted by, is symmetric and negative definite. Hence, its eigenvalues are negative. Further, we assume
that the terms on the main diagonal@fare positive, i.e.D11, D22 >0 andD € R2%2 Then, we write

the discretized version as

dc D11L  D12L c1

—_ = - = A s 26

dr (D21L D2oL ) \ ¢, < (26)
where we use the following notation fdrgridpoints:

. T . T c
cpi=(c11c12 ... canN), Ccp:i=(c21¢C22 ... C2N), C= (Cl> . (27)
)

We observe that the matrik in Eq. (26) represents a Kronecker product. For stability of Eqg. (25) we
require that

R(eig(A)) <O. (28)

Let / be an eigenvalue df and letu be an eigenvalue d, thenu/ is an eigenvalue oA. This assertion
can for instance be found in Lancasf&R]. SinceL is symmetric and only has negative (real-valued)
eigenvalues, this implies in combination with Eq. (28) that we should have

R(eig(D)) >0 (29)

in order to have that perturbations in the solution of Eq. (26) decrease if time increases.
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Now we analyze the numerical stability of the following time integration methods for Eq. (26):

1. Euler forward time integration,
2. Euler backward time integration,
3. Implicit explicit (IMEX) time integration.

The discretized equations are the same as in (18)—(20), except for the lack of the mesh velocity term in
this section of the stability analysis. We describe the first two cases for this vector-valued diffusion for
completeness. We remark here that the stability analysis is based on the assumption that the eigenvalue:
of the discrete Laplacian are negative, iJes 0. This is always true ik is symmetric negative definite.

We remark here that the analysis is done for the cross-diffusion problem with fixed boundaries.

4.1.1. Euler forward and backward
1. The Euler forward time integration methaod Eq. (26) is given by

M= (1 + ArA) . (30)

If the eigenvalues oA are real, we obtain the following bound an:

At <

: (31)

|21]pq
where|1]| and u,, respectively, represent the spectral radiug aihd the largest eigenvalue DBt For
the case of finite differences with uniform gridsizén one spatial dimension, Gerschgorin’s Theorem
delivers the stability criterion

h2

Af < —. (32)

2
This stability condition coincides with the stability condition that is obtained if the diagonalization
argument is combined with an explicit time integration. If@)y ¢ R, we obtain after some algebra

2N(eig(D))
< —2

leig(D) |4 4]
Nauman and Savodd5] use an Euler forward (explicit) scheme to integrate the system of diffusion

equations in time. Hence, their integration is subject to the above condition.
2. The Euler backward time integration methotEqg. (26) is given by

(33)

gil+1:£n +AtA£n+l & (I _ Al‘A)ng_l :gn‘ (34)

Since we only consider cases in whigiu) > 0 and/ < 0, it appears that the Euler backward method
is unconditionally stable. The use of Euler backward time integration guarantees the stability of the
numerical solution. However, the use of this method gives a large discretization datrhich makes
each time-integration step expensive, especially for higher dimensional problems.

IMEX time integration\We do the analysis for a 8 2 diffusion matrix where botlD,, and D, are
nonzero. Further, the boundaries are fixed here. In order to combine the advantages of the stability of
the Euler backward method with the low cost per iteration step if the Euler forward method is used, we
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analyze the IMEX method as given in Eq. (35). If one of the cross-diffusion coefficients is zero, then
the diffusion equation with the zero cross term can be integrated by the direct use of Euler backward to
obtain its concentration profile. Subsequently, this concentration can be substituted into the other diffusion
equation to obtain the other concentration by the use of Euler backward. Hence the use of IMEX is not
necessary to decrease the cost per time iteration.

In the IMEX time integration we consider the implicit treatment of the terms of the diffusion matrix
that are on the main diagonal and explicit treatment of the off-diagonal terms, i.e.,

n+l _ n DL 0O n+1 0 DL\ ,

c'T=c +At( 0 D22L)£ +At(D21L o J¢- (35)
This time integration can be represented by

-1

ntl_ (5 DL 0 0 DioL no_. 4o

= (I At ( 0 D22L)> (I + At (D21L o = Ac". (36)
Letr andw be an eigenvalue and eigenvector of the above matrix, then we consider

-1
B D11L 0 0 D1oL .
<I At( 0 D22L>> (1+At(DZlL 0 ))g_rw. (37)

For stability of the IMEX method, we neéxd < 1, and the above equation can be written as a generalized
eigenvalue problem

0 D1oL . D11L 0
oy, 28 umr (1 (2 ,2))e -

We denote an eigenvector bfwith eigenvaluei by v. In order to find solutions of the generalized
eigenvalue problem (38), we toy = (v fv)". Sincel is symmetric its eigenvectors form a basis o,
i.e., it is complete, and sincé € R?"*?" the set of eigenvectors represents a basis f& if there are
two distinct values fop for each eigenvectar. Note that

0 DioL v\ _ (14 AtD12ip)v
<’ A (D21L 0 )) (ﬁy> = ( (B + At Dary > (39)
and similarly
DL 0 v\ _ ([ Q-AtD11dv
<’ - ( 0 DzzL>) (ﬁy> = ((ﬁ - ArDzzzﬁ)y) ‘ (40)

We searctg such that the right-hand side of Eg. (40) is a multiple of the right-hand side of (39), here this
multiple defines the eigenvalughence,

1+ AtD12Ap P+ At D21/

r=rGA)=———"" and r=r(At)= ———=—. (41)
1—AtD112 B — At D22 Af
The above equations give a quadratic equatiorfaith solutions
D2 — D114 v/ (D12 — D22)? + 4D12D21(1 4 ED2o) (1 + ED
Bu(E) = 22 11 % V(D12 — D22)? + 4D12D21(1 + EDp2) (L + ¢ 11), (42)

2D12(1 + ¢D2))
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where we set := —/JAr > 0 for ease of notation. Singg. stays bounded as — 0, we see from
Eq. (41) that — 1 as¢ — 0. Furthermore, since

D71D11
D12D2p

9’

E”—>moo 1B+l = ‘

it follows that:

. D12D . .
lim |r|= /ﬂ <1 if and only if | D12D21| < D11D2». (43)
¢—>00 D11D22

Note that the last inequality is also a necessary and sufficient conditiol(&g(D)) > 0, which is
necessary and sufficient for an analytically stable system. In the further discussion we will consider
the following four cases: & D12D21 < D11D22, 0< D11D22 < D12D21, 0< — D12D21 < D11D22 and

0< D11D22 < — D12D>1.

e First, we deal withD12D51 > 0. Since¢ > 0, we have from Eq. (42) th#t,. € R. Now, we searclg
such that

rl=1, ie., (1—¢D1ofy)? =1+ ED1p)? (44)

Note thats, is a function of¢ (see Eq. (42)). The roots of the above equation are given by

—(D11+ D22) £ V(D114 D22)? — 4(D11D22 — D12D>21)

(45)
D11D2 — D12D>21

e 10,

The first rootZ = 0 is not interesting.
o Next, we treat two possibilities: Q@ D12D21 < D11D22 andD12D21 > D11D22 > 0:

1. In the case that, besidé¥ 2D>1 > 0, we haveD>1D12 < D11D22, then the last two roots are
negative or complex-valued sinég 1D22 — D12D21 > 0. Using (43) for this case we always have
|r| <1 and hence the IMEX method is unconditionally stable. The roots in Eq. (45) apply for all
real-valued cases.

2. Inthe case that @ D11D22 < D12D>1, then one of the eigenvaluesDfis negative. This implies
that the diffusion problem (1) is unstable with respect to perturbations. Hence we do not study the
stability properties of the numerical method for this case.

e Next, we consider the case thai, D21 < 0, thenp. € R for small values o€, whereas for sufficiently
large values ot we havef,. ¢ R. The real-valued case can be treated as in the preceding paragraph.
Again we searcli such thatr| = 1, taking into account that possibby. ¢ R. Therefore, we rewrite
(41) as

1 26D1R(p) + EIBP _

2 _
= (14 &D11)?

1. (46)
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The real part and modulus gi. follow easily from Eq. (42). All parameters in the above equation are
real-valued. A solution by MAPLE of Eq. (46) reveals that

} { D11+ D22 }
£eq0, — .
D11D22 + D12D21

Note that the roots for the case of a real-valgedso apply, however, these roots are not treated here
since they give nonpositive values farThe first root is not interesting, however, the second root is

positive if and only if| D12D21| > D11D22 and D12D21 < 0. This implies the following criterion for
stability if —D12D21 > D11D22:

Fe_ D11+ D2y
’ D11D22+ D12D21

e Further, it can be seen thatD12D>1| < D11D2>, then, there is no positive root and hence the method
is unconditionally stable and super stable.

This is summarized in the following theorem.

Theorem 1. Consider the time integration of E(R6) with fixed boundariesand let/ be an eigenvalue
of the discretized Laplace operator whose eigenvalues are all neg#éieeR?*2 and D11, D2 > 0,and
let R(eig(D)) > 0, then

1. The explicit time integration is stable if

2R(eig(D

< (—g(); V/. € SpecL).
|2]|eig(D)]

2. The implicit time-integration is unconditionally stable and super stable.

3. If0 < |D12D21| < D11D22thenthe IMEX time-integratigigiven by Eq(35),is unconditionally stable
and super stable. IfD12D21| > D11 D22 then the IMEX time-integration is stablelif;2D21 < 0 and

D+ D
1|Af < — 1+ D2 if D12D21<0, V SpecL)
D11D27 + D12D21

and if0 < D11D22 < D12D»1 the(continuou$ Eq. (1) is unstable
As a consequence of the above assertion one can prove the following statements:

Corollary 1. Let all hypotheses in Theorehbe satisfiedthen

1. For all discretizations with a symmetric matrikheoremil holds
2. Aconsequence of Theordrs that the IMEX time integration is unconditionally stable if the diffusion
matrix is diagonally dominant and if the discretized Laplacian is symmetric

Numerical experiments with fixed boundaries reveal that the derived criterion in Theorem 1 is sharp.
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2n2 2 1f

2n

Fig. 1. Left: The nonzero elements of the overall discretization matrix for the implicit method for the straightforward arrangement
of the unknowns as in Theorem 1. Right: The nonzero elements of the overall discretization matrix for an alternative numbering
asin Eq. (47).

4.2. Efficiency of the methods

We compare the diagonalization based method with the direct method qualitatively. The direct method
is split into either an IMEX time integration, which is conditionally stable under certain circumstances,
or a fully implicit time integration, which is unconditionally stable. A straightforward arrangement as
used for the proof of Theorem 1 gives a large discretization matrix for the fully implicit method when the

direct method without diagonalization is used: ket <§;> then

L Dyl D1oL'\ jt1
S +AI<D21L DL )<

wherec; andc, represent the vectors with the unknown concentration at the gridnodes &md c.
Hence, if (for two-dimensional cases) € R"*xn* \wheren is the number of gridnodes in one spatial
direction, then the discretization matrix consistsi? 2 2n2 entries, i.e.A € R2°*2* The discretization
matrix becomes four times as large as the discretized Laplacian. Further, if a straightforward arrangement
of the unknowns is used, then the bandwidth increases considerably and the overall discretization matrix
for two spatial co-ordinates roughly obtains the shape ddgn1 for the case of a square domain of
computation inRk2. This matrix has a bandwidth of ordef + n, instead of orden which we would
have for the discretized Laplacian. If we include more than two chemical species, then the situation gets
worse: the bandwidth would becomgn? + n, if n, is the number of chemical species. Furthermore, for
more spatial co-ordinates it also gets worse.

If the IMEX time integration is used, then the matrix equations can be solved separately. Hence
the discretization matrices just becom’ézx”z, and have the same sparsity structure as the discretized
Laplacian with bandwidth of order. For a two-dimensional situation a direct solution method for the



F.J. Vermolen, C. Vuik / Journal of Computational and Applied Mathematics 176 (2005) 179—-201 195

matrix equation is still useful. From an efficiency point of view for the fully implicit time integration
with a straightforward arrangement of the unknown, we remark for the two-dimensional case that the
matrix contains 22 columns and a bandwidth of¢2 + n) + 1 and hence the number of memory
allocations is 22(2(n2+n) +1) — (n2+n)(n2+n+ 1) ~ 3n* and the number of required flops becomes
2(2n22(n% +n) + 1) — (n% 4 n)(n? + n + 1) ~ 6n* for the solution of the linear system of discretized
equations.

For the IMEX time integration method the solution of the linear system tak@s + 1) — n(n + 1) ~
213 memory allocations and 8 (n2(2n + 1) — n(n + 1)) ~ 4n® flops. This implies that the IMEX
time integration is more efficient than the implicit method with the straightforward arrangement of the
unknowns. This holds, in particular, if the diffusion matrix is diagonally dominant, which is true in most
of the metallurgical applications because then the IMEX method is unconditionally stable.

We remark here that a different arrangement of the unknowns in the concentration vector and dis-
cretization matrix is attractive for the implicit method. The solution vector can be rearranged into

T
c= (Cl,ly C2,17 01,2’ 62,25 L) Cl,nza C27n2) (47)

and the overall discretization matrix is as showRiig. 1for the case of a square domain of computation in

R2. Then, it can be verified that the LU-decomposition requir@$2(2n+1)+1) — (2n+1) (2n+2) ~ 8n°
memory allocations and[2:2(2(2n + 1) + 1) — (2n + 1)(2n + 2)] ~ 163 flops for the solution of

the linear system, which is favorable over the straightforward arrangement, but still more work than the
IMEX method. Here the number of diagonals with nonzero entries is 11. If we congigpecies, then

the number of nonzero diagonals becomes-b 1 for ny >2 if a square geometry iR? is considered.

If the diagonalization argument is used then approximately the same number of memory allocations
and flops are required for the IMEX and implicit time integration methods. Further an implicit method
guarantees numerical stabilityDfdepends on time then at each timestep the eigenvalues and eigenvectors
of D and the transformations of the concentratians> ¢ andc — u at each gridnode have to be
determined. However, D also depends on position, or on the concentration itself, then diagonalization
can no longer be used. For this case one can rely on the IMEX time-integration. The same efficiency
remarks as for the implicit method hold for a Crank—Nicholson time-integration for the direct method
without diagonalization. Some quantitative results based on numerical experiments will be presented in
Section 5.

5. Numerical experiments

In this section, we compare the performance of several numerical techniques. First, we distinguish
between the IMEX and Euler backward time integration methods for the coupled set of equations. For
both time integrations we analyze the performance of the Newton and Picard iterations to solve the
nonlinear problem. Finally, we compare these solutions with those that were obtained by the use of the
diagonalization argument. As a test-problem we take

_ 1 —0.25 »_ (50 sol_sol _ o_ (0O
D—<—o.25 2 ) € _(50>’ =1 C_(O)

andS(0)=1, 0<S(r) <x<10. For a study on the impact of the off-diagonal terms of the diffusion matrix
on the evolution of the moving interface, we refef{24]. For the above configuration the IMEX time
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Table 1

CPU-times for the numerical solution of the nonlinear problem for a grid of 50 gridnodes

Method/convergence Ar =0.01 Ar=0.1 Ar=1
IMEX—Newton 122 12.1 —
IMEX—Picard 25.0 3.36 —
IMEX—Picard (0.5) 24.35 3.47 1.83
IMEX—Picard (1.5) 71.29 3.13 —

qnaccurate solution.

integration of the concentration profiles should be unconditionally stable with respect to the time-step
according to Theorem 1. The calculations that we present are done for the vector Stefan problem with
one spatial co-ordinate unless stated otherwise. Finally, we illustrate the importance of cross-diffusion
for the dissolution of system from literature.

5.1. The IMEX time integration

Note that the proof of Theorem 1 has been given for the case that the interface position does not
change in time. In the experiments of this section we allow the interface to move. From the numerical
simulations it turns out that convergence to the solution of the nonlinear problem depends on the choice of
the time-step and the grid-size.Table 1, we present the matlab CPU time for the Newton, Picard (with
and without relaxation) for time-ste@s = 0.1 and 1. The CPU-time is taken a& 100. The number
of iterations is for the numerical solution of the nonlinear problem at the second time-step. The numbers
0.5 and 15 denote the value af used in the relaxated Picard method.

FromTable 1it can be seen that Newton’s method takes most CPU-time. This is caused by the fact that
for each time iteration we need to evaluate the concentration profiles five times. Further, it turns out that
the IMEX method performs badly when the time-step is chosen very largd > (Ax)2. The minus-bars
for Az = 1 in Table 1denote that the method did not converge (for the Picard method) or converged to
a wrong solution (in the case of Newton iterations). Convergence to the wrong solution in the Newton
case could not be avoided by the choice of a better initial guess for the interface concentrations. The bad
convergence behavior of the Picard method whegs: 1 is caused by the spectral radius of the Jacobian
of the functiong, which is larger than one. We remark that the solution can be determined numerically
for largeAr by means of relaxation of Picard’s method. However, we recommend here to choose a small
time-stepAr instead, since it is not easy to obtain an optimal choicesftor different values ofAr and
Ax.

To have a closer look at the influence of the moving boundary and the nonlinear boundary condition

for the interface concentrations on the numerical stability as in Theorem 1, we consider the following

example withD = (_33 2) For this case, we havB12D>1 > D11D22 > 0 and hence Theorem 1 gives

the following criterion for stabilityj1|Ar < g The other variables have the same value as in the previous
calculations. Having 50 gridnodes anda= 0.01, we obtain that map|Ar ~ 1.2582 and hence we are
within the derived stability criterion for the problem with the fixed boundaries. TadfAg= ™" = 2

or larger values, then, the obtained numerical solution is stable. However, for lower values of the particle

concentrations, s 1a2rt= 1.15, the solution becomes unstable. Here the movement of the boundary
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Table 2

CPU-times for the numerical solution of the nonlinear problem for a grid of 50 gridnodes

Method/convergence Ar =0.01 Ar=0.1 Ar=1

Euler backward—Newton 892 88.9 8.88
Euler backward—Picard 41.1 441 1.15
Euler backward—Picard (0.5) 199 20.9 3.61
Euler backward—Picard (1.5) 483 13.9 2.14

increases rapidly. By choosing a smaller time-step the numerical solution becomes stable again. We
remark here that the eigenvalues of the diffusion matrix in this case are complex-valued.

We observed that if the difference between the particle concentrations and the interface concentrations
is large, then, the bound in Theorem 1 is reliable also for the moving boundary problem. This is due to
the slow movement of the interface for this case. From this we conclude that the stability criterion in
Theorem 1 serves as a necessary condition for the complete moving boundary problem, which is sharp
in the limit as the interface velocity tends to zero.

5.2. The Euler backward time integration

We remark that this method is unconditionally stable, see Theorem Tablle 2we present the
number of iterations for the solution of the nonlinear problem and CPU-time for the Newton, Picard
(with relaxation) methods for time-steps = 0.01, 0.1 and 1. The CPU-time is a& 100. Further the
straightforward arrangement of the unknowns is used in the calculations of this subsection.

From Table 2we see that Picard’s method is faster than the Newton method. This agrees with the
observation for the IMEX time-integration. Further, we see thatAioe= 0.1 the IMPLICIT method
takes more CPU-time than the IMEX scheme. However, for large time-steps it turns out that the Euler
backward method is more reliable than the IMEX method. Picard (without relaxation) seems to give
the best results. For reasons of robustness the IMPLICIT method is favorable over the IMEX method.
However, for CPU-time and small time-step we prefer to use the IMEX method.

5.3. IMEX and Euler backward methods for 2D problems

From the above it seems that the Euler backward method is advantageous. Since we intend to extend
the models to more spatial dimensions as well, we present some CPU-times for 10 time-iterations for
two-dimensional diffusion equations. The discretization is done on an equidistant grid with the use of
Finite Volumes. Furthermore, the values of the interfacial concentrations are presgfibed. = ¢5°
and the boundaries are fixed. The calculations are done by the use of an IMEX and Euler backward time
integration based on the straightforward arrangement of the unknowns. The linear system of equations
has been solved by Gaussian elimination for all cases. The results are presdieae B

FromTable 3it can be seen that the IMEX method requires less CPU-time than the Euler backward
method. The difference increases as the number of gridnodes increases. This is in agreement with the
expectations as given in Section 4. For three-dimensional problems with many more gridnodes, this
difference is expected to increase. Hence, for small time-steps, we prefer the use of the IMEX method.
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Table 3

Calculation times for 10 time iterationaq = 10)

Method/grid 25x 25 50x 50 100x 100 200x 200
IMEX 0.15 0.85 5.77 46.6
Euler backward 0.28 1.69 14 117
Table 4

CPU-times for the numerical solution of the nonlinear problem for a grid of 50 gridnodes

Method/convergence Ar =0.01 Ar=0.1 At =1
DIAG—Newton 113 11.2 1.12
DIAG—Picard 24.1 2.94 1.01
DIAG—Picard (0.5) 24.1 3.00 1.17
DIAG—Picard (1.5) 24.1 3.01 0.88

5.4. Use of diagonalization of the diffusion matrix

We use the Euler backward and remark that this method is unconditionally stable due to the decoupling
of the diffusion equations. The CPU-times and number of iterations are listebla 4

We see fromTable 4that Picard’s method gives the shortest CPU-time. Further, we see that this
method is efficient (shortest computation times for bsth= 0.1 and 1) and robust. This agrees with the
expectations as predicted for the linear diffusion system in Section 4.

5.5. Anindustrial example

As an industrial example we take the dissolution of anAMg patrticle in aluminum for which
the cross-diffusion coefficients are known. For the data we refgf]td' his example was also treated,
incorporating cross-diffusion, by Vusanovic efa#]. A similar model as here is described there, however,
a mathematical and numerical analysis and description of the used method are not given there. We take
a rectangular geometry with initial particle siz€@m and the diffusion matrix is given by (im?/s):

5_( 0051 0034
~\-00077 0151 )

The particle concentrations are givend®] = 33 wt% and-Fr = 6 wt%. In the above diffusion matrix
element 1 and 2, respectively, correspond to copper andgmagnesium. Due to lack of data-points some
discrete values for the solubility line in the aluminum rich corner are used instead of Eq. (5). The initial
concentrations were taken zero and the cell radius j811.0rhe results are shown kigs. 2and3 where

we plot the concentration profiles in the vicinity of the moving boundary and the interface position,
respectively. In both figures we notice the significance of cross-diffusion. Since the cross-terms in the
diffusion matrix are negative, the dissolution is slowed down significantly due to cross-diffusidfigsee

3) although the concentration profiles do not differ too much Ege2).
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0 02 04 06 08 1 12 14 16 18 2
position

Fig. 2. Concentration profiles at= 20 s during dissolution of a ACuMg particle in aluminum. The dotted lines represent the
concentration profiles with the incorporation of cross-diffusion.

0.2

01t cross diffusion

position of the interface (micron)

no cross diffusion

time

Fig. 3. The interface position as a function of time during dissolution of £2&Mg particle in aluminum. The dotted line
represents the concentration profiles with the incorporation of cross-diffusion.

6. Conclusions

We analyzed several numerical methods for the cross-diffusion problem with a moving interface. We
study the Euler backward time integration method, which is proven to be unconditionally stable for the
linear cross-diffusion equation. This method turns out to be very robust when it is used in the solution
of the nonlinear system to determine the interfacial concentrations. A drawback is the long computation
time needed to solve the large system of linear equations from the spatial discretization. This becomes
worse as the dimensionality of the problem increases. The IMEX time-integration method to integrate
the concentration profiles with fixed boundaries as a function of time is conditionally stable under the
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circumstance that-D12D21 > D11D22 > 0 and for other cases the method is unconditionally stable.
However, it turns out the method is less robust when a large time-step is used. This suggests that the
derived stability criterion of the IMEX time integration method for fixed boundaries serves as a necessary
condition for the complete vector-valued Stefan problem. Although, the computation times are less than for
the fully implicit method. If diagonalization is used then the IMEX and Euler backward time-integration
methods are equivalent. Then, stability is guaranteed for the linear diffusion equation and the discretization
matrix has the same sparsity pattern as the discretized Laplacian. Hence, the method is efficient. If the
diffusion matrix is not constant over the domain of computation (such as for nonlinear diffusion), then
the diagonalization argument is no longer applicable. Further, if the diffusion matrix depends on time
only, then the diagonalization has to be carried out at each time-step.[Fis@small sized matrix in
general, this does not restrict its applicability.

Therefore as our main conclusion we recommend the use of the diagonalization argubéntif
constant matrix over the domain.
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