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Abstract. A model for particle dissolution is formulated for
the case of several simultaneously diffusing and strongly in-
teracting alloying elements. The model is analyzed by using
diagonalization of the diffusion matrix. A numerical solution
procedure, also based on diagonalization, is proposed. Fur-
ther, self-similar solutions for the resulting moving boundary
problem are derived for the case of both a diagonalizable
and non-diagonalizable diffusion matrix. Finally, we use this
technique to approximate a two-dimensional problem with
Finite Elements.

1 Introduction

In the thermal processing of both ferrous and non-ferrous
alloys, homogenization of the as-cast microstructure by an-
nealing at such a high temperature that unwanted precipitates
are fully dissolved, is required to obtain a microstructure
suited to undergo heavy plastic deformation. Such a homog-
enization treatment is applied in hot-rolling of Al killed con-
struction steels, HSLA steels, all engineering steels, as well
as aluminum extrusion alloys. Precipitate dissolution is often
the most critical of the occurring processes during homoge-
nization. The minimum temperature at which the annealing
should take place can be determined from thermodynamic
analysis of the phases present. However, the minimum an-
nealing time at this temperature is not constant but depends
on particle size, geometry, overall composition etc.

Due to the scientific and industrial relevance of being
able to predict the kinetics of particle dissolution and growth,
many models of various complexity have been presented and
experimentally validated. The early models were based on an-
alytical solutions for long-distance diffusion in an unbounded
medium under the assumption of local equilibrium at the
moving interface, see Whelan [25] for instance. The model
of Nolfi etal. [15] incorporate the interfacial reaction be-
tween the dissolving particle and its surrounding phase. Later
modeling particle dissolution has been extended to the in-
troduction of multi-component particles by, among others,

Reiso et al. [18]. All the above mentioned models were based
on viewing particle dissolution as a Stefan problem (see
for instance [21]). Kale et al. [8] incorporate cross-diffusion
in iron-based metallic systems where cross-diffusion coef-
ficients range up in value to about a third of the diagonal
coefficients. Some important references from the metallurgi-
cal literature where cross-diffusion is treated are the books
of Kirkaldy and Young [10] and Glicksman [5]. A paper
in which some metallurgical implications of cross-diffusion
on particle dissolution are described is written by Vermolen
et al. [23].

As far as we know no other paper, besides [23], treated both
the movement of the interface and cross diffusion in a vec-
tor valued Stefan problem, where several chemical elements
diffuse simultaneously. It is our aim to develop analytical
expressions and numerical solutions for the solution of the
vector-valued Stefan problem in which cross-diffusion is in-
corporated. Subsequently we apply the analytical expressions
to derive boundary conditions for the simultaneous growth
of a sphere and dissolution of a cylindrical plate of different
compositions. The resulting 2D problem is solved by the use
of a Finite Element Method.

2 Basic assumptions in the model

The as-cast microstructure is simplified into a representative
cell containing the a-phase and a single particle of phase 8 of
a specific form, size and location of the cell boundary.

The boundary between the S-particle and «-phase is
referred to as the interface. In [21] we considered the
dissolution of a stoichiometric particle in a ternary and
a general multi-component alloy. We denote the chem-
ical species by Sp;, i € {1, ... ,n+ 1}, where Sp,4; is the
‘original’ solvent metallic a-phase in which the particle
dissolves. We denote the stoichiometry of the particle by
SPOm (SP2)my (.. )(SPu)m,. The numbers my, mo, ... are
stoichiometric constants. We denote the interfacial concentra-
tion of species i by cf"l and we use the following hyperbolic
relationship for the interfacial concentrations:
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Equation (1) is in line with the assumption of local equi-
librium at the interface. The factor K is referred to as the
solubility product that is obtained from thermodynamics. It
strongly depends on temperature. In the present work, we as-
sume K to be constant.

We assume that the whole metal is divided into periodical
cells with symmetrical and differentiable initial concentra-
tions. We introduce a bounded domain over whose boundary
there is no flux. For cases of low overall concentrations in the
alloy, the «-phase part of the domain may be large and the
solution resembles the case where the domain is unbounded.
The a-phase part of the domain, in which diffusion takes
place, is referred to as £2(r) = (S(r), M) C R!, where ¢ de-
notes time. The B-particle, in which there is no diffusion, is
represented by the domain I7(¢) = (0, S(f)) C R!. We denote
the curve that represents the moving interface between the
B-particle and «-phase by S(¢) = £2(¢¥) N I1(¢). Since cross-
diffusion is taken into account, we have for each alloying
element, with x € £2(f) and r > 0

i o O ac;
%i _ —<Dijﬁ>,forie{1,...,n}. )
4 ox

The above equations follow from thermodynamic consider-
ations, their derivation can for instance be found in [10].
Here D;; and ¢; respectively denote the coefficients of the dif-
fusion matrix and the concentration of the species i in the
a-rich phase. This relaxes the assumption that the alloying
elements diffuse independently and the coupling between the
equations can be strong. When cross-diffusion is neglected,
the diffusion matrix is diagonal. The coefficients D;;, i # j
are referred to as the cross-terms. An alternative formula-
tion of cross-diffusion is treated by Farkas [4] where only the
diagonal entries of the above diffusion matrix D are used,
however these diagonals are taken to depend linearly on the
concentration of all the other species and hence a strong coup-
ling arises in an other way. We assume that the diffusion
matrix does not depend on the concentration, time and space,
i.e. the matrix is treated as constant in the present work. Fur-
ther, it is assumed that the diffusion matrix D is non-singular.
This assumption is motivated in [10].

Let c? denote the initial concentration of each element in
the a-phase, then we take as initial conditions

ci(x,00 =), forie{l,..., n},

IC
uo S0)=3So.

Since there is no flux over the outer boundary, we have
" oc;

ZD,»,»—"(M,t) =0, forie{l,...,n}.

o ox

Since D is non-singular this implies

BC]' .

a—(M,t):O,forje{l,...,n}. 3)
x

The concentration of element i in the particle is denoted by
the constant c?m. This assumption follows from the constraint

F.J. Vermolen et al.

that the stoichiometry of the particle is maintained during dis-
solution in line with Reiso et al. [18]. The balance of atoms
of alloying element i leads to the following equation (Stefan
condition):

as() " dc:
part sol :
i —C ) —— = _Di—=(0®,n. 4
(C; Cl) dt ; /ax(() ) ()
Equation (4) implies

. n

Dik aCk Djk aCk
kgl: C?art_c?ol ax (8@, 1) kgl: C$art_¢?01 I S®,n. (5

Above formulated problem is a Stefan-problem, i.e. a dif-
fusion process with a moving boundary. Since we consider
simultaneous diffusion of several chemical elements, it is re-
ferred to as a ‘vector-valued Stefan problem’. The unknowns
in above equations are the concentrations c;, interfacial con-
centrations c‘;"l and the interfacial position S(¢). The coupling
exists in both the diffusion equations, Stefan condition and
the values of the concentrations at the interfaces between the
particle and a-rich phase. This strong coupling complicates
the qualitative analysis of the equations. For a mathemati-
cal overview of Stefan problems we refer to the textbooks
of Crank [3], Chadam and Rasmussen [1], Visintin [24] and
Kassab [9].

3 Analysis

In this section we consider some general mathematical prop-
erties of the vector-valued Stefan problem in which we deal
with the extra coupling from cross-diffusion. We will partly
or entirely decouple the diffusion equations depending on
whether the diffusion matrix, D, is diagonalizable. First we
state the vector-valued Stefan problem with the diffusion ma-
trix. Here we deal with a factorization of the diffusion matrix
where we use Jordan decomposition or diagonalization. Sub-
sequently we give some remarks concerning the case when D
is not diagonalizable.

3.1 Diagonalization of the diffusion matrix

In this section we consider a vector-notation of the equations.
We define the vectors

. T
c:=(c1,¢2 ... Cn)"

p ._ (part part part\ T
£~—(1 ,Cy ., Ch )
S . sol sol sol\T

= (", &)

then the diffusion equations become in vector notation

dc 0 ac
—=—\|\D—=). (6)
o ox ox
The boundary and initial conditions follow similarly in vector
notation. The equation of motion of the interface becomes in
vector notation:

dS

o 45 _ pdc
(¢’ =¢) = = D=5, 1. (7
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To analyze (6) it is convenient to look at a decomposition
of the diffusion matrix D. Therefore, we use the Decompos-
ition Theorem in linear algebra, which states that for each
D € R"™" there exists a non-singular P € R"*" such that
A = P~'DP, where A represents a Jordan block-matrix (see
for instance Golub and van Loan [6]). For cases where D
has n independent eigenvectors, i.e. D is diagonalizable, A
is a diagonal matrix with the eigenvalues of D on the main
diagonal. Further, the columns of the matrix P consist of the
eigenvectors of D. When D is defect, then P consists of the
generalized eigenvectors of D, which are obtained from solu-
tion of

D-rDw;,, =w;, withw; = v,

where [ is the identity matrix and v and w; are an eigenvec-
tor and generalized eigenvectors of D respectively, belonging
to the eigenvalue A whose geometric multiplicity is less than
the algebraic multiplicity. For the coming we assume that the
eigenvalues are real. Using the transformed concentrations

u:=Ple, u:=Pc,
uf:=P7'ct, u:=pP7',
and (6) and (7) gives
ou d dc
Z=—(a), ®)
ot  0x 0x
ds ou

P—u') — = A—=(S®), 1). 9

(u z)dt 8x(()) )

For a diagonalizable matrix D system (8) is fully uncoupled.
The homogeneous Neumann conditions at the non-moving
boundary are similar for the transformed concentrations due
to the linear nature of the transformation. Further, we have for
t=0and je{l,...,n}

u;), for x € £2(0),

u;, =
T WP forx € (0) .

From the decomposition of the diffusion matrix, with ¢ =
Pu=c = Z;’Zl pijuj, the coupling between the interfacial
concentrations via the hyperbolic relation (1) changes into

1
n n
N s
dopiy || b
j=1 j=1

m my my

...) anju; =K.
j=1
(10)

We note that the decoupled transformed concentrations sat-
isfy a maximum principle [17]. However, when D is not diag-
onalizable then the maximum principle does not hold neces-
sarily for all transformed concentrations. For the transformed
system we introduce the concept of a mass-conserving solu-
tion for each alloying element:

Definition 1. Let u° be constant on [0, M], then a solution
of the Stefan problem is called conserving if the solution
satisfies

M
/ (u(x, ) —u®) dx = (WP —u®) S(0), V¢>0.
0
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With this definition of mass-conserving solutions we estab-
lished the following proposition in [21]:

Proposition 1. Let all concentrations, which are used in (9),
be non-negative and D be diagonalizable, then solutions are
non-conserving whenever

0 0

usol < Pt <uloru® < Pt < usol

Proposition 1 is used to select solutions that satisfy mass con-
servation and hence are allowable.

Kirkaldy et al. [10] use a thermodynamic argument to
show that the diffusion matrix D has positive and real-valued
eigenvalues for metallic systems. Therefore, we will restrict
ourselves to the treatment of matrices D with real and posi-
tive eigenvalues. If D is symmetric and diagonally dominant,
then it follows from Gerschgorin’s Theorem that the matrix is
positive definite and hence its eigenvalues are positive.

4 Numerical method

Various numerical methods are known to solve Stefan prob-
lems: front-tracking, front-fixing and fixed domain methods.
Since the concentration at the interface varies with time in
a bounded domain, we restrict ourselves to a front-tracking
method. Recently a number of promising methods are pro-
posed for multi-dimensional problems: phase field methods
and level set methods, such asin [2, 11, 16, 19]. However, im-
posing local equilibrium condition at the interface in such
models is not as straightforward as in front-tracking methods
that are used here. A coupling between thermodynamics and
a phase field model is presented by Grafe et al. [7].

Our main interest is to give an accurate discretization of
the boundary conditions for this Stefan problem with one spa-
tial co-ordinate. Therefore we use the classical moving grid
method of Murray and Landis [13] to discretize the diffusion
equations. In this paper we briefly describe the method, for
more details for the case of a diagonalizable matrix, we refer
to [21].

Transformation of the concentrations

We assume that the matrix D does not depend on time. First
the eigenvalues and eigenvectors of the diffusion matrix are
computed for the transformation of the concentration. There-
after, the particle and initial concentrations are also trans-
formed. The diffusion equation is discretized by using a Finite
Difference Method where the time integration is implicit to
guarantee numerical stability. A great advantage of the di-
agonalization argument is that a fully implicit method for
diffusion, which is unconditionally stable, can be used easily
to integrate the concentration profile in time since the equa-
tions are decoupled. This also holds when the diffusion matrix
is not diagonalizable.

Discretization of the interior region

We use an implicit finite difference method to solve the dif-
fusion equations in the inner region. An explicitly treated
convection term due to grid-movement is included. Since
the magnitude of the gradient is maximal near the moving
interface we use a geometrically distributed grid such that
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the discretization near the interface is fine and coarse far-
ther away from the moving interface. Furthermore, we use
a virtual grid-point near the moving boundary. The distance
between the virtual node and the interface is chosen equal to
the distance between the interface and the first grid-node. The
resulting set of linear equations is solved using a tridiagonal
matrix solver.

Discrete boundary conditions at the interface

We define the discrete approximation of the concentration as
ul] « Where j, i and k respectively denote the time-step, the
index of the chemical (alloying) element and gridnode. The
virtual gridnode behind the moving interface and the gridnode

at the interface respectively have indices k = —1 and k = 0.
At the moving interface, we obtain from discretization of the
Stefan condition for j € {1,... ,n—1}
JH j+1 j+1
A Wi Ty A Wi T Ui
part s ~  part s :
wp o —ui 241 Uip) — Ui 24r

Note that the concentration profile of each element is deter-
mined by the value of the interfacial concentration. Above
equation can be re-arranged into a zero-point equation for
all chemical elements. All interfacial concentrations satisfy
the hyperbolic relation (1). Combination of all this, gives for
ief{l,...,n—1}andi=n

. j+b . Jj+1 Jj+l1 part s
fi (“i,o ’“i+1,0> =A (“i,l —u ) (i —ui )+

) Jj+1 Jj+1 part s\ _
— it (“i+1,1 —uigy ) \u; —u;) =0
my

f,,(uﬁ,...,ui):: Zpljujs- (...)
j=1

my

n
X anju; —K=0.
j=1

To approximate a root for the ‘vector-function’ f we use
Newton’s method combined with discrete approximations for
the non-zero entries in the first n — 1 rows of the Jacobian ma-
trix. The iteration is terminated when sufficient accuracy is
reached. This is explained in more detail in [21].

Adaptation of the moving boundary

The interface position is computed by the use of the Stefan
condition. In [20] the forward (explicit) Euler and Trapez-
ium time integration methods are described and compared. It
was found that the (implicit) Trapezium method was supe-
rior in accuracy. Furthermore, the iteration step to determine
the interfacial concentrations is included in each Trapezium
step to determine the interfacial position. Hence, the work
per time iteration remains the same for both time integration
methods. Therefore, the Trapezium rule is used to determine
the interfacial position as a function of time. We terminate the
iteration when sufficient accuracy is reached, i.e. let ¢ be the
inaccuracy, then we stop the iteration when the inequality

n Sj+l +1 _Sj+1
Z |uf(p+1)—u§(p)|+ | (pSJ'“)—M (p)| <e¢

i=1
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holds. Here S/ denotes the discrete approximation of the in-
terfacial position at time-step j. The integer p represents the
iteration number during the determination of the interfacial
concentrations and position. We finally remark that a numer-
ical solution for diffusion in ternary alloys including cross-
diffusion for fixed boundaries can be found in Naumann and
Savoca [14].

5 Similarity solutions

We consider analytical solutions satisfying (2) for the concen-
trations. To facilitate the analysis we consider the transformed
solution u. The components of the vectors u, u”, u* and u° are
denoted by the index i in subscript. Proposition 1 is used to
reject solutions that are not physical. To facilitate the analysis
we consider the Stefan problem on an unbounded domain in
one co-ordinate where x > S(¢), t > O:

ou 0u

o ox2

~dS  ou
W’ —u') — = A==(S@), 1)

(P1) dt

ux,0)=u’, S0) =S,

u(St),H=u'.

First we deal with the diagonalizable case where we consider
an exact solution and an asymptotic approximation. Subse-
quently we deal with the non-diagonalizable case where we
also consider an exact solution and an asymptotic approxi-
mation. A self-similar solution, where the boundaries do not
move, can be found in the book of Glicksman [5], chapters 23
and 24.

5.1 The exact solution for the diagonalizable case

As a trial solution of (P;) we assume that the interfacial con-
centrations u® are constant. Furthermore, we assume that the
diffusion matrix, D, is diagonalizable. Suppose that the vec-
tor u* is known then using a similar procedure as in [21], one
obtains the solution for each component:

erfc (“SO )
2 At

=+ (=) — 2
erfc (m)

forie{l,...,n}.

The assumption that S(f) = Sp + k+/7 gives the following ex-
pression for k

0 _2
u? —ud [ e i k .
;, ; d =—, foriefl,..., n}.
up —up VT oerfe (A_) 2
N

Above equation has to be solved for the parameter k. How-
ever, the transformed interfacial concentrations u® are not
known either and hence one is faced with the following
problem
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(P2)

m my my

n
(“)me§ =K.
j=1

n 1 n
us us
ZP‘J”J Zml”}

j=1 j=I

Here the unknowns are the transformed interfacial concen-
trations u* and rate-parameter k. In above problem there is
no time-dependence, hence the ansatz of time-independent
transformed interfacial concentrations (and hence the physi-
cal interfacial concentrations) is not contradicted. Due to the
non-linear nature of the equations, the solution may be not
unique. We apply a numerical zero-point method to obtain
a solution of (P,).

Example

We illustrate the importance of the cross-diffusion term. The
following input parameters are used where we vary the value
of the cross term Dj5:

L =(0,07, = (50, 50)",

1 Dy
D= , K=1.
D> 2

The above diffusion matrix is symmetric. From Fig. 1 it is
clear that the influence of the cross terms is significant. Since
Kale et al. [8] indicate that the cross diffusion term can have
the same order of magnitude as the diagonal terms in the
diffusion matrix we choose the values of Dj; in the range
[—1,0].

From (P,) there is no explicit relation for k. In [22] we
show that an approximate explicit solution for k£ can be de-
rived provided that ||u® — u,|| < ||gp —ul

5.2 The exact solution for the non-diagonalizable case

In this section we consider a ternary example, so n = 2. Ex-
amples with more components can be treated similarly. When

0.9

0.8

0.7

0.6

0.5

0.4

08 D =-12
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s
1;-1/4
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01D =0

0 I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 1. The interfacial position as a function of time for the exact self similar
solution for several values of the cross diffusion terms
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the matrix D € R?>*? is not diagonalizable then we obtain

A= (é‘) 1) as the decomposed form of the diffusion matrix.
The set of transformed diffusion equations become
3141 _ 32141 azuz
a ox2 o ax?’
e8Y)
3”2 _ 321/!2
a a2

From the above system it can be seen that the equation for
up is uncoupled. Its solution is computed using the self-
similarity transformation and subsequently substituted into
the equation for u;. We consider self-similarity solutions

— 5
uy, uz(x,t) =uy, uz(n), where n:= u, and we apply
t

a similar procedure as in Sect. 5.1. to obtain a system of ordi-
nary differential equations for u; and u,. These equations are
solved to obtain the following expressions for the % and u5,.

u —i — Xe_%—i—)»\/n)nerf _
2\ 2/

n
+C Vnkerf<—> +C
2 Vi 3

_ n
u, =C Vn)»erf<—>+C
2 1 WA 4

Again we use the trial solution S(f) = Sy +k+/t. A combina-
tion with the boundary conditions delivers expressions for the
integration constants Cy, C, C3 and C4. Substitution of these
constants into the expressions of u; and u, gives the trans-
formed concentrations. Further, the rate factor of the interface
movement, k, is obtained from combination of the Stefan con-
dition and the expression for u,. Then we get the following
set of equations to be solved for k, u} and u3:

k
eerfe(557) -y 3

2 e_% - ug—ué 7’
k
ﬁ“ﬁGﬁ):ﬁ—ﬂ/Z
2 e’% ul —usVm
2

u(z)—ui K2 k 2\ e 4

TR I E R L
2 (uf —u$) VAm 4 2V erfe (#)
i

(priuf + proud)™ (paru + poous)™ =K . (12)

Note that p. and p , respectively represent the eigenvector and
generalize_dl eigenvector that correspond to the eigenvalue A
of the defective matrix D. The above system of equations can
be solved using a zero-point method. We remark here that we
derived for this non-diagonalizable case an approximate solu-
tion under the condition |u$ — u3| < |u} — u3| in [22].

Example
In the illustration in Fig. 2 both the exact (see (12)), approxi-
mate solution ([22]) and numerical solution are displayed. It
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Fig. 2. The interface position as a function of time for the case that the dif-
fusion matrix is not diagonalizable. The analytical and numerical solution
are shown

can be seen that the difference between both analytical ap-
proaches is very small for the following data-set that is used
for the calculations:

=(0,07, = (50,50)",
2 1

= :1

0 2/)°

The eigenvalue of the above matrix is equal to 2 and the ma-
trix is not diagonalizable. In Fig. 2 a comparison is shown
with the numerical solution (see Sect. 4). The interface con-
centration starts with ¢* = (0.8673, 1.1560)7. It can be seen
that the agreement is perfect in the initial stages. However, the
solutions start to deviate at later stages where soft impinge-
ment starts to play an important role. Finally, we remark that
the above treatment can be extended to the more general case
of n simultaneously diffusing alloying elements.

6 Application to a Finite Element Model

In applications a one-dimensional approach is not always
suitable (see [12] for instance where three-dimensional ef-
fects have to be taken into account). We limit ourselves
to rotational symmetry such that the model only contains
two spatial co-ordinates. The geometry is sketched in Fig. 3.
The chemical composition of the two phases are different.
The cylindrical particle only dissolves at the rim, whereas
the spherical particle grows. Note that we have two moving
boundaries in this example. We consider a ternary alloy with
artificial input data:

1 —0.1
D= . =657,
—0.1 2
Pt =(50,50)7, Ks=1, Kc=50. (13)
Here Ky and K¢ respectively denote the solubility product
of the spherical particle and cylindrical plate. As initial ge-
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semi—spherical particle

cylindrical plate

Fig. 3. Sketch of the initial geometry of the growing semi-spherical particle
and the dissolving cylindrical plate. Note that we have rotational symmetry

’sphere’

"cylindrical’ phase

Fig. 4. Simultaneous growth of a ‘spherical’ particle and decay of a ‘cylin-
drical’ phase at consecutive times. Input data are as given in (13). Further,
only the area in the vicinity of the moving interfaces is shown

ometrical data we used a sphere with radius 1 and a cylin-
drical plate with radius 4. The initial cylinder height is 1
and the whole domain measures 5 x 5. Further the sizes are
in micrometer and the diffusion coefficients are in terms of
pum?/s. Since the Finite Element Code that we use here is
not applicable to this vector-valued Stefan problem yet, we
solve the diffusion equation for one element only. Further-
more, we assume that interface concentrations are constant in
time and position. To obtain the interface concentrations, we
solve the equations in problem (P,) after the use of the diag-
onalization argument. The transformed interface and particle
concentration and eigenvalue of one element is used in the
two-dimensional Finite Element code SEPRAN to compute
the evolution of the interfaces. The result is shown in Fig. 4.
As time proceeds the real interface concentrations are a func-
tion of time. Furthermore, it can be seen that in Fig. 4 that the
growing spherical phase exhibits a fingering behavior, i.e. the
interface is unstable. As the off-diagonal terms of the diffu-
sion matrix become more negative, the movement of the two
interfaces is delayed.

7 Conclusions

A model based on a vector-valued Stefan problem has been
developed to predict the dissolution kinetics of stoichiometric
particles in multi-component alloys. Cross-diffusion is taken
into account, which gives a strong coupling between the dif-
fusion equations of the several alloying elements. A diagonal-
ization of the diffusion matrix leads to a vector-valued Stefan
problem with a weaker coupling. If the off-diagonal entries
of the diffusion matrix are negative, then the delay of particle
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dissolution due to these terms increases as the magnitude of
the off-diagonal entries increase.

Future work will be the implementation of vector-valued

Stefan problems into the Finite Element Method for two and
three spatial co-ordinates.
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