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Abstract. A suite of mathematical models for solid-state phase transformations in
solid-state alloys is presented. The work deals in particular with dissolution and growth
of particles in solid-state alloys. Several models are presented and numerical solution pro-
cedures are summarized briefly. Further, some analytic solutions are considered shortly,
which are useful to validate the numerical solutions. One model, which incorporates sur-
face energy effects is presented in more detail. From this model it is observed that the
surface energy prevents the occurrence of fingering during growth.

1 INTRODUCTION
1.1 Technological background

In the thermal processing of both ferrous and non-ferrous alloys, homogenization of the
existing microstructure by annealing at such a high temperature that unwanted precipi-
tates are fully dissolved, is required to obtain a microstructure suited to undergo heavy
plastic deformation as well as providing an optimal starting condition for a subsequent pre-
cipitation hardening treatment. Such a homogenization treatment is for example applied
prior to hot-rolling of Al killed construction steels, HSLA steels, all engineering steels, as
well as in processing aluminium extrusion alloys. Although precipitate dissolution is not
the only metallurgical process taking place during homogenization, it is often the most
critical of the processes occurring. The minimum temperature at which the annealing
should take place can be determined from thermodynamic analysis of the phases present.
However, the minimum annealing time at this temperature is not a constant but depends
on particle size, particle geometry, particle concentration, overall composition etc. To
make the homogenization treatment more efficient, it is highly desirable to have robust
physical models for the kinetics of particle dissolution as a function of thermodynamics
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and thermokinetics data as well as particle morphology and microstructural dimensions.
Using such models the minimum annealing times and optimum heating strategics can be
calculated a priori, rather than be determined experimentally, and at great cost.

Apart from their technological relevance, accurate physical models for particle dissolu-
tion are, due to the complexity of the processes, also of great scientific and mathematical
interest in themselves.

1.2 Existing models for particle dissolution

To describe particle dissolution several older mathematical models have been developed,
which incorporate long-range diffusion [1, 2, 3] and non-equilibrium conditions at the
interface [4, 5]. In general, the dissolution of particles proceeds via decomposition of the
chemical compound, the crossing of the atoms of the interface and long-range diffusion
in the matrix. The first two processes are referred to as the interfacial processes. The
long-range diffusion models are based on the assumption that the interfacial processes
are infinitely fast. Hence, these models provide an upper boundary for the dissolution
kinetics.

The first models were based on analytical solutions for the interfacial position as a
function of time (see for instance Whelan [1] and Crank [6]). However, in these solutions
the volume in which dissolution takes place is infinite. As far as we know, Baty, Tanzilli
and Heckel were the first authors in the metallurgical community to applied a Finite
Difference Model [2] where the volume is bounded. Tundal and Ryum [3] also applied a
Finite Difference Model in which a lognormal particle size distribution is included. They
showed that the macroscopic dissolution rates depend strongly on the particle size and
possible interactions between subsequent particles. Nolfi’s [4] model was, as far as known,
the first model in which non-equilibrium conditions at the particle-matrix interface were
included. However, the interface migration was not included. The non-equilibrium con-
dition is modelled by a Robin-condition at the interface. Their solution is in terms of a
Fourier series. Aaron and Kotler [5] combine Whelan’s solution with the incorporation of
the Gibbs-Thomson effect to deal with the influence of curvature on the interface motion.
Further, they transform the Robin-boundary condition of Nolfi’s model into a Dirichlet
boundary condition. Recently, Svoboda et al. [7] analyzed the kinetics of diffusional
transformations where mechanical and chemical forces exerted on interfaces between sub-
sequent phases are incorporated. Their approach is based on thermodynamical concepts
that can be found in Hillert [8]. They obtain a thermodynamically based procedure to
predict non-equilibrium interface kinetics by using both analytical and numerical tech-
niques.

However, all these mentioned models did not consider the technologically important
dissolution of multi-component particles in multi-component alloys. As far as we know
Agren et al. [9] was the first to extend the models to multi-component alloys. His
formalism was based on a thermodynamic treatment of diffusion in terms of chemical
potentials and an interface motion from a material balance. The numerical methods that



F.J. Vermolen, P. Pinson, C. Vuik and S. van der Zwaag

were used by Agren were improved by Crusius et al. [10] and the diffusion model was
improved in [11], which forms the backbone of the software-package DICTRA suitable
for dissolution and growth problems with one spatial dimension. The thermodynamic
relation, which defined the boundary conditions at the moving interface, was simplified
to a hyperbolic relationship. This has been done for iron-based alloys by Vitek et al.
[12] and Hubert [13]. Furthermore, Reiso et al. [14] investigated the dissolution of MgySi
alloys in aluminium alloys by the use of the same principles.

The above mentioned authors viewed particle dissolution as a Stefan problem: a dif-
fusion equation with a sharp moving interface. A recent approach is the phase-field
approach, which is derived from a minimization of the energy functional and based on
a diffuse interface between the consecutive phases. This approach has, among others,
been used by Kobayashi et al. [15] and Burman et al. [16] to simulate dendritic growth.
An extension to multi-component phase-field computation is done by Grafe et al. [17],
where solidification and solid-state transformation is modelled. For the one-dimensional
case they obtain a perfect agreement between the phase-field approach and the software
package DICTRA, which is based on a sharp interface between the consecutive phases.
Furthermore, some recent comparison studies of phase-field methods with a Stefan prob-
lem, solved by a moving mesh method or a level-set method or a mesh-free method, were
done by Javierre et al. [18] and Kovacevic and Sarler [20] respectively. Some disadvan-
tages of the phase-field approach are that (1) no simple quick estimation of the solution
is available, and that (2) physically justifiable parameters in the energy functional are
not easy to obtain. Generally those parameters are to be obtained from fitting proce-
dures that link experiment, thermodynamic data-bases and numerical computation. An
other disadvantage of the phase-field method is the requirement of a fine grid resolu-
tion in the diffuse interface region in order to have agreement with the solution of the
‘sharp interface problem’. This poses a severe time-step criterion and hence time con-
suming computations. This was observed by Burman et al. [16] and Javierre et al. [18].
Therefore, we limit ourselves here to viewing particle dissolution as a (vector) Stefan
problem. We remark that Thornton et al. [21] wrote a nice review paper on simulating
diffusional phase transformations using several physical model approaches as the updated
thermodynamic methods by Agren, used in the package DICTRA, and the diffuse inter-
face phase-field and (Allen)-Cahn-(Hilliard) approach. Thornton et al. [21] also describe
several two-dimensional applications of phase coarsening with Ostwald Ripening using
the diffuse interface approach. The present paper will focus on the computational aspects
of solving Stefan problems with a sharp interface applied to particle dissolution in (multi-
component) alloys. For a review on the solution of Stefan problems in multi-component
alloys, we refer to [28]. Furthermore, some mathematical issues will be summarized.

Although much work on the mathematical modeling of dissolution of particles had been
done, some major limitations remained (until recently):

1. No fast and efficient numerical method for the simultaneous dissolution of a particle
and a segregation at the grain boundary was available. Furthermore, no quick
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and well motivated self-similar solution for the dissolution of particles in multi-
component has been reported.

2. Some particles may be disk-shaped, hence a two-dimensional model is necessary
to compute the dissolution of the particle. With the classical literature of Finite
Elements the computation of the interface movement with a sharp angle within the
boundary is impossible. Furthermore, the case where two particles dissolve in one
cell needs to be discussed.

3. No numerical model, be it 2D or quasi 3D, that treats the interface movement while
the interfacial reactions take place exists.

4. Metallurgical experiments on alloys indicate that dissolving particles or phases may
break up into smaller particles or phases in some circumstances. No metallurgically
sound model in three spatial dimensions, based on the sharp interface approach,
exists to deal with these topological changes.

These limitations where lifted in a suite of mathematical models of increasing complexity.
This paper presents a coherent total picture of the basic concepts and equations in these
models and illustrates their potential.

Furthermore, an experimental validation of the above mentioned models can be found
in [22] and [23]. In the first paper the activation energy for particle dissolution has
been analyzed. In the second paper the experimental validation was carried out using
DSC-measurements. New work concerns the analysis of particle dissolution where cross-
diffusion aspects and a relaxation of thermodynamic equilibrium, are incorporated. Fur-
ther, the level-set method and moving grid method are analyzed as candidates to model
particle growth. In this paper we only consider the moving grid method in more detail
in which the application concerns the growth of a particle under the influence of surface
energy effects.

1.3 Organization of the paper

The current paper does not aim at being mathematically rigorous but merely aims
at being descriptive about the implications of the developed mathematics of these more
complex models. First we formulate the mathematical models for particle dissolution in
Section 2. Here a one-dimensional multi-component model and two-dimensional model is
formulated. Section 2 ends with a brief description of the mathematical implications of
the models. Section 3 starts with available self-similar solutions for the one-dimensional
(multi-component) models. Next, the numerical methods to solve the one- and two-
dimensional models are described. Section 5 deals with applications of the models particle
growth influenced by surface energy effects. Finally, some concluding remarks about the
work are given and ongoing research is indicated.
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2 MODELS

We consider a particle of # phase surrounded by a diffusive phase « of either uniform or
nonuniform composition. The boundary between the adjacent phases is referred to as the
interface. The metal is divided into representative cells in which a single particle of phase
[ dissolves in an « phase. Particle dissolution is assumed to proceed via the following
consecutive steps: decomposition of the chemical bonds in the dissolving phase, crossing
of the interface by the atoms and finally long-distance diffusion in the diffusive phase. In
the present paper we assume that the rate of the dissolution process is determined by
the last step, e.g. at the interface between the adjacent phase we have local equilibrium.
Hence the interface concentration are those as predicted by thermodynamics.

In this section, the model for a binary alloy and a multi-component alloy are presented
consecutively.

2.1 The model for a binary alloy

We denote the interface, consisting of a point, curve or a surface for respectively a one-,
two- or three-dimensional domain of computation by S = S(t). The fixed boundaries of
the domain of computation are denoted by I'. Further, the domain of computation is split
into the diffusive part (the a-diffusive phase), denoted by €2 and the S-particle 2,. The
distribution of the alloying element is determined by diffusion in the diffusive phase (2,
which gives

oc
i DAc = D div grad ¢, for x € (t) and ¢ > 0. (1)
Here D represents the diffusion coefficient and x denotes the spatial position within the
domain of computation. In the present study we treat D as a constant. Within the

particle the concentration is equal to a given constant, hence
c=c"" for x € Q,(t) and t > 0. (2)

On the interface, S(t), we have local equilibrium, i.e. the concentration is as predicted by
the thermodynamic phase diagram, i.e.

c=c* forx € S(t) and t > 0. (3)

Further, at a boundary not being the moving interface, I', we have no flux of atoms, i.e.
oc

Dﬁ_ =0, forx € I'(t) and t > 0. (4)
n

dc
In the above equation — denotes the outward normal derivative of ¢ on the fixed boundary

n
I'. From a local mass balance, the equation of motion of the interface can be derived, this
equation is commonly referred to as the Stefan condition, and is given by:

oc

(Cpart - CSOZ)Un — D%, for x € S(t) and t > 0. (5)
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Here v,, denotes the normal component of the interface velocity outward from 2. The
problem is completed with the initial concentration ¢ and the initial position of the
interface S(0). The problem, consisting of equations (1), (2), (3), (4) and (5) is referred
to as a Stefan problem for particle dissolution or particle growth. For the case of growth
of particles, the Gibbs-Thomson effect is important in the early stages of growth after
nucleation. The earliest-stage phenomenon of nucleation differs totally from the present
Stefan problem. Models for nucleation are commonly based on Monte-Carlo simulations
or on evolution of the statistical particle size distribution (see for instance the work of
Myhr and Grong [30], where a hyperbolic partial differential equation is solved for the
probability density of the particle size). Therefore, we do not consider nucleation in the
present study. Future studies will be devoted to the Gibbs-Thomson effect. For now, we
refer to Mullins and Sekerka who show that spherical particles can only preserve their
spherical shape during growth if the Gibbs-Thomson effect is included (i.e. the Mullins-
Sekerka instability [31], [32]). We will only show some preliminary finite element results
in the present paper, which confirm this behavior numerically.

2.2 The model for a multi component alloy

We consider a particle of a multi-component (3 phase surrounded by a 'matrix’ of phase
a, of either uniform or non-uniform composition. The boundary between the (-particle
and a-matrix is referred to as the interface. The metal is divided into representative
cells in which a single particle of phase [ dissolves in an a-matrix. Particle dissolution
is assumed to proceed by a number of subsequent steps [4, 33]: decomposition of the
chemical bonds in the particle, crossing of the interface by atoms from the particle and
long-distance diffusion in the a-phase. In the models of thermodynamic equilibrium, we
assume in this section that the first two mechanisms proceed sufficiently fast with respect
to long-distance diffusion and do not affect the dissolution kinetics. Hence, the interfacial
concentrations are those as predicted by thermodynamics (local equilibrium). Later this
assumption is dropped. In [34] we considered the dissolution of a stoichiometric particle
in a ternary alloy. The hyperbolic relationship between the interfacial concentrations
for ternary alloys is derived using a three-dimensional Gibbs space. For the case that
the particle consists of n chemical elements apart from the atoms that form the bulk
of the (-phase, a generalization to a n-dimensional Gibbs hyperspace has to be made.
The Gibbs surfaces become hypersurfaces. We expect that similar consequences apply
and that hence the hyperbolic relation between the interfacial concentrations remains
valid for the general stoichiometric particle in a multi-component alloy. We denote the
chemical species by Sp;, i € {1,...,n+1}. We denote the stoichiometry of the particle by
(SP1)my (SP2)ms (SP3)ms (o) (SPr)m,.. The numbers my, mo, ... are stoichiometric constants.
We denote the interfacial concentration of species i by ¢ and we use the following
hyperbolic relationship for the interfacial concentrations:

fleset et oo el = (™ (e ™2 (L) (™ — Koy = 0, Koo = Kso(T).  (6)

) n n
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The factor K, is referred to as the solubility product. It depends on temperature T
according to an Arrhenius relationship. In principle, the model can handle any form of
temperature dependence for the solubility product.

We denote the position of the moving interface between the (-particle and a-phase by
S(t). Consider a one-dimensional domain, i.e. there is one spatial variable, which extends
from 0 up to M. Since particles dissolve simultaneously in the metal, the concentration
profiles between consecutive particles may interact and hence soft-impingement occurs.
This motivates the introduction of finitely sized cells over whose boundary there is no flux.
For cases of low overall concentrations in the alloy, the cell size M may be large and the
solution resembles the case where M is infinite. The latter case can be treated easily with
(semi) explicit expressions. The spatial co-ordinate is denoted by r, 0 < S(t) < r < M.
The a-matrix where diffusion takes place is given by Q(t) :={r e R: 0 < S(¢t) <r < M}.
The [-particle is represented by the domain 0 < r < S(t). Hence for each alloying element,
we have for r € ()(¢) and ¢ > 0 (where ¢ denotes time)

aCi _ .
ot = ZDZ]AC]7 for i € {1,,”} (7)
j=1

Here D;; and ¢; respectively denote the (cross-)diffusion coefficients and the concentration
of the species ¢ in the a-rich phase. If D;; < 0 for some ¢ # 7, then, the transport of element
¢ is delayed by the presence of element j. For D;; > 0, the opposite holds. Experiments
with Differential Scanning Calorimetry by Chen et al. [23] for Al-Si-Mg alloys indicate that
disregarding cross-diffusion terms gives a good approximation. However, for some other
alloys the full diffusion matrix should be taken into account. A physical motivation of the
above partial differential equation is given by Kirkaldy and Young [35]. The geometry is
planar, cylindrical and spherical for respectively a = 0,1 and 2. Let ¢? denote the initial
concentration of each element in the o phase, i.e. we take as initial conditions (IC) for
r € Q(0)

ci(,0)=d(.) fori € {1,...,n}

(IC)
S(0) = Sp.

At a boundary not being an interface, i.e. at I" or when S(¢) = 0, we assume no flux
through it, i.e.
802-
on

Furthermore at the moving interface S(t) we have the 'Dirichlet boundary condition’ ¢}°
for each alloying element. The concentration of element ¢ in the particle is denoted by
c? "t this concentration is fixed at all stages. This assumption follows from the constraint

that the stoichiometry of the particle is maintained during dissolution in line with Reiso
et al. [14]. The dissolution rate (interfacial velocity) is obtained from a mass-balance.

=0, forie {1,..,n}. (8)

l



F.J. Vermolen, P. Pinson, C. Vuik and S. van der Zwaag

Summarized, we obtain at the interface for t > 0 and 4,5 € {1,...,n}:
ci = ¢ for x € S(t),

le 8ck “ Djk 8
= E T a— prm = E i SO— for x € S(t).
—E pt” l ]fOI"XES() G L on k:16§ cj”! on

st On

(9)
The right part of above equations follows from local mass-conservation of the components.
Above formulated problem falls within the class of Stefan-problems, i.e. diffusion with a
moving boundary. Since we consider simultaneous diffusion of several chemical elements,
it is referred to as a 'vector-valued Stefan problem’. The unknowns in above equations
are the concentrations ¢;, interfacial concentrations ¢°" and the interfacial position S(t).
All concentrations are non-negative. The model was analyzed in [26, 27, 25].

The influence of cross-diffusion is investigated in terms of a parameter study in [25] and
in terms of self-similar solutions as exact solutions for the unbounded domain in [26]. An
analysis of several numerical analysis in terms of stability criteria is presented in [27].
For a mathematical overview of Stefan problems we refer to the textbooks of Crank [6],
Chadam and Rasmussen [36] and Visintin [37].

3 ANALYTIC SOLUTIONS

The early models on particle dissolution and growth based on long-distance diffusion
consisted of analytic solutions in an unbounded medium under the assumption of local
equilibrium at the interface, see Ham [38, 39], Zener [40], Whelan [1] and Aaron and Kotler
[5] to mention a few. These analytic models have been developed for idealized geometries
such as planar, cylindrical and spherical geometries and are mostly based on the so-called
Boltzmann transformation where the concentration ¢ is written as c(z,t) = ¢(n) where
n = x/v/t. Recently the self-similar solutions have been extended to multi-component
alloys by Atkinson et al. [41] and Vermolen et al. [26]. In the latter paper an effective
diffusion coefficient was determined which is useful for a quick estimate of the dissolution
or growth speed. Recently, the Zener solutions for the various geometries have been ex-
tended to multi-component alloys [42]. We remark that these solutions hold for the case
of local equilibrium at the moving interface, that is, the concentrations at the interface
are those as given by the phase diagrams.

The model of Nolfi et al. [4] incorporates the interfacial reaction between the dissolving
particle and its surrounding phase by the use of a Fourier series solution for the concen-
tration profile. The interface motion was not included in this solution. Vermolen et al.
[43] constructed a semi-analytic solution based on Fourier Series in which the interface
motion was incorporated. Further solutions with Laplace transforms have been reported
by Aaron & Kotler [5] and Whelan [1]. These solutions were extended to multi-component
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alloys by Reiso et al. [14]. The analytic solutions are very valuable for the evaluation of
the accuracy of the numerical procedures.

4 NUMERICAL SOLUTION PROCEDURES

In the literature one can find various numerical methods to solve Stefan problems.
These methods can be distinguished in the following categories: front-tracking, front-
fixing and fixed-domain methods. In a front-fixing method a transformation to body fitted
curvilinear coordinates is used (a special case is the Isotherm Migration Method (IMM)
[6]). A drawback is that such a transformation can only be used for a relatively simple
geometry. Fixed-domain methods are the enthalpy method (EM), and the variational
inequality method (VI). In these methods a new unknown is introduced, which is the
integral of the primitive variable. The free boundary is implicitly defined by this unknown.
Since in our approach the equations hold for the concentration and there are no energies
involved in the model, the enthalpy method and phase-field method are not used. We
refer to [44] and [45] among others where the phase-field method is used to compute
the solution of the moving boundary problem. An other recent method where the free
boundary is implicitly defined is the level-set method as described by Chen et al. [46]
for Stefan problems. Here the interface is identified by the zero level-set of a marker
function. The advantages of this method is that topological changes, such as breaking up,
of the dissolving or growing phases are dealt with easily. On the other hand, since both the
interfacial velocity and interfacial concentrations are here determined by the concentration
gradient, a grid grid-refinement near the free boundary can be attractive. This implies
that the grid moves anyway and hence the benefits for the level-set method due to a
fixed grid no longer apply. Though, the level-set method remains the best candidate
due to the ability of dealing with changing topologies and because remeshing steps are
not needed. The IMM and VI methods are only applicable when the interface is an equi-
concentration line. However, in our application where either multi-component particles or
interfacial reactions are taken into account, the interface is not an equi-concentration line.
Hence, (IMM) and (VI) methods are no suitable candidates. Therefore we use a front-
tracking method which has the added benefit that a first order reaction at the interface
can be incorporated in the model. The moving grid method solves one partial differential
equation only. The mesh is moved using an arbitrary Lagrangian Eulerian method. Here,
the method is relatively cheap compared to the level-set method, where also a first order
hyperbolic partial differential equation for the level set function has to be solved with a
continuous extension of the interface velocity at each time-step. However, it is sometimes
necessary to change the topology of the elements, then, the moving grid method requires
a remeshing step, which involves an expensive two dimensional interpolation step. This
is a very expensive step in the moving grid method. Further, topological changes of
growing and dissolving (for instance the dissappearrance) phases are hard to implement
into moving mesh methods. For these cases the level-set method becomes more attractive.
We refer to [27, 47, 19] for more details on our level set method and moving grid method.
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Further, for review papers we refer to Thornton et al. [21] and Vermolen et al. [28]. The
first paper focusses more on an incorporation of the relevant thermodynamics and diffuse
interface models. The second paper deals with numerical aspects of the solution of the
sharp interface model. A recent book on the level set method and its applications is due
to Osher and Fedkiw [29].

5 APPLICATION OF MOVING GRID TO CURVATURE DEPENDENCE

In the present application we consider a binary alloy in which a particle dissolves or
grows. The calculations that we present here are for two spatial dimensions. Due to crystal
defects, such as dislocations, the free energy of the phases present is raised. This causes
the so-called Gibbs-Thomson effect, which makes the interface concentration sensible to
the local curvature. This effect was not taken into account in the previous section. Let
¢! be the equilibrium interface concentration that follows from the phase diagram, then,
the interface concentration at a location at the interface with curvature x, is given by

29V k
sol __sol m
= cTexp ( T ) , for x € S(t). (10)

This is an important effect if the curvature of the particle is small. Here v, V,, and R
respectively denote the surface energy, molar volume and ideal gas constant. The above
equation requires the determination of the curvature s on each location at the moving
interface S(t). The present approach solves second Fick’s Law for the concentration with
a moving grid method to model the movement of the boundary. Using a finite element
method to solve the equations with a moving grid, that is, for the concentration we solve
the following problem:

( Find c(x,t) € HY(2(t)), subject to c(x,t) = ¢(x,t) for x € S(t),

such that / {% — Vinesh Vc} v(x)dQ = — Ve - VodQ, (11)
a@ L0t Q(t)

for all v € H'(Q(t)), subject to v =0 for x € S(t).

\

In the above equation viesn = W is the mesh velocity. Linear triangular elements

are used for the discretization. The displacement of the moving boundary is computed
in a mass conserving manner, see [47]. To determine the interface curvature, we use
the observation that three points uniquely define the circle containing these points, unless
these points are on a straight line. The radius of this circle is the local radius of curvature,
of which its reciprocal in turn defines its local curvature. This local curvature is used for
the determination of the local interface concentration, see equation (10). The curvature
is allowed to be negative whenever the interface is concave-upward with respect to the
particle. For other cases the curvature is positive. A sketch is presented in Figure 1. A

10
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consequence of the Gibbs-Thomson effect is that the fingers with smaller (or negative)
curvature have a larger growth rate than fingers with a higher curvature. Hence, the
Gibbs-Thomson effect prevents positive fingers from moving rapidly into the matrix and
to accelerate the movement into the matrix of the negative fingers.

/ desired

negative "
curvature positive

curvature /

Figure 1: Positive and negative curvature and desired speed.

The second derivative is needed for the local curvature. Further, the sign of the vector
product of the line segments connecting the adjacent points is used to determine the sign
of the curvature. This is all subsitituted into equation (10). The numerical determination
of the second derivative is a notorious problem in computing the local curvature due to
rounding errors.

P P

2 1

Vio ® P3

v

®/ 23 ®
v

P 12 Va3

P
3 P,

negative positive
curvature curvature
V12AV23<0 V12/\ V23 >0

Figure 2: Positive and negative curvature.

A problem that occured here was the fact that a small error in the curvature, gives a
relatively large influence on the interface concentration due to its exponential dependence
(see equation (10)). This gives unrealistic results. Since this is a numerical artefact, we
removed it by introducing a ’cut-off’ procedure, by adjusting the interface concentration
to the average of the interface concentration and the initial concentration. The choice is
somewhat arbitrary, but the results become more realistic. The ’cut-off” procedure gives
that
Csol + CO

If ' > & then ¢! — 5

11
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A next idea was to smooth the curvature by using an approximating spline. This im-
plies that for the determination of the local curvature, the interface points are somewhat
shifted so that the interface becomes smoother. The second derivative was approximated
subsequently. Our preliminary numerical experiments look promising. Additional re-
search on this idea is needed.

Finally, we apply the idea of determining the local radius of curvature by using a circle
intersecting three adjacent points as discussed in combination with the 'cut-oft’” procedure.
The cut-off procedure is combined with the decrease of the time-step when the mesh is
refined. Here we got convergence for decreasing time-step and mesh-width.

As an application we consider the growth of a circular particle with D = 0.1 um/s,
& =05, Pt = 1, ¢! = 0.0001 and initial radius of 0.3 pum. These data imply that
the particle will grow. As Mullins & Sekerka [31] point out, the growth will occur under
fingering if the surface energy -~y is lower than a threshold value (see Figure 3). To illustrate
the influence of the surface energy v we plot the results for the case that 2]2‘;’” = 2.406,
which is a value for which no fingering occurs during growth, in Figure 4. It can be seen

that no fingering occurs, which is in line with the expectations from the theory of Mullins
& Sekerka.

Figure 3: Growth modeled with v = 0. Figure 4: Growth modeled with % = 2.406.

From this we see that the statement due to Mullins & Sekerka that the Gibbs-Thomson
effect prevents the occurrence of fingering of a growing particle is also supported numeri-

cally. For more details concerning this study on the issue of fingering, we refer to Pinson
48].

6 CONCLUSIONS

A suite of mathematical models for the diffusional phase transformations has been
presented. Some applications with a two-dimensional model incorporating the Gibbs-
Thomson effect are shown for a binary alloy. The Gibbs-Thomson effect can be used to
prevent fingering of a growing particle.

12
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