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Abstract

A three-dimensional model for particle dissolution in binary alloys is proposed and its numerical solution procedure is described. The
model describes dissolution of a stoichiometric particle as a Stefan problem. The numerical method is based on a level set method, which
has a wide applicability in modeling moving boundary problems. The present model relies on local thermodynamic equilibrium on the
interface between the dissolving particle and the diffusive phase. The level set method is shown to handle complex topological changes in
particle break-up very well. The potential of the technique is demonstrated in describing the globularization of planar, perturbed and

cracked cementite plates in a pearlitic microstructure.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Particle growth or dissolution is a common metallurgi-
cal process. Due to the scientific and the industrial rele-
vance of being able to predict the kinetics of particle
dissolution, many models of various complexity have been
presented and experimentally validated. The early models
on particle dissolution and growth based on long-distance
diffusion consisted of analytic solutions in an unbounded
medium under the assumption of local equilibrium at the
interface, see Ham [1,2], Zener [3], Whelan [4] and Aaron
and Kotler [5] to mention just a few. The model of Nolfi
et al. [6] incorporates the interfacial reaction between the
dissolving particle and its surrounding phase. Later, mod-
eling of particle dissolution has been extended to the intro-
duction of multi-component particles by, among others,
Andersson and Agren [71, Agren [8], Agren and Vassilev
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[9], Thornton et al. [10], Reiso et al. [11], Hubert [12], Vitek
et al. [13], Vusanovi¢ and Krane [14], Atkinson et al. [15]
and Vermolen et al. [16,17]. Bourne et al. [18] treat the
growth of ellipsoidal phases in ternary systems. In these
papers particle dissolution was viewed as a Stefan problem
with a sharp interface separating the constitutive phases.
An alternative approach to particle dissolution is the
phase-field approach, which is derived from a minimization
of a free energy functional employing a diffuse interface
between the phases in contact. This approach has been
used by Kobayashi [19], among others, to simulate den-
dritic growth. An extension to multi-component phase-field
computation is done by Grafe et al. [20], where solidifica-
tion and solid state transformations are modeled. For a
one-dimensional case they obtain a perfect agreement for
one spatial dimension between the phase-field approach
and the software package DICTRA, which is based on a
sharp interface between the consecutive phases. Recently,
Kovadevié¢ and Sarler [21] also obtained a perfect agree-
ment for dissolution of Al,Cu precipitates in an aluminum
alloy between a phase-field approach and sharp interface
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(Stefan) approach where a moving grid method and a
meshfree method was used. However, some drawbacks of
the phase-field approach are the following: no quick ana-
Iytic estimate of the solution is available, the diffuse inter-
face is physically unrealistic and physically justifiable
parameter values in the energy functional are hard to get.
Generally, these values are derived from fitting simulations
to experiments. Derivation of these parameters from the
information available in thermodynamic databases is
generally not yet possible. An other drawback for the
phase-field model is that a very fine grid resolution in the
diffuse interface is necessary in order to capture the interface
such that an agreement with the ‘sharp interface method’ is
obtained. This poses a severe requirement on the time-step
and hence large computation times result. This was noted in
the numerical literature by Burman et al. [22] and Javierre
et al. [23]. We also note that the use of a lower resolution
of the mesh in the diffuse interface gives qualitatively
reasonable solutions, however, from a quantitative view
the simulations do not agree with the ‘sharp interface
model’. The numerical methods to the phase-field problem
used by Burman et al. [22], MacKenzie and Robertson
[24] and Javierre et al. [23] were based on an adaptive grid
distribution so that the resolution in the interfacial region
is sufficiently fine. The use of such an adaptive grid poses
numerical problems which we avoid by modeling particle
dissolution as a Stefan problem with a sharp interface sep-
arating the adjacent phases and using the level set method
to compute the solution. The review paper by Thornton
et al. [10] presents a nice overview of the various diffuse
and sharp interface models for diffusional transformations.

Several numerical methods exist for solving Stefan prob-
lems with a sharp interface related to particle dissolution
and phase transformations. A survey on classical numerical
methods for Stefan problems is given by Crank [25]. The
most commonly used methods to solve Stefan problems
are the moving grid method and fixed grid methods. The
one-dimensional moving grid method was introduced by
Murray and Landis [26] and improved for solid state trans-
formations by Agren and Vassilev [9] and Crusius et al.
[27]. In these last papers more effort was put into global
mass conservation of the numerical solution. Segal et al.
[28] extended the moving grid method, to solve the particle
dissolution problem, to a two-dimensional Finite Element
framework. So far no three-dimensional models have been
presented involving moving grids in the metallurgical
literature.

In the present paper we employ a fixed grid in combina-
tion with the advanced level set method to capture particle
dissolution in three spatial dimensions. This method was
introduced by Osher and Sethian [29] and later described
in a general way by Sethian [30] and by Osher and Fedkiw
[31]. It was firstly applied to a Stefan problem for solidifi-
cation with two spatial dimensions by Chen et al. [32].
The level set method turns out to be very suitable for exten-
sion to problems with three spatial dimensions. The
method also allows problems with topological changes of

the phases present to be dealt with in a natural way. A
comparative study of the level set method, moving mesh
technique and phase-field method is due to Javierre et al.
[23] for one spatial co-ordinate. A comprehensive compa-
rison between the level set method and the moving grid
method for two and three-dimensional problems is pre-
sented elsewhere [33]. Although the level set method has
been applied to solidification problems several times, it
has not yet been applied to solid state phase transforma-
tions such as the dissolution of second phase particles. In
contrast to the present solid state models for particle disso-
lution which only yield shape and topology preserving
solutions, it is our aim in this paper to apply the level set
method to three-dimensional particle dissolution where
both the shape and topology of the dissolving phases are
part of the solution to be obtained. These topological
changes allow breaking up of particles in a natural way,
which is a novelty for the sharp interface (Stefan) models.
To illustrate the capability of our method of dealing with
topological changes, we apply our approach to the sphero-
idization of cementite plates in pearlite structures in steels.
The spheroidization was simulated using a modified fault
migration theory due to Tian and Kraft [34]. The micro-
scopic images of Hernandéz-Silva et al. [35] provide the
necessary experimental evidence for the occurring spheroi-
dization process.

In this study we first introduce the three-dimensional
model for particle dissolution in a binary alloy. Subse-
quently the level set method is introduced and applied to
the dissolution of pre-cracked cementite plates in a binary
Fe-C alloy. Furthermore, a discussion on the model is
presented and finally, some conclusions are drawn.

2. The model

The microstructure for this simulation is simplified into
a representative cell containing a stoichiometric B particle
with a given shape surrounded by an a-diffusive phase in
which the alloying element diffuses. Both a uniform and
spatially varying initial concentration at 1 = 0 can be dealt
with in the model. The boundary between the particle and
diffusive phase is referred to as the interface. Particle disso-
lution is assumed to proceed via the following steps:
decomposition of the particle, passage of the atoms com-
posing the particle through the interface and finally long-
distance diffusion of the atoms into the surrounding phase.
In the present paper we assume long-distance diffusion to
control the interface motion, ie. local thermodynamic
equilibrium is assumed at the interface and hence the inter-
face concentration is the concentration as predicted by the
thermodynamic phase diagram at the annealing tempera-
ture. Further, we assume that the particle concentration
is constant all over the particle and at all stages of the
dissolution process.

We denote the interface, consisting of a point, curve or a
surface for respectively a one-, two- or three-dimensional
domain of computation by S = S(z). The outer (fixed)
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boundaries of the domain of computation are denoted by
I'. Further, the domain of computation is split into the
matrix or diffusive part (the o-diffusive phase), denoted
by Q and the B-particle Q,,. The distribution of the alloying
element is determined by diffusion in the diffusive phase Q,
which gives

dc {620 ’c ¢

3 } for x € Q(¢) and 7 > 0.

(1)
Here D represents the diffusion coefficient and x denotes
the spatial position within the domain of computation. In
the present study we treat D as a constant. Within the par-
ticle the concentration is equal to a given constant, hence

t = 0. (2)

c=c™" forxe€ Q,(r) and

On the interface, S(z), we have local equilibrium, ie. the
concentration is as predicted by the thermodynamic phase
diagram, ie.

c=c" forxeS(t) and ¢>0. (3)

Further, at the outer boundary, I, we have no flux of
atoms, that is

D%:O forx e I'(f) and
on

In the above equation % denotes the outward normal deriv-

ative of ¢ on the outer boundary I'. From a local mass

balance, the equation of motion of the interface can be de-

rived, this equation is commonly referred to as the Stefan

condition, and is given by

t>0. 4)

(Pt — Ny, = D% forx € S(rf) and ¢>0. (5)
Here v, denotes the normal component of the interface
velocity outward from €. The problem is completed with
the initial concentration ¢® and the initial position of the
interface S(0). The problem, consisting of Egs. (1)—(5) is
referred to as a Stefan problem for particle dissolution or
particle growth. For the case of growth of particles, the
Gibbs-Thomson effect is important in the early stages of
growth after nucleation. The early-stage phenomena of
nucleation differ totally from the present Stefan problem.
Therefore, we do not consider particle growth in the pres-
ent study. In a future study the Gibbs—Thomson effect will
be implemented into the three-dimensional model and then
more numerical results on particle growth will be shown.

The Stefan problem presented here is solved by the use
of the level set method, which is described in the next
section.

3. The level set method

The level set method has been applied successfully to a
wide variety of problems with moving interfaces separating
adjacent phases. An example of the application of the level
set method in multi-phase flows is treated by Van der Pijl

et al. [36]. In the treatment of the level set method, we
follow many of the procedures described by Osher and
Fedkiw [31], Chen et al. [32] and Javierre et al. [33]. For
more details on numerical issues, we refer to the latter
paper. The level set method that we present here is based
on a fixed grid, that is the grid does not change due to
the movement of the interface. As before, Fick’s second
law (1) is solved by the use of a Finite Element method
in three dimensions. The interface, either a point, line or
surface in one-, two- or three-dimensional simulations
respectively, is captured by the use of the zero level set of
the so-called level set function ¢ = ¢(x,?). This function
is used as an artificial function for mathematical reasons.
Let Q be the total domain of computation including the
diffusive phase, particle as well as the interface, ie.
0=QUQ,US, then, the interface is described by

S = S(f) = {x € O for which ¢(x,) = 0}. (6)

In other words, at a time ¢ we have ¢(x,t)=
0 < xeS8(r) (ie. ¢ =0 on the interface S(¢)). This
implies, on each point of the moving interface x € S(¢), that
the following total (material) derivative of the level set
function is zero, i.e.

d¢ 0¢ dx
=%~ & &
since the level set function ¢ = 0 on the interface S(¢) at all
stages of the phase-transformation. In the above equation
f‘j—’t‘ represents the velocity of the interface at a point x on
the interface. To monitor the zero level set of the function
¢, Eq. (7) is solved over the whole domain Q with a contin-
uously extended velocity v from the interface velocity in
Eq. (7). We will come back to the continuous extension
of the velocity v later. This leads to the following convec-
tion equation for ¢ on the entire domain of computation
0:
0¢
at+v~V¢70. (8)
At time ¢ =0 the level set function ¢ is initialized as a
‘signed distance function’ by

+dist(x, S(0))

$(x,0) =40
—dist(x, S(0))

-V¢ for x € 8(), (7)

for x € Q(0),
for x € 5(0), 9)
for x € Q,(0).

By which we mean that at each point of the diffusive phase
Q2 the level set function initially is given the value of the
distance between the point and the closest initial interface
position. For the points in the particle phase €, the same
holds but then with opposite sign. On the interface the level
set function is given the initial value of zero. For the case
that v =v(x,?) is known at all times and on each location
of the computational domain Q, Eq. (8) can be solved with
the initial condition 9. In general, as time proceeds, the
level set function ¢ is no longer a distance function after
solution of Eq. (8). The level set function ¢ is used to deter-
mine the interface position, therefore ¢ has to be continu-
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ous. Further, for convenience for the discretization of the
gridpoints that neighbor the interface, the level set function
is adapted such that it is or approximates a signed distance
function at all stages of the phase-transformation. This
adaptation is referred to as re-initialization, which was
introduced by Sussman et al. [37] and applied to a Stefan
problem by Chen et al. [32]. The re-initialization procedure
relies on the solution of

oy .

= = sign(p(x,0)(1 = V¥ (x D)), (10)
in an artificial time 7, with initial condition ¥/(x,0) = ¢
(x,7). Eq. (10) guarantees that whenever ¢ =0, then,
Y =0, i.e. the zero level set of ¢ and y are the same. The
steady-state solution of the above equation is given by
IIV¥/]| = 1, which is a characteristic of a distance function.
After solution of Eq. (10) to obtain  as a signed distance
function, we set ¢ = . If necessary, this can be done at
several time-steps, see Javierre et al. [33]. There is an abun-
dant variety of solution methods of Eq. (10), see for in-
stance Osher and Fedkiw [31]. We remark that there the
re-initialization procedure is done such that within a
narrow bandwidth of several meshsizes around the inter-
face, the level set function indeed approximates a signed
distance function. It is only there where this is important.
At locations far away from the interface, only the sign of
the level set function matters.

Now the extended velocity enters the picture. The level
set function ¢ can only be transported, using Eq. (8), if
the velocity of the interface is extended continuously to
obtain v over the entire domain of computation Q. At
the interface, the velocity is determined by the Stefan
condition for the interface, see Eq. (5). Following Chen
et al. [32], this velocity is split into the x, y and z compo-
nents to serve as boundary conditions for the following
three partial differential equations for the components of
v, respectively denoted by v,, v, and v,

vy . ¢\ Ov,

o + Sign <¢a> e 0,

v, ) 0¢\ 0v,

§+Slgn<gb@)@_0, (11)
ov, . 0¢\ Ov.

o + Slgn(q&aZ) P

Here 7 represents again a pseudo-time. Note that the com-
ponents of v are given at the interface, which is used as a
boundary condition for the above equations. The above
strategy for the extension of the interface velocity onto
the whole domain of computation is referred to as the
Cartesian extension, as proposed by Chen et al. [32] for a
Stefan problem. The sign-function in the above equation
takes care of numerical convection in the proper upwind
direction.

In the present approach the diffusion Eq. (1) is solved
using a three-dimensional Galerkin Finite Element
method. The elements neighboring the interface are cut

into additional elements, this method is referred to as the
cut-cell approach. We remark that the cut-cell method
never alters the level set function. Further, when the inter-
face crosses a node, the time-stepping is adapted locally.
These issues is described in more detail in Javierre et al.
[33] since the aim of the present paper is to show the
possible applications of our model. The equations for the
level set function (8), and the extended velocity (11) are
solved using a three-dimensional first-order upwind Finite
Difference technique. The re-initialization problem (10) is
solved using a higher-order three-dimensional Finite Dif-
ference technique.

4. Metallurgical application

The metallurgical application in this section is inspired
by an AISI 52100 steel, which is widely used to make hard-
ened components such as bearings, gears, transmission
shafts, etc. due to its excellent properties. The steel contains
mainly 1.0 wt.% of carbon and 1.36 wt.% of chromium.
The diffusion of chromium is neglected in this study and
hence we treat the alloy as a binary alloy by considering
the diffusion of carbon only. In Zhao et al. [38] the diffu-
sion of carbon and chromium is treated for a dissolving
spherical cementite particle. This physically justifiable
binary assumption is made as the present model is not
yet capable of dealing with a multiple alloying elements.
In this study, we simulate the spheroidization process of
dissolving lamellar pearlite structure, which is the major
part of the soft annealing process in order to make the steel
machinable. It is worth noting that all thermodynamic data
are calculated using the MTData software. Further, we
remark that the calculations serve to illustrate our method
and not to quantitatively compute the cementite dissolu-
tion in the realistic AISI 52100 steel since the diffusion of
chromium is not incorporated in the present model due
to the binary assumption. Hence, the present calculations
are for a hypothetic alloy.

The domain of computation

/

Fig. 1. The used co-ordinate system.
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Consider a planar cementite phase surrounded by a pla-
nar ferrite matrix. The used co-ordinate framework is given
in Fig. 1. The lamellae structure of pearlite is simplified
into one cementite plate for reasons of symmetry. We con-
sider a perturbation for the planar particle in the form of a
knucklebone shape [39]. We assume that the voids in the
knuckelbone shape are filled by the ferrite phase entirely.
The configuration is shown in Fig. 2. In this section the
temperature has been chosen at 800 °C > 789 °C, which is
the finish temperature of ferrite dissolution [38], and the
plate dimensions of 0.1 x 1 x5 um? have been used. The
plate dissolves in a computational cell with dimensions
0.5x 2.4 x5 um>. Hence the initial volume fraction of the
dissolving plate is 8.33%. The model essentially deals with
the dissolution of a cementite plate in an austenite matrix.
The concentration of carbon within the cementite particle
is given by ¢’ =6.743 wt.%. Further, the initial carbon
composition in the ferrite matrix, which is ‘inherited’ by
the austenite upon its first formation, is set at 0 wt.%. We
note that the overall carbon concentration in the alloy is
less than 1.0 wt.%, which holds for the AISI 52100 steel.
We chose this in order to be able to visualize the complete

dissolution of the plates including breaking up into sub-
platelets as the dissolution process proceeds. The concen-
tration at the interface between the cementite and ferrite
phases is set equal to the value that follows from local equi-
librium at 7 = 800 °C, given by ¢/’ =0.71719 wt.%. For
the diffusion coefficient the value D = 2.98 pm?/s [40, p.
99] is used, corresponding to the temperature of 800 °C.

It can be seen in Figs. 3 and 4 that the planar particle
gradually splits up into adjacent particles and as time pro-
ceeds the particles become more and more spheroidized
and will dissolve either partly or entirely. This is an exam-
ple of a feature that can be dealt with rather easily when
using the level set method. The moving mesh method
would complicate matters very much when modeling this
phenomenon. The importance of breaking up of dissolving
phases is illustrated in the measurements by [35].

To get more insight from the simulations that have been
done for the dissolving cementite plate, cross-sectional
profiles parallel to the z-axis at consecutive times have been
plotted in Fig. 5. The displacement of the interface with
respect to its original position varies both locally (for each
sub unit in the plate) and macroscopically (edge units

Fig. 2. The initial cementite plate with a knucklebone shape.

Fig. 3. The cementite plate, initially as in Fig. 2, after 52 time-steps at ¢ = 0.009.
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Fig. 4. The cementite plate, initially as in Fig. 2, after 78 time-steps at ¢t = 0.016.

Fig. 5. An intersection parallel to the yz-plane at x = 0.95 of the interfacial position at consecutive times (¢ = 0, 0.02, 0.04 and 0.06). The most upper and
most lower curves denote the intersection at ¢ = 0 and the calculation was done for a plate with linear cracks and its thickness was adjusted to have an

initial volume fraction of 8.33%.

behave differently to center units). Furthermore, the ini-
tially non-smooth edges get rounded off during the dissolu-
tion process.

Next we present the normalized volume (V(#)/V,, where
Vy is the initial particle volume of the unperturbed plate) of
the cementite as a function of the normalized dissolution
time (#/14;ss, Where t4iss denotes the time of complete disso-
lution of the unperturbed plate) for several cases. The
results have been plotted in Fig. 6. The cases that we treat
in the order of decreasing dissolution time all start with the
same initial particle volume. The first case corresponds to
the unperturbed plate. The second case is based on a collec-
tion of 20 platelets whose thickness have been enlarged to
have the total initial volume be equal to the volume of
the unperturbed plate in case 1, that is 8.33%. The third
case represents a planar particle with linear cracks and
the plate has been made thicker (that is its size has been
enlarged in the z-direction) to have the same initial particle
volume as in case 1. The fourth and last case corresponds
to a plate perturbed with linear cracks and here the plate

has been made wider (that is its size has been enlarged in
the x-direction) to have the same initial plate volume as
in the unperturbed case, ie. the initial volume fraction is
8.33%. From the simulations it is clear that the cracks give
an acceleration of the dissolution of the cementite plate,
which is also commonly known in the metal processing
community. For the last case, where the thickness has
not been enlarged, the dissolution speed is almost three
times as large as the dissolution speed of the unperturbed
plate. Note that the thickness of the particles in case 2 is
larger than the thickness of the unperturbed plate, which
explains why the reduction of the dissolution time is rela-
tively small.

Subsequently, we present the dissolution time of several
individual particles for a set of 20 neighboring particles.
The used configuration and numbering of the particles is
sketched in Fig. 7. The dissolution kinetics are plotted in
Fig. 8 (viz. the second case in Fig. 6). Here we follow the
dissolution kinetics for an edge particle, and its first neigh-
bor and one of the central particles. Since the part of the
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Straight crack, plate widened
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0 L L S~ =+ = L L L
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Fig. 6. The volume of the cementite plate as a function of time for several
cases explained in the text.

Outer boundary H
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Fig. 7. The configuration and numbering of the dissolving isolated
particles as an intersection at z = 2.5.
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th

diss

Fig. 8. The volume of several individual cementite particles as a function
of time for the case of 20 particles (see T1) and for 16 particles in which
particles III, VIII, XIII and XVIII have been removed (see T2).

boundary of the edge particles is on a no-flux boundary
(see Fig. 7) and hence the atoms that flow out of the parti-
cle can hardly travel in the y-direction, its dissolution speed
is reduced compared to the dissolution speed of the inner
particles. This is seen in the curves indicated by T1. The
simulations of the curves labeled with T2 are done for
the case that the 3rd, 8th, 13th and 18th particles have been
removed. It can be seen that the second particle dissolves
fastest here due to the free space between the second and
fourth particles.

5. Discussion

The presently used numerical procedure has been
checked on convergence and consistency using the exact
self-similar solution for an unbounded diffusive phase,
the global mass balance and subsequent grid and time-step
refinement. Furthermore, the geometric aspects of the ini-
tial particle geometry can be put into the model. The model
is also capable of dealing with splitting of phases into
dissolving particles, occurring in several metallurgical situ-
ations. This is a key innovation with respect to earlier
models.

Of course, the model is not perfect and many improve-
ments remain to be done. It is only suitable for binary
alloys and the Gibbs-Thomson effect has not yet been
implemented either. For the case of dissolution of our stoi-
chiometric particle the effects due to the surface tension
are relatively small. However, we realize that the Gibbs—
Thomson effect may have a significant influence on the rate
of splitting of the planar phase into spheroidized particles.
Mathematically, this has been investigated by the use of
spherical harmonics as the solution of the steady-state
diffusion equation around a spherical particle by Mullins
and Sekerka [41].

Moreover, the present model is based on the assumption
of local equilibrium at the interface, i.e. the concentration
at the interface is as predicted by the thermodynamic phase
diagram. Some papers where the assumption of local equi-
librium is relaxed are due to Sietsma and van der Zwaag
[42], Svoboda et al. [43], Vuik et al. [44], Vermolen and
Van der Zwaag [45] and Nolfi et al. [6]. However, for some
cases of precipitates in metallic alloys, local equilibrium
models describe particle dissolution accurately. This has
been verified for Si particles in Aluminum alloys by Tundal
and Ryum [46] and Vermolen et al. [47]. We expect local
equilibrium to be a good approximation for some other
alloys too, of course an experimental validation is of
crucial importance here.

An approximation of the dissolution of particles in a
multi-component alloy can be constructed by the use of
the effective diffusivity and solubility as treated in [16].
However, the evolution of the interface concentrations as
time proceeds during the dissolution process is not taken
into account, so this would only serve as a zeroth order
approximation. So an extension of the present method to
multi-component alloys, in which the fluxes of the alloying
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elements in the vicinity of the interface are taken into
account, is a topic we are working on. The real multi-
component model would be capable of dealing with the
influence of other (slow) alloying elements, as chromium,
to predict more realistic dissolution times. We, however,
think that for the case of particles dissolving in binary
alloys if interfacial reactions are very fast compared to
long-distance diffusion, our model is a novel approach to
deal with three-dimensional issues of particle dissolution.
Further, our present approach allows breaking up of parti-
cles and other geometric changes to take place.

6. Conclusions

A three-dimensional sharp interface model based on the
level set method is shown to handle the complex local and
macroscopic topological changes during solid state particle
dissolution in a binary alloy. The level set method based
model offers a more realistic description of particle dissolu-
tion than the current dissolution models enforcing shape
conservation. Using physical parameters for cementite
plates during austenization of a binary Fe-C alloy, the
model illustrated the significant acceleration of the dissolu-
tion due to multiple fractures in the cementite plates, in
accordance with experimental and industrial experience.
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