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Abstract

A general numerical model is described for the dissolution kinetics of stoichiometric second phases for one-dimensional cases
in ternary systems. The model is applicable to both infinite and finite media and handles both complete and incomplete
dissolution. It is shown that the dissolution kinetics of stoichiometric multicomponent second phase particles can differ strongly
from that of the mono-element particles. The influence of the soft-impingement, ratio of the diffusion coefficients, stoichiometry,
composition and the geometry of the dissolving stoichiometric phase is shown. The model is applied to an AlMgSi-alloy. © 1998

Elsevier Science S.A. All rights reserved.
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1. Introduction

Heat treatment of metals is often necessary to opti-
mise their mechanical properties both for further pro-
cessing and for final use. During the heat treatment, the
metallurgical state of the alloy changes. This change
can either involve the phases being present or the
morphology of the various phases. Whereas the equi-
librium phases often can be predicted quite accurately
from thermodynamic models, there are no general mod-
els for microstructural changes nor general models for
the kinetics of these changes. In the latter cases both
the initial morphology and the transformation mecha-
nisms have to be specified explicitly. One of these
processes, which is both of large industrial and scientific
interest and amenable to modelling, is the dissolution of
second phase particles in a matrix with a uniform initial
composition.

To describe this particle dissolution in solid media,
several physical models for binary alloys have been
developed, incorporating the effects of long-distance
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diffusion [1-3] and non-equilibrium conditions at the
interface [4—6]. These articles did not cover the techno-
logically important dissolution of stoichiometric multi-
component particles in ternary alloys.

The phase transformations in steels for cases with a
second alloying element has been studied in [7,8]. Reiso
[9] has investigated the dissolution of Mg,Si-particles in
aluminium alloys mainly experimentally. He compared
his results with a simple dissolution model based on
analytical considerations holding for dissolving parti-
cles in infinite media. All analyses indicate that the
addition of a second alloying element can influence the
dissolution kinetics strongly.

However, none of these articles paid any attention to
the effect of the particle geometry to the dissolution of
particles in ternary alloys. The present article describes
the dissolution of spherical and needle shaped particles,
a planar medium and a segregration layer around a
sphere. In many metallurgical situations, the thermal
treatment also aims at the dissolution of the segregation
layer around the grains. The latter two geometries may
then be used to estimate the dissolution time of a
segregration layer around a grain. In the mentioned
articles no attention was drawn to the impact of all
physical parameters on the overall dissolution kinetics.
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Fig. 1. A hypothetical Gibbs-free-energy surface in the Gibbs space.

2. Basic assumptions in the model

The model is based on the concept of local equi-
librium, i.e. the interfacial concentrations are those as
predicted by thermodynamics. The thermodynamics of
the general case of a ternary alloy containing a single
intermetallic compound is illustrated in Fig. 1. The
Gibbs-free-energy of the matrix is indicated by the
convex three-dimensional surface. The Gibbs-free-en-
ergy curve of the stoichiometric compound is needle
shaped and has a very sharp minimum in point P (see
Fig. 1). Equilibria between two phases are determined
by an equal chemical potential in the phases, i.e. by a
common gradient. Each plane including point P and
tangent to the Gibbs surface of the o-phase can be
described by:

G* = c\G4 + cgGE + ccGE, (1
where G} represents the intersections of the planes with
the k-axes (k € {A, B, C}). The requirement that all
these planes include the stoichiometric phase, yields:

2

where /, m and n correspond to the stoichiometric phase
A,B,,C, and G? corresponds to the Gibbs-free-energy
of the stoichiometric compound, i.e. point P. As the
values G} are related to the Gibbs-free-energy of the
pure component via the thermodynamic activity and
for dilute solutions the laws of Henry and Raoult hold,
hence the following hyperbolic relationship holds for a
stoichiometric phase:

G? =1G% + mG% + nGg,

(cw)"(ce)" = K(T). (©)

The isothermal intersections of a ternary phase dia-
gram for two different temperatures have been sketched
in Fig. 2, in which T, < T. If the alloy composition is
such that its position is outside the regions «, f and y,
then the matrix composition can be obtained by the use
of tie-lines. Increasing the temperature imposes a trans-
lation of the lines between subsequent phases further
away from the corners of the triangle, which can imply
that given a fixed composition, a different phase may
become thermodynamically more favourable. If, after
increasing the temperature such that the composition
falls into one of the regions «, f or y, then the second
phase dissolves.

The ternary phase diagrams can predict quite accu-
rately which phase and to what amount it will dissolve;
they, however, can not predict the dissolution rate. An
hypothetical case of an isothermal section of a ternary
phase diagram is shown in Fig. 2.

For convenience, an alloy is considered with a com-
position near point A. Suppose that this composition
falls into the three phase region « + f + y for the initial
temperature 7, and suppose that the alloy is heated up
to temperature 7, such that the alloy composition falls
into region «. Assuming diffusion to be the only rate-
controlling process, then the interfacial concentrations
have to be maximal. Therefore, the interfacial concen-
trations of both alloying elements then have to lie on
curve k. Having two unknown interfacial concentra-
tions to be determined, an additional constraint is
needed for a unique determination of these concentra-
tions. In many situations, the particles remain stoichio-
metric during dissolution [9], i.e. the translation of the
interface due to both alloying elements is equal, result-
ing in:
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Fig. 2. An isothermal intersection of a hypothetical ternary phase diagram.
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where ¢§ and c¢£ remain constant during the entire
dissolution process, D; represents the diffusion coeffi-
cient of the ith alloying element in the alloy, c# repre-
sents the concentration of the ith element inside the
particle and ¢! is the interfacial concentration of the ith
element (i € {B, C}). Eq. (4) requires the knowledge of
the concentration profile as to be obtained by the
integration of Fick’s Second Law for multicomponent
diffusion. The basic formulation of Fick’s Second Law
describing multicomponent diffusion reads as [10,11]:
n—1
Dy 'S by o, 5)

ot i
where ¢;(r, t) denotes the concentration of the ith ele-
ment at position r and time ¢ and D, represents the
diffusion coefficients. The use of Eq. (4) combined with
Eq. (3) yields sufficient boundary conditions at the
interface.

For the most technologically interesting situations,
the cross-diffusion coefficients D; are negligible com-
pared with the ‘diagonal’ diffusion coefficients D,,. Due
to the lack of knowledge about the relationship be-
tween the diffusion coefficient and the matrix composi-
tion, the diffusion coefficient is taken to be independent
of the matrix composition.

3. The numerical treatment

For each time step, the diffusion equation for both

alloying elements has to be solved simultaneously. As a
result of Eq. (4), the problem is non-linear. Therefore,
an iterative method has to be used to solve this
problem.

To provide a clear description of the iteration
method, the description of the algorithm is split into a
description of the solution method of the moving
boundary problem and a subsequent description of the
determination of the interfacial concentrations of both
alloying elements.

3.1. The solution of the moving boundary problem

The numerical approach of the moving boundary
problem for each diffusion equation has been carried
out for a planar, cylindrical and spherical geometry and
a spherical segregation layer around a spherical grain.
For all these ideal geometries, the problem is reduced to
a one-dimensional problem. Numerically these ge-
ometries only differ in the exponential factor of the
position (which can be seen easily by a simple mass-
balance).

When evaluating the interfacial position at each time
step during the iteration process, a new initial boundary
value problem is solved, in which the initial condition is
given by the concentration that was evaluated at the
last iteration. A finite difference method is applicable
since the concentration profile in the matrix is continu-
ous, at least up to the second derivative of position and
the first derivative of time. The mesh is adjusted after
each iteration such that the Oth mesh-surface coincides
with the interfacial position. This has been done for the
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Fig. 3. The dissolution kinetics of a spherical stoichiometric particle for different R, /R,-ratios: The interfacial concentrations (a) and the
concentrations at the cell edge (b) of both alloying elements and the particle radius (c) as a function of time.

following reasons: (1) the interface can be used as a
mesh-surface, which can be used in the boundary condi-
tion at the interface and (2) the mesh is enlarged after
each iteration. As the error smoothes out with iteration
time and the absolute value of the concentration gradi-
ents decreases with iteration time, it is beneficial to have
a coarser mesh which allows a higher computational
speed.

The numerical procedure is also based on a mass-bal-
ance in each mesh-surface. This is to avoid the occurrence
of singularities for curved surfaces as the particle size

tends to zero or at the grain centre when describing the
dissolution of a spherical segregation layer. For reasons
of accuracy, a virtual gridpoint has been used behind the
interfacial position and behind the cell edge or the grain
centre. The introduction of the virtual gridpoints guaran-
tees an overall accuracy of O(dr?), also at the boundaries.
To avoid instability as much as possible, an implicit
discretisation scheme has been chosen.

As the mesh is moving, the evaluation of the concen-
tration profile can be summarised to proceed according
to the following coarse algorithm:
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Fig. 3. (Continued)

1. The concentration profile at all mesh-surfaces is
evaluated according to the diffusion equation using
an implicit method from the former iteration.

2. The Stefan-condition at the interface is applied,
causing a movement of the interface.

3. Distribution of the new mesh-surfaces, i.e. creation
of the new mesh such that the Oth mesh-surface
coincides with the moving boundary.

4. Determination of the concentration at the new
mesh-surfaces by linear interpolation (a convective
derivative yields the same results and is more suit-
able for two-/three-dimensional moving boundary
problems).

5. Return to step 1, until the phase has dissolved.

Under the assumption that the diffusion coefficient
is independent on the composition, Fick’s Second

Law, i.e. the diffusion equation for one-dimensional

geometries, is generally given by:

dc,(r, 1) B &3 pa dc,(r, 1)
or  reor or

aei{0,1,2}, pe{B,C}, (6)

where a is a geometric parameter, which equals 0, 1
and 2 for, respectively, planar, cylindrical and spheri-
cal geometries. In the remainder of this subsection the
equations of the discretisation will be given, in these
equations i refers to the mesh-surface and j refers to
the time step. The subscript p, denoting the alloying
element p, will be omitted in the remainder of this
section. Moreover, the following definitions have been
used:

R —R/
Ar;=—=
n
r/=R+i- Ar
. (7

Wi — ) %
1 1 2
. - Ar;
Ej_ 4]y —J
rl l+ 2

Here R and R, respectively, refer to the interfacial
position and to the cell radius. Algebraically, the dis-
cretisation can be formulated as follows, for the bulk
material:

Loy ey
DAt (rij+l)aAr]2+l (VIJ+I)GAVJZ+1 '
_ (rl.Wsj+ l)a Cj+ll B (r[E,j+ l)a c!‘:ll
— =/ e C
(rijJrl)aAr/ngl (rij+l) Arﬁrl
1 S A .
= ¢/ +—+ — @it —rf 8
DAt{ 2Ar, ) ®)
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(r(g/V’jJrl)“ A (rg’jJrl)a c_/'+1

SO AT T YA
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1
{CH' (rg*'—rd

2Ar, 0 °
1 E,j+ I\a )
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(rg* l)aArszr 1
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Fig. 4. The dissolution kinetics of a spherical stoichiometric particle for different D,/D, ratios. The interfacial concentrations of both alloying

elements (a), the particle radius (b) as a function of time.

The previous equation is not necessary for the com-
putation of the concentration profile in the bulk mate-
rial but it is used to determine the concentration
gradient at the interface which is used to determine the
interfacial velocity. In the vicinity of the interface we
have:

1 N (.V 1VV,,]‘+ l)u (-},.IE,_/HL l)a C‘i+ .
DA: Az, var S
GRSy ey

- =5
R I AR U v

c{—cf

1 .
_ J
+DAZ{CI+ Ar;

J

! —r«o}
(10)

and at the cell edge:

Ly
{DAI (r T Ar;

(1 1y
e A,

Into Egs. (9) and (10) the boundary conditions ¢§ =
¢{ and ¢;_,=c¢;j, have been substituted.

For the case of a layer of segregation around a
spherical grain, the numbering is reversed and low
numbers correspond to grid surfaces near the layer of

segregation. The above equations are maintained except
the following:

CE ]
AT
(1

. ¢}
. jrl— 2 11
(V,4+1)aA}’jg+l}cn_] DAt ( )




F. Vermolen et al. / Materials Science and Engineering A246 (1998) 93—103 99

r/=R.—(R/+i- Ar)

) - Ar;

W.j—pJjy —J

Tt (12)
Arj

E,j
i

~,

ril=r

2

The above system of linear equations that result from
the finite difference discretisation can be arranged into
a matrix equation, which can be solved using a three
diagonal pivoting algorithm.

3.2. The determination of the interfacial concentrations

The solid solubilities of both alloying elements are
linked by ternary phase diagrams, their relationship can
considered as approximately hyperbolic, i.e. by Eq. (3).
This must hold at the same time as Eq. (4). As the
concentration profiles of both alloying elements depend
on the interfacial concentrations, the concentration gra-
dients of the elements also depend on the interfacial
concentration. Hence, we are faced with the following
non-linear problem:

Dy ¢l —cllcp) e - nlrg .
De cf—ch [Fee- 1]k

From the combination of the initial boundary value
problems and the relationship between both interfacial
conditions for both elements it is clear that V¢ - n and
Ve - nalso depend on the interfacial concentration c¢4.
S(t) denotes the interfacial position at time ¢. So the
problem has been reduced to obtaining a root for the
above function f. No discontinuities, nor any singulari-
ties are to be expected for this function. Setting c¢§ very
large minimises c&, maximises Veg - n and sets Vee - n
very negative, then /> 0, for the case of setting c§ such
that Veg - n is sufficiently small, it follows that f<O0.
For this continuous real function, it follows that at
least one real root exists. To solve the above equation,
a ‘discrete Newton Raphson’ iteration scheme is pro-
posed and described in the remainder of this section.

The analytical approximate solution for the interfa-
cial concentrations for the infinite planar medium in
which a particle dissolves [9] can be used as the initial
value for the iteration procedure at time ¢ =0 + d¢. For
the subsequent times, the interfacial concentrations
from the former iteration are used. These initial guesses
that are put into the iteration process, guarantee a fast
iteration process. As the function f can only be evalu-
ated at discrete values of ¢4, the function is evaluated at
ck—e¢ ¢k and ch + ¢, for £> 0, obtaining the following
iteration scheme, with an accuracy for the differentia-
tion of f with respect to ¢4 of O(&?):

Iterate:

few) =

1=0. (13)

2¢f (c(p))
f (i) + &) —f(cilp) — &)

In which the concentration profiles of both elements
have to be evaluated at each iteration step, p, until
lch(p + 1) — ch(p)| <& corresponding to [f (ch(p))| <
d(e) =|f (chp) + &) —f (ch(p) — )|/2.

¢ Is a measure for the accuracy for c%, the interfacial
concentrations and J(¢) is a measure for the deviation
of f from zero, which depends on ¢ From a numerical
point of view, it is important to note that ¢ has to be
sufficiently small but beyond the accuracy of the nu-
merical scheme to evaluate the concentration. In most
cases, the above iteration scheme converged within four
iteration steps.

cp(p+1) = cp(p) —

4. Results of computations

To observe the behaviour of the dissolution kinetics
due to the addition of a second alloying element, a few
sets of calculations have been carried out using the
algorithm described in the previous section. In the first
set of calculations, the influence of the ratio of the cell
radius and the initial particle size on the dissolution
kinetics has been investigated. The ratio D./Dy has
been set equal to 10, in which the diffusion coefficient
of the first element has been set equal to the diffusion
coefficient of Si according to Fujikawa [12] for 803 K
and the solubility product K(7T) has been set equal to
0.35. The initial matrix concentration has been set
equal to zero for both elements and the stoichiometry
has been set BC. The calculated results are shown in
Fig. 3 for spherical geometry.

In Fig. 3(a) the interfacial concentrations of both
elements have been plotted as a function of the dissolu-
tion time. From Fig. 3(a) it can be seen that the
interfacial concentrations diverge from each other dur-
ing the first stages of the dissolution process. In the
calculations, diffusion has been assumed to be the rate
determining step.

This means that the interfacial reactions, like the
decomposition of the intermetallic compound in the
particle, are assumed to proceed infinitely fast for both
elements. To maintain the stoichiometry of the particle,
the number of atoms of both elements leaving the
particle are uniquely coupled. For the case in Fig. 3, in
which the weight percentages of both eclements are
equal, the number of atoms leaving the particle is
similar for both elements. The atoms of the faster
element move away very fast from the particle, while
the sluggish atoms move slowly away from the particle.
Due to the slow atomic movement of the sluggish
element, the slower atoms accumulate at the interface
as the interfacial area decreases, whereas the faster
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Fig. 5. The dissolution kinetics of a spherical stoichiometric particle for different stoichiometries. The interfacial concentrations of both alloying

elements (a) and the particle radius (b) as a function of time.

atoms move rapidly deeper into the matrix. This causes
the diverging behaviour between both interfacial con-
centrations in the early stages of the dissolution
process.

As dissolution proceeds, the faster atoms accumulate
at the cell edge, the concentration gradients at the
interface of both alloying elements decrease. As the
interfacial reactions are assumed to proceed infinitely
fast and the diffusion rate is lowered due to the accu-
mulation of the alloying atoms at the cell edge, espe-
cially of the faster atoms now, an accumulation of the
faster atoms at the interface results. Thereby and due to

the maintainance of the particle stoichiometry, the in-
terfacial concentrations converge towards each other.
This effect becomes more pronounced for smaller R./R,
ratios. Fig. 3(b) displays the normalised particle radius
as a function of time for different R./R, ratios. This, in
combination with the accumulation of the sluggish
atoms at the interface during the early stages of the
dissolution process, causes the global extrema for the
interfacial concentrations for both alloying elements.

For a further investigation of the occurrence of the
influence from the addition of a second element, a set
of calculations has been carried out for the case that
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R_./R, =8 and for different values of D/Dyg. The disso-
lution kinetics for the case of a AlMg-based alloy are
shown in Fig. 4. For this case B= Mg, i.e. Dy = Dy,
and C is the additional alloying element.

Again the particle stoichiometry was BC and the
initial matrix concentrations was for both elements 0.
The solubility product was again 0.35. Curve I corre-
sponds to the case that the second element is Si. The
diffusion coefficient of Si is =~ 0.67-times the diffusion
coefficient of Mg. For the diffusion coefficient of Mg,
the diffusion coefficient of Yamane [13], corresponding
to 803 K, has been used. Curve II corresponds to the

case that the diffusion coefficient of the second alloying
element equals the diffusion coefficient of Mg, i.e. this
case corresponds to a binary alloy. Curves III and IV,
respectively, correspond to the cases that the diffusion
of the second element equals 5- and 10-times the diffu-
sion coefficient of Mg. It is observed that the dissolu-
tion times do not depend linearly on the diffusion
coefficient of the second element.

Due to the addition of a second faster element, the
interfacial concentration of the sluggish element is
rather large (see Fig. 4(a)), causing a larger absolute
value of its concentration gradient. This causes a higher
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overall composition is 0.34 mass% Si and 0.54 mass% Mg.

effective driving force for the dissolution of the sluggish
element and thus an enhancement of the dissolution
kinetics. Thereby, the dissolution kinetics are enhanced
by the addition of a faster element (see Fig. 4(b)).

The next numerical experiment considers the influ-
ence of the stoichoimetry of the dissolving particle. It
has been assumed here that the solubility product does
not change with stoichoimetry, i.e. the Gibbs-free-ener-
gies of the pure alloying elements are equal. The results
have been plotted in Fig. 5.

All curves correspond to the same ratio of the diffu-
sion coefficients: Do/Dy = 10. The stoichoimetries have
been varied such that cf =10, 35 and 50 wt.%. The
calculations have been done for the spherical geometry
with initial particle radius of 1 pm and a cell radius 10
pm. The solubility product was 0.35 and the initial
matrix concentrations of both elements was set at zero.
The interfacial concentrations of both elements have
been plotted as a function of time in Fig. 5(a). For this
cell size, the concentrations at the cell size have not
changed very much. Therefore, the diverging behaviour
of the interfacial concentrations can be observed exept
for the case of ¢ = 10, here the curves even intersect.
From the theory of Reiso for the dissolution of a
binary precipitate in an infinite medium ([9]: page 523),
two approximate limits can be deduced for the ratio of
the interfacial concentrations of both elements:

Table 1
The cell sizes for the different geometries

Curve 1 I 111 v

Cell size (um) 5 11.5 125 373

Dok ¢ Deck
Zefs b b (14)
Dgct ¢t Dycl

The lower and higher limit, respectively, correspond
to the initial and final stages of the dissolution process.
From this it follows that the ratio of the interfacial
concentrations for the case that the ratio of diffusion
coefficients Do/Dy =10 and the stoichiometry of 1/9
(here the concentration of the faster element in the
particle is largest), that here the limits for the ratio of
the interfacial concentrations are given by approxi-
mately 0.35 and 1.11, explaning that an intersection
behaviour of the corresponding curves. For this case it
can also be observed that the interfacial concentration
of the fast eclement now starts beyond the interfacial
concentration of the slow element. This may be ex-
plained as follows: due to a much larger amount of fast
atoms leaving the particle to maintain the particle
stoichiometry. In the later stages of the dissolution
process, the atoms at the interface of the faster atoms
diffuse into the matrix very rapidly, causing a decrease
of the interfacial concentration of the faster element. As
the slower atoms are accumulated at the interface, their
interfacial concentration therefore increases. For stoi-
chiometries with either, relatively, many A or B atoms,
the dissolution kinetics approach the dissolution kinet-
ics of a unary precipitate.

Fig. 6 considers the influence of the initial matrix
composition on the dissolution kinetics. The calcula-
tions have been carried out for R./R, =8 (R,=1 pum)
and Do/Dg=15. The solubility product, K(T'), was set
at 0.35. The matrix composition has been varied such
that all curves correspond to the same total amount of
alloying elements. Thereby, the stoichiometry in the
matrix varies and the overall composition of alloying
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elements in the alloy is either stoichiometric or non-sto-
ichiometric. At the very early stages of the dissolution
process, we have:

dR(t) ch Cp—CE DB DC
dr ch—ch\ = c’*—cc (15

and of coarse between the interfacial concentrations,
the hyperbolic relationship holds (viz. Eq. (3)). For
these cases, that the total amount of alloying elements
is similar, it can be proven that the derivatives of both
(c B(c’") —c%) and cf with respect to ¢y are positive. As

cf > ck, it can be seen from the last equation that the
dlssolutlon kinetics will be more rapid for a larger
amount of sluggish alloying element in the total compo-
sition, as long as the particle remains stoichiometric.

5. Application to an AISiMg-alloy

The described algorithm has been applied to the
dissolution of a stoichiometric Mg,Si-phase. In com-
mercial alloys, this phase may have different ge-
ometries. The phase can either be present in the grain,
except in the precipitate free zone near the grain
boundary, or at the grain boundary. The dissolution
kinetics of the Mg,Si-phase at the grain boundary can
be approximated one-dimensionally either by a spheri-
cal segregation layer around a grain or by an infinite
plate of finite thickness. Both approaches provide a
higher and lower limit of the dissolution time.

The Mg,Si-phase may also be present in the form of
needles. For this case to be one-dimensional, the disso-
lution kinetics of the needles have been approximated
by an infinitely long cylinder. Here it has been assumed
that dissolution proceeds radially. However, due to
surface tension effects, especially at the very sharp
angle of the cylinder, the decrease of the cylinder length
of the Mg,Si-phase might be important as well.

For the cases that an AlMgSi-alloy has been cooled
very slowly, the precipitates may be large and have a
rounded geometry. A comparison in the dissolution
kinetics for all these one-dimensional geometries has
been given in Fig. 7.

All curves correspond to the same initial size of the
dissolving stoichiometric Mg,Si-phase of 1 um, dissolu-
tion temperature of 803 K and same composition (0.34

mass% Si and 0.54 mass% Mg) and solubility product,
K(T)=0.35. The values of the cell sizes are given in
Table 1. The initial matrix concentrations of Si and Mg
have, respectively, been set equal to 0.06 and 0.025
mass%o.

For the cases of a spherical and cylindrical shape of
the Mg,Si-phase, the dissolution kinetics are enhanced
by the decrease of the free surface. However, for the
case of a spherical segregation layer, the dissolution
kinetics are delayed as a result of an increase of the free
surface and the increasing difficulty for the alloying
elements to diffuse deeper into the aluminium matrix.

6. Conclusions

A model has been developed suitably for the dissolu-
tion of a stoichiometric phase in a ternary alloy. It is
shown quantitatively that the dissolution kinetics of a
stoichiometric phase in a ternary alloy is determined by
physical parameters (the diffusion coefficient of both
alloying elements, solid solubities, particle composition
and stoichiometry), compositional parameters (the ratio
of the cell size and the initial particle radius, initial
matrix concentrations of both element) and particle
geometry (spherical, cylindrical, planar or a spherical
layer of segregation).
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