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Abstract

A numerical analysis of the homogenisation treatment of aluminium alloys under industrial circumstances is presented. The
basis of this study is a mathematical model which is applicable to the dissolution of stoichiometric multicomponent phases in
both finite and infinite ternary media. It handles both complete and incomplete particle dissolution as well as the subsequent
homogenisation of the matrix. The precipitate volume fraction and matrix homogeneity are followed during the entire
homogenisation treatment. First, the influence of the metallurgical parameters, such as particle size distribution, initial matrix
concentration profile and particle geometry on the dissolution- and matrix homogeneity kinetics is analysed. Then, the impact
of the heating-rate and local temperature on the homogenisation kinetics is investigated. Conclusions for an optimal ho-
mogenisation treatment of aluminium alloys may be drawn. The model presented is general but the calculations were
performed for the system Al–Mg–Si with an Al-rich matrix and Mg2Si-precipitates. © 1998 Elsevier Science S.A. All rights
reserved.
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1. Introduction

The as-cast microstructure of commercial AlMgSi-
alloys contains many inhomogeneities such as segrega-
tion (concentration gradients), secondary phases and
grain size variations. These secondary phases may be
present as needle-shaped Al–Fe–Mg–Si compounds
or as Mg2Si-phases. Due to these inhomogeneities the
mechanical properties may vary greatly throughout
the alloy. This variation in microstructure and local
composition may cause heat cracking or other mate-
rial failures during hot-extrusion of billets of such
extrusion alloys.

To prevent this material failure during hot-extrusion
and to facilitate the extrusion process, the as-cast al-

loys are annealed at a temperature just below their
eutectic temperature. This thermal treatment, called
the homogenisation treatment, aims at the elimination
of the microstructural segregation in the AlMgSi-al-
loy. Stable needle-shaped precipitates may transform
into more rounded particles and unstable secondary
phases may dissolve partly or entirely. Using thermo-
dynamic models, it is possible to predict the equi-
librium of all phases in the microstructure of the alloy
at the end of the homogenisation treatment. However,
these models cannot be used to predict the rate at
which the microstructural changes occur. The present
study comprises an analysis of the rate at which the
most important secondary phases in Al-extrusion al-
loys, Mg2Si-phases, dissolve under industrial circum-
stances.

To describe this particle dissolution in solid binary
alloys several physical models have been developed,
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incorporating the effects of long-distance diffusion [1–
5] and non-equilibrium conditions at the interface [6–
9]. These models do not consider the technologically
important dissolution of stoichiometric multicompo-
nent particles in ternary alloys.

The phase transformations in iron-based ternary al-
loys have been studied in Refs. [10,11]. Hubert et al.
[12] considered the precipitation of stoichiometric
MnS and AlN compounds in steels. Their analysis
was carried out to predict the size of the precipitates
during hot-rolling of steel. The dissolution of Mg2Si-
particles in aluminium alloys has been studied mainly
experimentally [13–15]. Reiso et al. [13] compared
their results to a simple dissolution model for dissolv-
ing particles in infinite media. Kaneko et al. [14]
analysed the amount of Mg2Si-precipitates present in
aluminium for different thermal treatments. Their ob-
servations were based on measurements of electrical
resistivity during the thermal profile. Lodgård et al.
[15] analysed precipitation using electrical resistivity
measurements as well. Moreover they analysed the
complex precipitation sequence of Mg2Si in alu-
minium. The influence of the particle stoichiometry,
geometry, composition and ratio of the diffusivities of
both alloying elements was studied numerically in
Ref. [16]. That model has also been used for the
determination of the simultaneous dissolution kinetics
of a particle and a layer of a secondary intermetallic
phase at the grain boundary and the subsequent ho-
mogenisation of the matrix in terms of vanishing con-
centration gradients [17].

However, apart from Hubert’s study [12], in none
of these studies was the influence of the temperature
gradients in the furnace on the kinetics of the dissolu-
tion of secondary phases during the heat treatment
investigated explicitly. Moreover, the matrix homo-
geneity during and after the secondary phase dissolu-
tion and the effects of the presence of initial
concentration gradients in the matrix prior to the heat
treatment were not investigated in either of these
studies. The present paper takes into account all these
parameters and can be used to determine the effects
of the grain–particle size distribution, heat-up rate,
homogenisation temperature and initial concentration
profiles on the dissolution rates of the secondary
phases as well as on the subsequent homogenisation
of the matrix.

The model assumptions will be briefly described in
the next section which deals with the physical defini-
tion of the problem, its mathematical formulation and
the numerical solution procedure. Subsequently, the
results of the calculations will be shown to reveal the
influence of some industrial parameters. Finally, some
conclusions will be drawn from the calculations.

2. The model

Consider a ternary AlMgSi-alloy as a collection of
unequally sized Al-rich grains each surrounded by a
layer of Mg2Si along the grain boundary. To reduce
this to a one-dimensional problem the grains are as-
sumed to be spherical. The logarithm of the radius of
the grain is assumed to be normally divided [3,18–20].
Hence the probability density function for the grain
radius M2 is:

F(M2, m, s2)=
1


2p ln (s)M2

×exp
�

−
(ln (M2)− ln (m))2

2(ln (s))2

�
. (1)

Here m and s represent the geometric mean and
S.D. of the grain radius, respectively. The probability
density function of the grain size is subsequently di-
vided into n discrete classes to facilitate later calcula-
tions. From a mathematical analysis of the
discretisation of the continuous distribution function
with equal class widths DM2=M. 2/n, with M. 2 the up-
per bound of the confidence interval of 0.99 (i.e.
	M. 2

0 F(M2, m, s2) dM2=0.99), it appeared that the dis-
cretisation error was negligible for n]20. The Mg2Si-
layer thickness for each grain radius M2 was chosen
such that the average concentration of the two alloy-
ing elements Mg and Si is identical for all grains.
Moreover, the initial concentration of Mg and Si in
the matrix of each grain were taken to be uniform for
all grains. In each grain, containing a Mg2Si-com-
pound layer at the grain boundary, the diffusion
equation (Fick’s second law) is solved and the rate of
dissolution is calculated accordingly. After the dissolu-
tion of a layer, the kinetics of the subsequent flatten-
ing of the concentration profile is calculated too.

Mathematically, second phase dissolution in solid
state alloys is considered as a diffusion problem with
a moving boundary, i.e. a Stefan problem. Second
phase dissolution is assumed to proceed sequentially
by the decomposition of the (intermetallic) compound,
the crossing of the interface and long-range diffusion
by the solute atoms. For the cases considered in this
paper it is assumed that diffusion is very sluggish
relative to the preceding steps, from which it follows
that diffusion determines the rate of secondary phase
dissolution and local (thermodynamic) equilibrium is
maintained at the moving boundary at all stages dur-
ing dissolution. Hence, a Dirichlet boundary condition
applies at the moving particle–matrix interface.

2.1. The underlying mathematical assumptions for each
grain

Each grain is considered as a system with a second
phase consisting of two chemical elements at the grain
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boundary of an Al-rich matrix in which the chemical
elements of the compound are partially soluble. The
initial concentration in the matrix of alloying element p
is cp

0(r) and the concentration of alloying element p in
the secondary phase is denoted as cp

part. When the
temperature is increased dissolution of the secondary
phase sets in, if cp

part\cp [S(t), t ]\cp
0[S(0)], where

cp [S(t), t ] is the equilibrium condition of element p at
the moving interface S(t).

Within the surrounding matrix in which the diffusion
takes place, G(t), at all times the concentration of
alloying element p at distance r from the grain centre at
time t, cp(r, t), satisfies the one-dimensional diffusion
equation (a=0 for planar geometry, a=1 for cylindri-
cal geometry, a=2 for spherical geometry):

(cp(r, t)
(t

=
Dp(T)

ra

(

(r
!

ra (cp(r, t)
(r

"
Ö(r, t)�G(t)×�0, tmax�, (2)

where Dp(T) denotes the temperature dependent diffu-
sion coefficient of the alloying element through the
matrix and tmax is the maximum time considered. The
above equation is valid for both the situation when the
particle is present and the situation when the particle is
fully dissolved. For the case of a dissolving secondary
phase at the grain boundary, we have G(t)={r�R �05
r5S(t)5M2} and for the case of a dissolving particle
in the grain centre, we have G(t)={r�R �05S(t)5r5
M2}. M2 represents the grain boundary. The grain
centre r=0 is indicated by M1. For cp(r, t) continuous
at least up to the second derivative with respect to r in
G(t) and the first derivative of t, the solution of Eq. (2)
with appropriate boundary and initial conditions is
unique. It has been proven by Protter and Weinberger
[21] that solutions of Eq. (2) satisfy the maximum
principle, i.e. the global extremes of cp(r, t) either occur
at the boundaries and/or for t=0. In the calculations,
for which the results are presented here, the matrix
material is taken to be Al, which has a partial solubility
for Mg and Si, and the compound layer is taken to be
composed of Mg2Si. The binary diffusion coefficients of
Si and Mg in Al are taken, respectively, from Fujikawa
[22] and Yamane [23]. The cross-diffusion coefficients,
as well as the dependency of the diffusion coefficients
on the concentration, are neglected for lack of knowl-
edge about these parameters.

In the calculations the initial Mg and Si concentra-
tions in the matrix have been varied. The initial concen-
trations are taken to be uniform, unless stated
otherwise. The concentration profiles in the matrix at
the start of the calculation, G(0), need not be uniform
but may vary with position as:

cp(r, 0)=c0
p(r) Ör�G(0). (3)

In the later stages of the homogenisation process, the
secondary phase can get fully dissolved. Hence, S(it)
coincides with the outer cell boundary M2 or with the
grain centre M1=0, respectively, for the case of a
dissolving secondary phase layer at the grain boundary
and a dissolving particle at the grain centre. No flux of
either alloying elements is assumed through a fixed
boundary, resulting in a homogeneous Neumann
boundary condition at a fixed boundary (which may
either be the centre and/or the outer boundary):

(cp(Mm, t)
(r

=0 Öt��0, t�, m�{1, 2}. (4)

If only diffusion in the matrix determines the rate of
dissolution, it follows from thermodynamic consider-
ations [16] that, for a stoichiometric Mg2Si-particle, the
concentrations of both alloying elements at the moving
Dirichlet boundary, cp [S(t), t ] (p�{Mg, Si},), are cou-
pled by the following hyperbolic relation:

(cSi[S(t), t ])(cMg[S(t), t ])2=K(T) Öt��0, tmax�. (5)

The factor K(T) is the solubility product. It depends
on temperature according to then Arrhenius relation-
ship.

The interface between the second phase and sur-
rounding matrix, S(t), moves due to the balance of the
atoms of alloying element p at the interface. For the
case that the second phase remains stoichiometric, this
yields the following relationship for the interfacial ve-
locity and interfacial gradients:

dS(t)
dt

=
DSi

cpart
Si −cSi[S(t), t ]

(cSi[S(t), t ]
(r

=
DMg

cpart
Mg −cMg[S(t), t ]

(cMg[S(t), t ]
(r

,

provided that cpart
p −cp [S(t), t ]"0, Öt��0, tmax�. (6)

The above set of equations, Eqs. (2)–(6), constitute a
classical Stefan problem [24] which consists of two
diffusion problems with coupled Dirichlet conditions at
the moving boundary. We thus have to find two con-
centration profiles cp(r, t) such that Eqs. (2)–(6) are
satisfied at all times.

2.2. The numerical solution procedure

Various numerical methods for solving Stefan prob-
lems are known. Crank [24] roughly distinguishes three
types of methods: the front-tracking, front fixing and
fixed-domain methods. In this paper a front tracking
method is applied.The algorithm for each time-step is
summarised as follows: For the interfacial concentra-
tion of one alloying element, say cMg[S(t), t ], a starting
value is chosen: cMg

0 [S(0)]BcMg[S(t), t ]�cMg
part. The in-

terfacial concentration of the other alloying element,
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Fig. 1. The normalised volume fraction of the Mg2Si-layer, the concentrations (in mass%) at the moving boundary, cp [S(t), t ], and grain centre,
cp(0, t), of both alloying elements. The homogenisation temperature was reached at t833=8.66 ks. V(t) and V0 correspond to the volume of the
Mg2Si-layer at time t and to the initial volume of the Mg2Si-layer, respectively.

Fig. 2. The evolution of the normalised Mg2Si volume and the inhomogeneity parameter as a function of time. t833 Indicates the time at which
the homogenisation temperature of 833 K (t833=8.66 ks) was reached.

(corresponding to a Mg2Si thickness of 0.254×10−6

m).
The results for the dissolution kinetics and the inho-

mogeneity parameter for this reference system are
shown in Figs. 1 and 2. Fig. 1 indicates the behaviour
of the normalised Mg2Si volume, the concentrations of
Mg and Si at the moving boundary between the Mg2Si-
layer and the matrix and the concentrations of both

alloying elements at the grain centre. V(t) and V0

correspond to the volume of the Mg2Si-layer at time t
and to the initial volume of the Mg2Si-layer,
respectively.

At the very early stages, as shown in Fig. 1, hardly
anything happens; all parameters remain constant. This
is due to the very low concentration gradients (resulting
from a low solubility product) and low diffusion coeffi-
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Fig. 3. The influence of the geometric mean of the grain size on the dissolution kinetics of a spherical layer of Mg2Si. The geometric S.D. is 1.1.
t833=8.66 ks Indicates the time at which the homogenisation temperature of 833 K was reached.

Fig. 4. The influence of the geometric mean of the grain size on the evolution of the inhomogeneity parameter in case of dissolution of a spherical
Mg2Si-layer. The geometric S.D. is 1.1. The homogenisation temperature was reached after t833=8.66 ks.

cients at the lower temperatures. From Eq. (6) it then
follows that the displacement of the moving boundary
is approximately zero. As the temperature increases, the
solubility product and diffusion coefficients increase
too. Then, the interfacial concentrations start to in-
crease and the Mg2Si-compound layer starts to dissolve.
The atoms that diffuse from the compound layer into
the grain have not reached the grain centre yet, so the
concentrations at the grain centre remain equal to the

initial concentrations. When the temperature has
reached the homogenisation temperature, the concen-
trations at the moving boundary remain almost con-
stant and a discontinuity of the derivative in the
interfacial concentrations results at the moment of tem-
perature fixation. As the layer dissolution proceeds, the
atoms from the compound layer start to reach the grain
centre and accumulate there. Hence the concentrations
of the alloying elements at the grain centre start to
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increase. Due to a larger diffusivity of Si at 833 K, the
Si atoms accumulate at the grain centre before the Mg
atoms do. At a later stage, t=11 ks, the compound
layer dissolves entirely [S(t)=M2] and the Dirichlet
condition at the moving boundary changes into a ho-
mogeneous Neumann boundary. Now, the concentra-
tions at this fixed boundary start to decrease, causing a
strong discontinuity for the time derivative of the inter-
facial concentrations. The concentrations at the grain
centre are not affected by this discontinuity. At the
later stages after the dissolution of the compound layer
the concentration profiles flatten and, for each alloying
element, the concentrations at the grain centre and the
outer grain boundary converge to each other.

Fig. 2 shows the evolution of the normalised Mg2Si-
layer volume and the inhomogeneity parameter as
defined in Eq. (7). The inhomogeneity parameter for
this case is initially zero as the equilibrium state was
used as the starting condition and the initial concentra-

3.2. The effect of the shape of the statistical particle
size distribution

Due to the nature of the solidification process, the
microstructure may differ over the cross-section of the
billet. The differences may be either in solute concentra-
tions or in particle size distribution. Therefore, the
influences of the particle size distribution on the dissolu-
tion and homogenisation kinetics were investigated. The
analysis has been done by variation of the mean grain
size and the S.D. of the grain size. To enable direct
comparison with the behaviour of the monodisperse
reference system, all analyses correspond to the same
initial Mg2Si volume fraction, the same overall alloy
concentrations and same time–temperature profiles as in
the reference system from the preceding paragraph.

In order to deal with the grain size distribution in a
proper way, the definition of the inhomogeneity parame-
ter (Eq. (9)) is adjusted, to yield for a system of n classes:

I(t)=
1
2

%
n

i=1

�
C(Mi

2, m, s2)Vi
mat(t) %

p={Mg,Si}

!maxr�G i(t)(cp(r, t))−minr�G i(t)(cp(r, t))
maxr�G i(t)(cp(r,t ))

"n %
n

i=1

C(Mi
2, m, s2)Vi

mat(t) (9)

tion profiles for both elements were flat. During heating
up, the interfacial concentrations of Mg and Si in-
crease, while those at the grain centre remain constant.
Hence, I(t) increases during heating up. A mathemati-
cal justification of the complex shape of the I(it)-curve,
before the maximum I(t) is reached, is given in Ap-
pendix A. Just before the accumulation of the atoms
from the Mg2Si-layer at the grain centre, the inhomo-
geneity parameter is maximal. At that stage the Mg and
Si concentrations at the grain centre, respectively, are
equal to approximately 0 and 0.993 mass. Hence, the
maximum I(t) is equal to about 0.58. It is also clear
that Si is more homogeneously distributed in the matrix
than Mg.

From Fig. 1 it can be seen that, when the homogeni-
sation temperature is reached, the Mg concentration at
the moving boundary stays almost constant but the
atoms start to accumulate at the grain centre, hence the
matrix becomes more homogeneous and the inhomo-
geneity parameter starts to decrease. When the particle
is fully dissolved, the moving boundary becomes fixed
and its Dirichlet boundary condition transforms into a
Neumann-condition. Due to the strong discontinuity of
the time derivative of the maximum/interfacial concen-
trations, a small jump in the time derivative of the
inhomogeneity parameter can then be observed (the
time derivative of the inhomogeneity parameter has a
discontinuity). As can be seen from Figs. 1 and 2, the
matrix reaches homogeneity a long time (about 14 ks)
after the dissolution of the Mg2Si-layer.

In which the matrix domain for grain size class i has
been defined as Gi(t)
{r�R �05r5Si(t)5M2

i } and
Vmat

i (t) is the volume of Gi(t), i.e. the matrix volume. The
function C(M2

i , m, s2):F(M2
i , m, s2)DM2 denotes the

probability of the occurrence of a particle in size class i,
in which the logarithm of the particle size is statistically
divided according to a normal distribution. DM2 denotes
the class width. In all calculations n was set equal to 20.

The results, obtained for the Mg2Si-layers surrounding
spherical grains, have been plotted in Figs. 3–6. In Figs.
3 and 4 the influence of the geometric mean of the grain
size, m, on the dissolution kinetics and the evolution of
the inhomogeneity parameter is shown. Figs. 3 and 4
show that the Mg2Si dissolution and matrix homogenisa-
tion proceed faster for smaller grains, as is to be expected.

During the first stage of the heat-up, the evolution of
the inhomogeneity parameter coincides for all geometric
means: the initial concentrations are similar and then the
evolution of the concentrations at the moving boundary
roughly coincides for all systems. At the later stages the
evolution of the concentrations at the grain centre starts
to differ, and the decrease of I(t) becomes significantly
smaller for larger grain sizes.

The influence of the geometric S.D. of the grain size
on the dissolution kinetics and inhomogeneity parameter
are illustrated in Figs. 5 and 6. For cases of a large S.D.
of the grain size, it can be seen that at the later stages
the few larger grains significantly delay the dissolution
and the evolution of the inhomogeneity parameter.
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Fig. 5. The evolution of the normalised Mg2Si-layer volume with time for different geometric S.D. of the grain size. The geometric mean of the
grain size is 1.65×10−4 m. The homogenisation temperature was reached at t833=8.66 ks.

Fig. 6. The influence of the geometric S.D. of the grain size on the evolution of the inhomogeneity parameter in the case of the dissolution of a
spherical layer of Mg2Si. The geometric mean of the grain size is 1.65×10−4 m. The homogenisation temperature was reached at t833=8.66 ks.

It can be observed from Figs. 5 and 6 that the time to
reach matrix homogeneity after the dissolution of all
compound layers is strongly influenced by the geometri-
cal S.D. of the grain size. Moreover, it appears that the
ratio between the time to reach matrix homogeneity
and the time to dissolve all particles varies non-linearly
with the S.D. More formally: If t1 is the minimal time
to dissolve all particles until Vprec(t1)/Vprec(0)=o, for an
arbitrary real o\0, and if t2 is the minimal time to

reach matrix homogeneity, I(t2)Bo, then it appears
that t2/t1=F(s). F(s) has been calculated for o=0.05,
0.1 and 0.2, yielding f(s), g(s) and h(s) respectively.
Fig. 7 depicts the evolution of f(s), g(s) and of h(s) in
the range of s� [1, 3], in which the geometric mean of
the grain size is constant.

Fig. 7 shows that the ratio of the time needed to
obtain grain homogeneity and the time needed until the
Mg2Si-layer disappeared is approximately 1.5 and 6 for,
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Fig. 7. The evolution of the functions f(s), g(s) and of h(s) as a function of s for reference conditions specified in the text.

respectively, s=1 and s=3. So for larger geometric
S.D. of the grain size the alloy has to be annealed
relatively longer after the dissolution of the Mg2Si-
phases to obtain a more homogeneous matrix than for
lower geometric S.D. Therefore, it may be concluded
that the ratio of the time needed to obtain grain
homogeneity and the time to dissolve the Mg2Si-layer
depends strongly on the statistical distribution of the
grain size.

3.3. The influence of the initial matrix composition

In the numerical experiments of this section the
dissolution kinetics and matrix inhomogeneity has been
evaluated for three sets of initial matrix concentrations.
In the first set of calculations the initial matrix concen-
trations are chosen arbitrarily. The second set of calcu-
lations correspond to different homogeneous initial
matrix compositions but they all correspond to an
identical overall composition. The Mg2Si-layer thick-

ness then has been adjusted accordingly. The third set
of calculations apply to a fixed overall composition as
well. However, they show the effect of the initial matrix
concentration profiles.

3.4. The effect of the arbitrary initial matrix
concentrations

In these calculations the initial matrix concentration
has been varied. This variation yields a change of the
overall concentrations. The conditions used in the first
set of calculations are listed in Table 1 while the results
are shown in Figs. 8 and 9. The rest of the conditions
were identical to those of the reference system.

Curve I in Fig. 8 shows a very fast decreasing volume
of the compound layer due to the low initial matrix
concentrations. Its corresponding curve I for the inho-
mogeneity starts at unity and decreases monotonously
down to zero. Curves II and III in Fig. 8 correspond to
an increasing initial Si matrix concentration and thus to
a decreasing dissolution rate. The initial matrix concen-
tration of Mg was taken to be 0.25×10−5 mass%. It
can be seen that at the initial stages the inhomogeneity
parameter increases from zero to 0.5. It then remains at
approximately 0.5 for some time, because for Mg the
initial concentration is small and therefore its contribu-
tion to the inhomogeneity parameter is large. Whereas
the initial concentration of Si is large and close to the
maximum solubility, its contribution to the inhomo-
geneity parameter is about zero. Thus, it can then be
concluded that the concentration of Mg in the matrix is
rather inhomogeneous while the concentration of Si is
rather homogeneous.

Table 1
The values used for the initial matrix concentrations in the first set of
calculations with varying initial matrix concentration and the index-
ing of the curves in Figs. 8 and 9

�cSi�Curve in- cSi
0 (mass%) cMg

0 �cMg�
(mass%)dex (mass%)(mass%)

0 0 0.1615 0.3I
0.5 0.25×10−5II 0.6592 0.3

III 1 0.25×10−5 1.1569 0.3
0.1615 0.7977IV 0.50

V 0 1 0.1615 1.2954
1.29541.15691VI 1
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Fig. 8. The dissolution kinetics of a Mg2Si-layer for different initial concentrations. The curves are explained in the text and in Table 1. The
homogenisation temperature was reached at t833=8.66 ks.

Fig. 9. The evolution of the inhomogeneity parameter for different initial concentrations. The curves are explained in the text and in Table 1. The
homogenisation temperature was reached at it833=8.66 ks.

To distinguish between cases of zero and non-zero
initial matrix concentrations, the Mg concentration has
been set to zero for curves IV and V in Figs. 8 and 9.
It can be observed that now the inhomogeneity parame-
ter equals 0.5 at the early stages of the dissolution
process. For later stages the difference in the behaviour
of the inhomogeneity parameter decreases. For curves
I–V the Mg2Si-layer dissolves completely. The disconti-
nuities of the inhomogeneity parameter are here caused

by the transformation of the Dirichlet condition into a
homogeneous Neumann condition when the Mg2Si-
layer disappeared.

For curve VI the initial matrix concentration of both
alloying elements was set equal to 1 mass%. It can be
seen that now the interfacial concentrations of both
alloying elements are smaller than unity and the Mg2Si-
layer starts to grow (see Fig. 8). From Fig. 9 it can be
seen that the inhomogeneity parameter for curve VI
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Table 2
The values used for the initial matrix concentrations in the second set of calculations with varying initial matrix concentration and the indexing
of the curves in Figs. 10 and 11

M2−S(0) (m) Teq (K)Curve index cMg
0 (mass%) cSi

0 (mass%) K(Teq)

2.542×10−7 2.002×10−114000.993I 0.449×10−5

500 1.58132×10−7II 0.399×10−3 0.993 2.539×10−7

2.475×10−7 600III 0.793×10−2 0.997 6.2718×10−5

7501.2537×10−7 0.024881.0727IV 0.15229
1.1128 6.04049×10−8 775 0.05383V 0.22889

The symbols are explained in the text.

starts well under unity. This is caused by the large
difference in the diffusion coefficients between Si and
Mg at low temperatures. The inhomogeneity parameter
of curve VI shows a discontinuity of its time derivative
when the temperature reaches its maximum. As the
temperature reaches its maximum, the solubility
product stops increasing and reaches its maximum too,
hence the inhomogeneity parameter for curve VI shows
a discontinuity of its time derivative. For the case of
growth (curve VI in Figs. 8 and 9) the compound layer
grows until an equilibrium size is reached. When this
equilibrium size is reached, the concentration gradients
are zero. So, also for the case of a growing compound,
matrix homogeneity is reached after a sufficient length
of time.

3.5. The effect of initial matrix concentration at a
fixed o6erall composition

The second set of calculations illustrates the influence
of the initial matrix concentration on the dissolution
kinetics. The overall concentration of both alloying
elements are constant and equal to those of the refer-
ence system. To keep the overall concentrations con-
stant, the thickness of the compound layer has been
adjusted accordingly. The initial concentrations in the
matrix and initial Mg2Si-layer thickness correspond to
equilibrium conditions at several temperatures. These
conditions for which the equilibrium is reached at
temperature Teq may result during cooling after solidifi-
cation. The configurations that have been used as the
input for the simulations have been summarised in
Table 2. As in the reference system, Eqs. (8a), (8b) and
(8c) is used for the determination of cMg

0 , cSi
0 and

M2−S(0).
The results of the calculations with the input in Table

2 are given in Figs. 10 and 11. Fig. 10 displays the
dissolution kinetics of the Mg2Si-layer.

Curves I and II in Fig. 10 look like the reference
system due to the low initial matrix concentrations and
(almost) equal the initial shell thickness. Curves III, IV
and V show a significant stage of growth at the early
stages during the heat-up. Now the interfacial concen-
trations are significantly smaller than the initial concen-

tration. This growth appears more pronounced for
higher Teq, as both the stage of growth is larger and the
initial Mg2Si-layer volume is smaller. For the cases in
which subsequent growth and dissolution takes place,
the concentration gradients of the alloying elements are
zero at the maximum volume of the compound layer in
Fig. 10. Now it is necessary to arrange Eq. (6) into a
zero-point problem such that a division by a (‘numeri-
cally’) zero concentration gradient is avoided. This has
been described in Ref. [17].

The inhomogeneity parameter (Fig. 11) shows an
increase for curve I. In spite of an almost identical
dissolution curve for condition II as for I in Fig. 10, its
corresponding inhomogeneity parameter differs
strongly. At the very early stages the Mg2Si-layer
grows. However, as this growth can only occur at the
temperatures TBTeq=500 K, in which the diffusion
coefficients of the alloying elements are very small, the
growth is negligible, but does have consequences on the
behaviour of the inhomogeneity parameter. At the
point of changing from growth into dissolution, the
concentration profile becomes flat: the inhomogeneity
parameter equals zero. Due to the Arrhenius relation-
ship for the solubility product, the evolution of the
interfacial concentrations seems to be sufficiently slow
(for TBTeq) to keep the minimum of the concentration
at the moving boundary. This behaviour is observed for
curves II–IV. However, for curve V, the inhomogeneity
parameter does not touch the horizontal axis during the
change of growth into dissolution in Fig. 11. This is due
to the large increase in the interfacial concentrations
with time at higher temperatures. In this case the
application of the maximum principle of the diffusion
equation allows for the existence of a local minimum of
the concentration away from the moving boundary.

3.6. The effect of initial concentration profiles in the
matrix at a fixed total concentration

The third set of calculations shows the influence of
the shape of the initial matrix concentration profile.
The initial concentration profiles shown in Fig. 12 have
been used as the starting conditions. These concentra-
tion profiles resemble those obtained in practice with an
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Fig. 10. The dissolution kinetics of a Mg2Si-layer for different initial concentrations. The curves are explained in the text and in Table 2. The
homogenisation temperature was reached at t833=8.66 ks.

Fig. 11. The evolution of the inhomogeneity parameter for different initial concentrations. The curves are explained in the text and in Table 2.
The homogenisation temperature was reached at t833=8.66 ks.

increasing cooling rate after solidification. In all calcu-
lations the same overall composition is used, i.e. the
initial compound layer thickness has been adjusted
accordingly and all other conditions are identical to
those of the reference system. Curves I–V in Fig. 12,
respectively, indicate the initial concentration profiles
corresponding to an initial Mg2Si-layer thickness of
3.251×10−8, 3.607×10−8, 4.12×10−8, 4.9661×10−

8 and 6.763×10−8 m. The results of the calculations
for these initial matrix concentration profiles are given

in Fig. 13. The normalised volume of the compound
layer, V(t)/V0, as represented by curves Ia–Va in Fig.
13, respectively, results from the initial concentrations
I–V in Fig. 12. The corresponding evolution of the
inhomogeneity parameter is depicted by curves Ib–Vb,
respectively.

The initial concentrations used in these calculations
do not represent thermodynamic equilibrium: the
Mg2Si-layer has had no time to grow to its equilibrium
size. The average matrix concentrations of Si and Mg
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Fig. 12. The initial matrix concentration profiles used for the dissolution of the Mg2Si-layer. The curves are explained in the text.

Fig. 13. The evolution of the dissolution kinetics and the inhomogeneity parameter for different initial concentrations from Fig. 12. The curves
are explained in the text. The homogenisation temperature was reached at t8.86=8.66 ks.

respectively are larger than cSi
0 =0.993 mass and cMg

0 =
0.2539×10−5 mass fractions, corresponding to ther-
modynamic equilibrium for T=400 K. Therefore, at
the early stages of the heat-up, the layer of Mg2Si
grows. At the later stages, the temperature is high
enough for the layer of Mg2Si to dissolve. Fig. 13
shows that the concentration gradient at the interface
influences the rate of dissolution severely. The evolution
of the inhomogeneity parameter seems to be influenced
by the concentration gradient at the interface as well.

3.7. The effects of the geometry of the second phase

The secondary phases in an alloy may have different
geometries. The current model is valid for a dissolving
sphere, cylinder, plate and a dissolving spherical/cylin-
drical layer of Mg2Si (i.e. one-dimensional geometries).
The initial ‘thickness’ of the dissolving second phase
has been chosen equal, which means that for the spher-
ical particle, cylindrical and planar phase S(0)=
0.2542×10−6 m and for the case of a spherical
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compound layer M2−S(0)=0.2542×10−6 m. The cell
volume, however, has been adjusted such that the over-
all concentrations of the alloying elements are equal.
All cases considered here thus correspond to the same
initial second phase volume fraction of f=0.004615.
Table 3 shows the cell sizes used for the various
geometries.

The results of the evolution of the precipitate volume
and matrix inhomogeneity are shown in Figs. 14 and
15, respectively.

For the situation considered here, a fixed initial
thickness of the dissolving particle has been used. The
highest rates occurring for spherical particles are due to
the more rapid decrease of the interfacial area during
dissolution and the radially increasing diffusion space
from the spherical interface. For planar geometry, the
decrease in the interfacial area is zero, therefore causing
a slower dissolution kinetics than for either a cylinder
or a sphere. For a spherical Mg2Si-layer, the interfacial
area increases during dissolution and the diffusion
space decreases radially from the interface towards the
centre. From such facts it can be argued that different
geometries of a secondary phase present in a material
may dissolve at different rates. Note from Fig. 14 that
the spherical and cylindrical particles entirely dissolve
before the homogenisation temperature is reached.

It appears from Fig. 15 that the evolution of the
inhomogeneity parameter varies equally strongly with
geometry as well.

It can be seen that the inhomogeneity parameter
evolves similarly for all geometries at the very early
stages. This is because hardly any accumulation of
atoms at the Neumann boundary has occurred yet. As
the atoms accumulate at the Neumann boundary, the
inhomogeneity parameter decreases: the matrix be-
comes more homogeneous. It can also be observed that
the discontinuity of the derivative of the inhomogeneity
parameter is greatest for a spherical particle. This is due
to the fact that for this geometry the atoms can diffuse
in all directions (4p steradians). For a cylindrical ge-
ometry, the atoms may diffuse at the angle 2p.
Whereas, for the planar geometry only one direction
can be used and for the spherical layer of Mg2Si all
atoms diffuse to the centre. This thus causes the slowest
dissolution and smallest discontinuity of the time

derivative of the inhomogeneity parameter. Note from
Fig. 15 that for the spherical and cylindrical particle the
matrix is homogeneous before the homogenisation tem-
perature is reached.

An alternative approach would be to keep the cell
volume and overall composition fixed, hence adjusting
the initial particle thickness.

3.8. The influence of heating rate and temperature
gradients in the furnace

Various heating rates and homogenisation tempera-
tures are used in industry. Therefore the effects of the
heating rate and the homogenisation temperatures are
also analysed here. Apart from the heating rate and the
homogenisation temperature the starting conditions are
all identical to those of the reference system. For com-
pleteness, it is repeated that the analysis described in
this section has been done for the case of a spherical
grain surrounded by a dissolving layer of Mg2Si. Figs.
16 and 17, respectively, display the dissolution kinetics
and the evolution of the inhomogeneity parameter for
different heating rates (and a fixed homogenisation
temperature of 833 K).

Curves I–IV in Figs. 16 and 17, respectively, corre-
spond to heating rates of 0.05, 0.04, 0.03 and 0.02 K
s−1 (=180, 144, 108 and 72 K h−1).

From Fig. 16 it can be observed that the curves
appear flatter at the initial stages for lower heat-up
rates in the furnace. This is because dissolution sets in
at about the same temperature for all the curves, how-
ever for the case of fast heating up, the temperature
increases quickly, during which the diffusion coeffi-
cients and solubility product increase quickly as well.
Therefore dissolution sets in rapidly. From the arrows
in Fig. 16 it can be seen that the volume fraction
dissolved at the time it took to reach the homogenisa-
tion temperature increases with decreasing heat-up rate.
Let t* be the minimal time at which the temperature
equals the homogenisation temperature of 833 K. Fig.
18 shows the residual volume fraction at t= t*, V(t*)/
V0, and inhomogeneity parameter at t= t*, I(t*), as a
function of the heat-up rate in K s−1. It can be seen
that for very small heat-up rates the whole compound
layer is already dissolved when the homogenisation
temperature is reached. For infinitely fast heating, no
dissolution has taken place when the homogenisation
temperature is reached, hence the residual volume frac-
tion converges to one. For lower rates the remaining
volume fraction when the homogenisation temperature
is reached converges to zero (Fig. 18).

It can be seen from Fig. 17 that the shape of the
inhomogeneity curve looks rather similar for all heat-up
rates. However, its peak height and the part of the
curves after the peak is shifted significantly for different
heat-up rates. The maximal values in Fig. 17 corre-

Table 3
The cell sizes used in the calculations for different geometries and the
indexing of the curves in Figs. 14 and 15

Curve index Cell size (m)Geometry

1.53×10−6Spherical particleI
Cylindrical particleII 3.74×10−6

III 5.508×10−5Flat plate
IV 1.65×10−4Spherical layer
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Fig. 14. The dissolution kinetics for different second phase geometries. The curves are explained in the text and Table 3. The homogenisation
temperature was reached at t833=8.66 ks.

Fig. 15. The evolution of the inhomogeneity parameter for different second phase geometries. The curves are explained in the text and Table 3.
The homogenisation temperature was reached at t833=8.66 ks.

spond to the values of the inhomogeneity parameter
when the homogenisation temperature of 833 K is
reached. Fig. 18 also displays the value of the inhomo-
geneity parameter when the homogenisation tempera-
ture is reached as a function of the heat-up rate. From
Fig. 18 it is clear that for these cases when the com-
pound layer dissolved entirely when the homogenisa-
tion temperature was reached (i.e. for very low heat-up

rates), the inhomogeneity parameter is very low. This is
attributed to the transition of the Dirichlet condition
into a homogeneous Neumann condition when the
boundary is fixed and to the atoms from the compound
layer that have reached the grain centre when the
temperature has reached the homogenisation tempera-
ture. For the fast heat-up rates no atoms from the
Mg2Si-layer have reached the grain centre yet when the
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Fig. 16. The evaluation of the precipitate volume as a function of time for different heat-up rates. The curves are explained in the text. The vertical
arrows indicate the time at which the homogenisation temperature for each curve was reached.

Fig. 17. The evaluation of the inhomogeneity parameter as a function of time for different heat-up rates. The curves are explained in the text. The
vertical arrows for each curve indicate the time at which the homogenisation temperature was reached.

homogenisation temperature is reached, therefore the
inhomogeneity parameter is about 0.58 (for the refer-
ence conditions selected) and does not vary with the
heat-up rate. Note that the inhomogeneity parameters
in Fig. 18 represent the maximum values for the inho-
mogeneity parameter as a function of time (viz. Fig.
17).

Similar results are shown in Figs. 19 and 20, in which

curves I–V correspond to a heat-up rate of 0.05 K s−1

and different homogenisation temperatures of, respec-
tively: 823, 813, 803, 793 and 783 K. The other condi-
tions are identical to those in the reference system. The
influence of persisting temperature gradients in the
homogenisation furnace may be extracted from these
curves. For curve III in Fig. 19 the layer dissolves
completely in about 29 ks, its corresponding inhomo-
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Fig. 18. The residual volume fraction and the inhomogeneity parameter when the homogenisation temperature of 833 K was reached as a function
of the heating rate.

Fig. 19. The evolution of the volume of a dissolving Mg2Si-layer for different homogenisation temperatures. The curves are explained in the text.
The left-pointing and right-pointing arrows indicate the time at which the homogenisation temperature, of 823 and 783 K, respectively, were
reached.

geneity parameter then shows a significant discontinuity
in the time derivative (Fig. 20). It can be noted that the
Mg2Si-layer does not dissolve entirely for homogenisa-
tion temperatures of 793 and 783 K. However, it can be
seen that the matrix composition becomes homoge-
neous for these cases as well (Fig. 20). In these cases it
may also be observed from Fig. 20 that the inhomo-
geneity parameter does not show a discontinuity in its

time derivative. Furthermore, it is observed that the
position of the peak of the inhomogeneity parameter is
approximately similar for all homogenisation tempera-
tures. However, the peak becomes higher for higher
homogenisation temperatures. Note from Fig. 19 that
for a temperature of 803 K (curve III) the time needed
for complete dissolution of the layer Mg2Si-compound
at the grain boundary is about twice the time needed
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Fig. 20. The evolution of the inhomogeneity parameter for different homogenisation temperatures. The curves are explained in the text. The
arrows indicate the time at which the homogenisation temperature was reached for each curve.

for complete dissolution at 823 K (a temperature dif-
ference of 20 K only!). Also, the time for complete
matrix homogeneity is almost doubled. This means
that in order to obtain similar qualities for tempera-
tures 803 and 823 K, the homogenisation time re-
quired at a temperature of 803 K is about twice as
long as the homogenisation time at a temperature of
823 K. This is due to the Arrhenius-like relationship
of the diffusion coefficient and solubility product.

4. Discussion

The model presented here can be used to investigate
the dissolution kinetics of second phases in ternary
alloys. All one-dimensional geometries (sphere, cylin-
der, flat plate, cylindrical- and spherical-layer of a
compound around the grain) can be dealt with. In
reality, however, the grains are not strictly spherical
but rather shaped like tetrakaidecahedrons (an ideal
representation of a Voronoi-cell) (unpublished re-
search), constituting a three-dimensional Stefan prob-
lem. For reasons of simplicity the ternary Stefan
problem has been reduced to a one-dimensional prob-
lem.

To investigate the influence of the two-dimensional
effects, a two-dimensional finite element method [4]
has been used for the computation of the dissolution
of a secondary phase layer around a hexagonal grain
in a binary alloy. The same calculations were done for

the dissolution of a layer of a secondary phase around
a circular grain in a binary alloy using the finite vol-
ume method. The results differed about maximal 10%
from the calculations using the finite volume method
applied to the dissolution of a second phase layer
around a circular grain. All numerical settings for
both cases were chosen as similar as possible. The
grain and secondary phase thickness were chosen so
that the grain and secondary phase areas were equal
for the hexagonal and circular geometry. For both
cases considered here the discretisation of the moving
boundaries was one-sided, i.e. the virtual gridpoints at
the moving boundaries were omitted, causing a less
accurate computation of the free boundary position.

The calculations on the effect of particle geometry
were performed while keeping the initial thickness of
the particle (and the overall concentration) constant.
If, alternatively, the cell size is kept constant and the
‘thickness’ of the particle is adjusted to get the fixed
overall composition, the order of dissolution times for
the various geometries as shown in Figs. 14 and 15
reverses. Moreover the situation in which the cell vol-
ume and overall composition are fixed and two sec-
ondary phases are chosen in the cell such that their
total volume is also equal, may be considered as well,
for different initial thicknesses of the dissolving
phases. An example of two simulateneously dissolving
phases is given in Ref. [17]. Clearly the correct defini-
tion of the three-dimensional geometry and size of
both the dissolving phase and that of the matrix is of
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crucial importance for calculating the dissolution kinet-
ics.

In the calculation of the dissolution kinetics of a
second phase it was found for some cases that the
second phase first grows and then dissolves subse-
quently. This implies that the concentration gradient of
one or both alloying elements at the moving interface
may be zero or ‘numerically’ zero (due to rounding
errors in the computer arithmetic). The re-arrangement

indicate maxr�G(t)(cp(r, t)) and minr�G(it)(cp(r, t)). Note
that these quantities here are respectively given by
cp [S(t), t ] and cp(0, t)):

dI(t)
dt

=
1
2

· %
p�{Mg,Si}

�yp(t)
x2

p(t)
dxp(t)

dt
−

1
xp(t)

dyp(t)
dt

�
for xp(t)]yp(t)]0, t\0. (A1)

By differentiating once more, it is obvious that:
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dt2 =
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�[xp% (t)yp% (t)+yp(t)xp¦(t)] · (xp(t))2−2xp(t)yp(t)xp% (t)
(xp(t))4
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−

1
2
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yp¦(t)xp(t)−xp% (t)yp% (t)
(xp(t))2 . (A2)

of Eqs. (5) and (6) into a zero-point problem has
therefore been done so that no division by the concen-
tration gradients of the alloying elements at the inter-
face takes place during the calculations. If this is not
done properly, severe numerical instabilities during the
modelling of subsequent growth and dissolution may
arise.

The influence of the presence of (dissolving) precipi-
tates inside the grain on the dissolution kinetics of a
layer of Mg2Si at the grain boundary is very complex
due to the possible spatial distribution of the locations
of the particles. The current model may be used to
provide an estimate for this effect by positioning a
precipitate in the centre of the grain. Simultaneous
dissolution of these secondary phases then can be dealt
with using a two-moving boundary problem in a
ternary alloy. The numerical details and influences have
been described in Ref. [17].

5. Conclusion

The evolution of the microstructure during the ho-
mogenisation treatment of aluminium alloys depends
on the shape of the statistical distribution of the size of
the second phase, the geometry of the second phase,
alloy composition, initial matrix concentration profiles
of the alloying and the temperature–time profile during
the homogenisation treatment.

The concentration gradients in the matrix disappear
long after the dissolution of the second phases.

Appendix A. On the local curvatures of the I(t)-curve
during the heating stage

From the differentiation of Eq. (7) it follows that the
time derivative of the inhomogeneity parameter is given
by (in which we used respectively xp(t) and yp(t) to

For the stages in which the atoms from the Mg2Si-
layer did not reach the grain centre, i.e. yp(t)=
cp

0(M1=0), the above expression can be written as:

d2I(t)
dt2 :

1
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· %
p�{Mg,Si}

�
yp(t)

xp¦(t)(xp(t))2−2xp(t)xp% (t)
(xp(t))4

n
.
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From Eq. (1) and Fig. 1, it follows that in the early
stages

yp(t)
x2

p(t)
dxp(t)

dt
\0

due to the heat-up and

1
xp(t)

dyp(t)
dt
:0

as long as pDptB (S2(t)−S1(t))2), in which the mini-
mum concentration hardly changes, we have (dI(t)/
dt)\0. As, at the early stages, xp(t)B1 and even
xMg(t)�1, we have (xp(t))2Bxp(t):yp(t) and there-
fore dI(t)/dt becomes large. From a finite difference
differentiation of xp(t) and yp(t), the quantities xp% (t),
yp% (t), xp¦(t) and yp¦(t) have been determined. Substitu-
tion of these values into Eq. (A3), reveals that for
tB3.2 ks, we have d2I(t)/dt2. Due to the larger varia-
tion of the solubility product and the diffusion coeffi-
cients for higher temperatures, dxp(t)/dt increases more
rapidly with time (as (d2xp(t)/dt2)\0, see also Fig. 1),
substitution of the quantities xp(t), yp(t), xp% (t), yp% (t),
xp¦(t) and yp¦(t) into Eq. (A3), yields (d2I(t)/dt2)\0 for
t\3.3 ks. I(t) thus has a point of inflection for some
t� (3.2, 3.3 ks).
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[15] L. Lodgård, N. Ryum, Precipitation of dispersoids in a 6062

alloy, in: Proc. 5th Conf. on Advanced Materials and Processes
and Applications vol. 4, EUROMAT, Maastricht, the Nether-
lands, 1997.

[16] F.J. Vermolen, C. Vuik, S. van der Zwaag, Mater. Sci. Eng. A
(1998) in press.

[17] F.J. Vermolen, C. Vuik, A numerical method to compute the
dissolution of second phases in ternary alloys, Internal Report
for the Faculty of Technical Mathematics and Informatics, Delft
University of Technology, J. Comput. Appl. Math. (accepted).

[18] J. Aitchinson, J.A.C. Brown, The Lognormal Distribution: with
Special Reference to its Uses in Economics, Cambridge Univer-
sity Press, Cambridge UK, 1976.

[19] F.J. Vermolen, H.M. Slabbekoorn, S. van der Zwaag, Mater. Sc.
Eng. A230 (1997) 80.

[20] C.J. Keuhmann, P.W. Voorhees, Met. Trans. 27A (1996) 937.
[21] D.A. Porter, K.E. Easterling, Phase Transformations in Metals

and Alloys, Chapman and Hall, London, 1991.
[22] S. Fujikawa, K. Hirano, Y. Fujikawa, Met. Trans. 9A (1978)

1811.
[23] Y. Minamino, T. Yamane, A. Shimomura, et al., J. Mater. Sci.

18 (1983) 2679.
[24] J. Crank, Free and Moving Boundary Problems, Clarendon

Press, Oxford, 1984.
[25] Y. van Leeuwen, J. Sietsma, S. Vooijs, S. van der Zwaag, The

effect of geometrical assumptions in modelling the transforma-
tion kinetics for massive transformations, Met. Mater. Trans. A
(1998) (submitted).

.



F. Vermolen et al. / Materials Science and Engineering A254 (1998) 13–3216

cSi[S(t), t ], is obtained from Eq. (5). The iteration pro-
cedure to obtain the Dirichlet concentrations at the
moving boundaries in each cell, such that the concen-
tration profiles of both alloying elements satisfy Eqs.
(2)–(6), is done by the re-arrangement of Eq. (6) such
that a zero-point problem results. The roots are deter-
mined using a discrete Newton–Raphson procedure.
This is repeated until the desired accuracy is reached.
More details about the numerical solution procedures
can be found in Ref. [17].

Using these two Dirichlet boundary conditions at the
moving boundary, the diffusion equations for both
alloying elements, Eq. (1), are solved using a finite
volume method with a geometrically divided grid, i.e.
between subsequent integration nodes i−1, i and i+1
we have ri+1−ri=a(ri−ri−1). A geometrically di-
vided grid allows local mesh refinement and coarsening
and thus improves the efficiency of the calculation. The
whole concentration profile is determined using virtual
gridpoints at the boundaries to guarantee a global
accuracy of O(Dr2). In case of fixation of a moving
boundary, i.e. S(t)=Mm, the Dirichlet boundary con-
dition changes into a homogeneous Neumann
boundary condition.

The above described scheme is carried out for each
time-step. At each time-step the gradient at the inter-
face from the concentration profile obtained is used to
determine the displacement of the interface (i.e. Eq.
(6)). After the determination of the new interfacial
position, the mesh is adjusted so that the interface
coincides with the same gridpoint during the whole
simulation. Subsequently the concentration profile at
the new points are determined using a linear interpola-
tion (i.e. a convective derivative).

This whole iteration procedure is done until:

1
2

%
p�{Mg,Si}

!maxr�G(t)(cp(r, t))−minr�G(t)(cp(r, t)
maxr�G(t)(cp(r, t))

"
Bd,

with arbitrarily d=10−5 and G(t) denotes the matrix
domain, G(t)
 {r�R �05r5S(t)5M2}, for a dissolv-
ing secondary phase at the grain boundary and G(t)

{r�R �05S(t)5r5M2} for a dissolving particle at the
grain centre.

3. Results

Some calculations have been done to highlight the
influence of several industrially relevant parameters: the
grain size distribution, the initial Mg and Si concentra-
tions in the matrix, the second phase geometry and
local temperatures in an industrial furnace. The results
of the calculations show the evolution of the second
phase volume and the matrix inhomogeneity as a func-
tion of time. The matrix inhomogeneity has been
quantified using the so-called dimensionless inhomo-

geneity parameter, I(t). This parameter is a measure for
the maximum concentrational difference in the matrix
relative to the maximum of the concentration present in
the matrix, G(t), at time it. This parameter has been
defined as follows:

I(t)

1
2

%
p�{Mg,Si}

!maxr�G(t)(cp(r, t))−minr�G(t)(cp(r, t))
maxr�G(t)(cp(r,t ))

"
,

with maxr�G(t)(cp(r, t))]minr�G(t)(cp(r, t))]0 (7)

I(t) ranges from unity (corresponding to the situation
where maxr�G(t)(cp(r, t))\minr�G(t)(cp(r, t))=0, i.e. the
concentrations at the moving (Dirichlet) interface and
fixed (Neumann) boundary, respectively, are non-zero
and zero) to zero (corresponding to the situation where
maxr�G(t)(cp(r, t))=minr�G(t)(cp(r, t)), i.e. uniform con-
centration profiles of both alloying elements).

3.1. The idealised reference system

First an idealised reference system in which a spheri-
cal layer of Mg2Si dissolves in a spherical grain has
been chosen. The presence of other (Si-rich) phases has
been excluded. This reference system is then used to
illustrate the influences of all model parameters sepa-
rately. The reference system represents an AlMgSi-alloy
with an average Mg concentration, �cMg�=0.3 mass%
and an average Si concentration, �cSi�=1.15 mass%
and a grain radius M2=1.65×10−4 m. The concentra-
tions of Mg and Si in the Mg2Si compound layer are,
respectively, cMg

part=65 and cpart
Si =35 mass%. The alloy

is assumed to be heated from 400 to Thom=833 K with
a heating-rate of 0.05 K s−1=180 K h−1. Initially, the
thickness of the compound layer and matrix concentra-
tions are chosen such that they correspond to thermo-
dynamic equilibrium at 300 K. The hyperbolic
relationship (see Eq. (5)) has been assumed to be valid
for this combination of compositions and equilibrium
temperature. The solubility product, K(T), has been
determined from the thermodynamic software package
MTDATA (MTDATA is a commercial software pack-
age for multicomponent thermodynamics developed at
the National Physical Laboratory, London).

The initial matrix concentrations of both alloying
elements, cMg

0 , cSi
0 and initial second phase volume

fraction, f, are related to the above given data by:

c0
Si(1− f )+cpart

Si f=�cSi�, (8a)

c0
Mg(1− f )+cpart

Mg f=�cMg�, (8b)

(c0
Si)(c0

Mg)=K(T=300 K)=6.4×10−12(mass%)3.
(8c)

The above system is solved to yield cMg
0 , cSi

0 and the
Mg2Si volume fraction. For the selected overall compo-
sition and equilibrium temperature, this yields: cMg

0 =
2.539×10−6 mass%, cSi

0 =0.993 mass and f=0.004615


