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Abstract. The dissolution of anAl2Cu particle is consid-
ered. A characteristic property is that initially the particle has
a non-smooth boundary. Furthermore the dissolution may be
controlled by an interface reaction. The mathematical model
of this dissolution process contains a description of the par-
ticle interface, of which the position varies in time. Such
a model is called a Stefan problem. We use the finite element
method to solve this problem numerically. The displacement
of the free boundary is computed by a method based on the
balance of atoms. This method leads to good results, also
for non-smooth boundaries. Some numerical experiments are
given for the dissolution of anAl2Cu particle in anAl-Cu
alloy, with a varying rate of the interface reaction.
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1 Introduction

Heat treatment of metals is often necessary to optimize their
mechanical properties. During the heat treatment, the metal-
lurgical state of the material changes. This change can either
involve the phases being present or the morphology of the
various phases. One of these processes, which is both of large
industrial and scientific interest and amenable to modeling,
is the dissolution of second phase particles in a matrix with
a uniform initial composition.

To describe this particle dissolution in rigid media several
physical models have been developed, incorporating the ef-
fects of long-distance diffusion [2, 6, 9] and non-equilibrium
conditions at the interface [1, 3]. The long-distance diffu-
sion models imply that the processes at the interface between
particle and matrix proceed infinitely fast. Therefore, these
models provide an upper bound for the dissolution rate.

Nolfi’s model [3] did not include the interface migration,
but as far as we know, it is the first model which incorpo-
rated non-equilibrium conditions at the interface. In the Nolfi
model non-equilibrium conditions at the interface were incor-
porated by the introduction of a Robbins condition, which re-
lates the concentration gradient with the concentration at the

interface. The semi-analytical solution consists of an infinite
series solution for the concentration profile. Their method,
however, is only accurate in the early stages of the dissolution
process.

Aaron and Kotler [1] incorporated the non-equilibrium
conditions at the interface too. However their approach is
only applicable for those situations in which the inter-particle
distance is sufficiently large, i.e. the diffusion fields do not
impinge. They transformed the Robbins problem of Nolfi into
a Dirichlet problem, in which the concentration is fixed at all
stages of the dissolution process.

Combining Whelan’s [9] analytical approach for the inter-
face velocity as a function of the annealing time, with a re-
lation between the interface concentration and the interface
position, they evaluated the interface position using a Picard-
type iteration method.

In their model both the interface position and the interface
concentration were taken momentarily stationary during the
evaluation of the interface position as a function of time.

The effects of interfacial reactions on the rate of the dis-
solution of spherical particles in both infinite and finite me-
dia was examined by Vermolen and Van der Zwaag numer-
ically [7]. Using a finite difference method it was shown, that
interfacial reactions can have a significant effect on the dis-
solution rate and hence on the concentration profiles in the
matrix during particle dissolution.

All solution methods presented in the references given
above are only applicable to one-dimensional problems.
In [5] a method is described by Segal, Vuik and Vermolen
to compute a numerical solution of a two-dimensional Stefan
problem with a conserving discretization of the free bound-
ary. This method is applied for an infinite rate of the interface
reaction.

In this paper we generalize the method presented in [5].
The boundary conditions at the free boundary are derived
in Sect. 2 and compared with the literature. The main dif-
ference between [5] and the present paper is the finite rate
of reaction at the interface. The resulting boundary condition
implies that in contrast with [5] the interface is no longer an
equi-concentration line. In Sect. 3 the numerical method pre-
sented in [5] is summarized. The numerical discretization of
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the interface reaction is investigated in Sect. 4. In this prob-
lem both boundary conditions at the interface are non-linear.
The kinetic condition is linearized and used to solve the dif-
fusion equation. To adapt the position of the free boundary
the balance of atoms is used. The method to estimate the flux
differs from the one used in [5]. In Sect. 5 some results are
shown.

2 A model for dissolution with an interface reaction

Consider anAl2Cu particle in anAl-Cu alloy at a given tem-
perature. The initial concentration ofAl2Cu in the Aluminum
phase is equal toc0 (mol/m3), whereascpart denotes the con-
centration ofAl2Cu in the particle. When the temperature is
increased, dissolution of theAl2Cu particle sets in. The equi-
librium Al2Cu concentration in the alloy iscsol (cpart > csol>
c0).

To describe the mathematical model we use the geometry
as given in Fig. 1. The domain filled with Aluminum is de-
noted byΩ(t). The boundary of this domain consists of the
interfaceS(t) and the outer boundariesΓi , i ∈ {1,2,3,4}.
The outer boundaries are fixed in time, except the intersec-
tions of Γ1 andΓ4 with S(t). In the Aluminum-rich phase
Ω(t), theCu concentrationc(x, y, t) satisfies the (linear) dif-
fusion equation

∂c

∂t
= D∆c, (x, y) ∈Ω(t), t ∈ (0, T]. (1)

The diffusion coefficientD (m2/s) is supposed to be indepen-
dent of concentration. As the initial condition we use

c(x, y,0)= c0(x, y), (x, y) ∈Ω(0), (2)

whereΩ(0) is prescribed. We assume no flux ofCu through
the outer boundaries, so

∂c

∂n
(x, y, t)= 0, (x, y) ∈ Γi , i ∈ {1,2,3,4}, t ∈ [0, T]. (3)

To determine the position of the interface two conditions are
necessary. To derive these conditions for a spatially three di-
mensional problem, we consider a small part of the interface.
Suppose that the interface is smooth, which means that it can
locally be described by differentiable functions. For a small
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Fig. 1. Geometry of anAl2Cu particle in Aluminum

time step∆t the interface moves in the direction perpendicu-
lar to the interface. Thex-axis is chosen along the normal.
With this choice the position of the interface is locally de-
scribed by the relationx= S(t). We consider a control volume
of width ∆y and ∆z. The intersection of the control vol-
ume with the surfacey= 0, z= 0 is shown in Fig. 2. The
balance ofCu atoms leads to the following equation (Stefan
condition):

(S(t+∆t)− S(t))∆y∆z·cpart =D ∂c
∂x

∆y∆z∆t

+ (S(t+∆t)−S(t))∆y∆z·cS , (4)

wherecS is the limit of the concentration inΩ(t) in the neigh-
borhood of the interface. The left-hand side of (4) is equal to
the amount of atoms transferred from the particle to the alloy.
Assuming a first order reaction at the interface the second
equation is (Robbins condition):

K (csol−cS)∆y∆z∆t =D ∂c
∂x

∆y∆z∆t

+ (S(t+∆t)−S(t))∆y∆z·cS, (5)

whereK (m/s) is a measure of the rate of the interface reac-
tion. ForK large the problem is diffusion controlled, whereas
for K small the problem is reaction controlled. Dividing (4)
and (5) by∆y∆z∆t and taking the limit∆t→ 0 one obtains

cpartvn(x, y, t)=D ∂c
∂n
(x, y, t)+cSvn(x, y, t),

(x, y) ∈ S(t), t ∈ (0, T] , (6)

K (csol−cS)=D ∂c
∂n
(x, y, t)+cSvn(x, y, t),

(x, y) ∈ S(t), t ∈ (0, T] , (7)

wheren is the unit normal vector on the interface pointing
outward with respect toΩ(t) andvn is the normal velocity of
the interface.

In the references [3, 7, 8] comparable boundary conditions
are used. In [3, 7] the final term in (7) is not taken into ac-
count. This approximation is reasonable because in their ap-
plicationscsol� cpart, which implies that the neglected term
is small.

t

∆

2

t

∆ t) xS(t +S(t)

Al-Cu Al Cu

Fig. 2. The control volume
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3 A conserving computation of the free boundary for
infinite rate of reaction

In the literature (see [5] for a short overview) one can find
various numerical methods to solve Stefan problems. These
methods can be distinguished in the following categories:
front-tracking, front-fixing and fixed-domain methods. In
a front-fixing method a transformation to body fitted curvi-
linear coordinates is used (a special case is the Isotherm
Migration Method (IMM)). A drawback is that such a trans-
formation can only be used for a relatively simple geometry.
Fixed-domain methods are the enthalpy method (EM), and
the variational inequality method (VI). In these methods
a new unknown is introduced, which is the integral of the
primitive variable. The free boundary is implicitly defined by
this unknown. The IMM and VI methods are only applica-
ble when the interface is an equi-concentration line. The EM
method allows a freezing interval, however until now we were
not able to find a related formulation for our diffusion prob-
lem. Therefore we use a front-tracking method which allows
a first order reaction at the interface.

The algorithm for an infinite rate of reaction can be de-
scribed as follows. In each time-step we solve the ALE (Ar-
bitrary Lagrangian Eulerian) convection-diffusion equation

Dc

Dt
−D∆c−umesh·∇c= 0, (8)

with Dc
Dt the so-called material derivative andumesh=

x(t+∆t)−x(t)
∆t the mesh velocity. After that, the boundary is up-

dated according to

x(t+∆t)= x(t)+vn∆t n= x(t)+ D
cpart−csol

∂c

∂n
∆t n. (9)

The straight-forward way to update the free boundary is to
compute the gradient of the concentration in the elements
connected to the free boundary (normal_velocity method).
Using an averaging procedure for the gradient as well as an
averaging procedure to compute the normals in the vertices of
the boundary, equation (9) can be evaluated.

However, in case of sharp corners this may lead to
a strange behavior as is shown in Fig. 3. In order to get rid
of this phenomenon we have developed a new algorithm
(Stefan) based on the integral representation of the Stefan
boundary condition. This implies that the area of the particle
that has been dissolved is equal to the amount of diffused
material. The flux through the element (xi−1, xi ) (Fig. 5) is
approximately equal to:

D
∂c

∂n

(
xi− 1

2

)
l i∆t, (10)

with l i the length of the line element (xi−1, xi ). Hence the
amount of diffused material through the boundary(xi− 1

2
, xi+ 1

2
)

is equal to

∆t

2

(
D
∂c

∂n

(
xi− 1

2

)
l i +D ∂c

∂n

(
xi+ 1

2

)
l i+1

)
. (11)

The amountM of material dissolved, is approximately equal
to (cpart− csol)O, where O is the shaded area defined in
Fig. 5. Due to the balance of atomsM must be equal to the

Fig. 3. Position of free boundary at first 10 time-steps using the normal
velocity method for infinite rate of reaction

Fig. 4. Position of free boundary at first 10 time-steps using the Stefan
method for infinite rate of reaction

amount of diffused material given in (11). Consider two adja-
cent line elements(xi−1, xi ), and(xi , xi+1), with lengthl i and
l i+1 respectively (Fig. 5). The mid-side points of these elem-
ents are denoted byxi− 1

2
andxi+ 1

2
. Let the from formula (9)

computed displacement in the mid-side points, be equal to
∆xi− 1

2
and∆xi+ 1

2
. The new position of vertexxi is denoted

by x̂i . The vectorx̂i − xi is parallel to the average of the
normal vectors on the line elements(xi−1, xi ) and(xi , xi+1).
The length of the displacement given by∆xi = ||x̂i − xi ||
is such thatM = (cpart− csol)O. Once the displacement in
the vertices is computed, also the displacements in the mid-
side points change. In order to get both a local and global

Fig. 5. Area occupied by the region defined by the displacement of the
vertex
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equilibrium in the amount of dissolved material, it is neces-
sary, that the new area is equal toM/(cpart−csol). The area
O depends on∆xi , ∆xi− 1

2
and∆xi+ 1

2
, where∆xi− 1

2
is the

adapted length of the displacement inxi− 1
2
. Since ∆xi− 1

2
and∆xi+ 1

2
depend on∆xi−1, ∆xi and∆xi+1 the relation is

non-linear.
To solve this non-linear system we had to use an under-

relaxation parameter. Choosing this parameter equal to 0.5
gave a fast convergence. The results of the Stefan algorithm
are shown in Fig. 4. The results in Fig. 4 are more reliable
than those in Fig. 3 since from physical point of view we ex-
pect a large diffusion of the atoms at the angular free bound-
ary point. This gives locally larger free boundary velocities.
For more details we refer to [5].

4 The discretization for a finite rate of reaction

The method summarized in Sect. 3 has been developed for
a Stefan problem with an infinite fast interface reaction, so the
concentration at the free boundary is equal tocsol. To general-
ize this method to a finite rate of reaction one has to discretize
the boundary conditions (6) and (7). Both conditions contain
the normal velocity of the interface. In our implementation
we use the Robbins condition (7) to solve the diffusion equa-
tion and the Stefan condition (6) to adapt the free boundary.
In order to get rid of the normal velocity in (7) equation (6) is
substituted into (7):

K (csol−cS)=D cpart

cpart−cS

∂c

∂n
(x, y, t),

(x, y) ∈ S(t), t ∈ (0, T] . (12)

This equation is linearized by takingcS in the right-hand side
of (12) at the old time level. This explicit time discretization
may lead to instable behavior, however with the time steps
used by us, we have not observed any of these instabilities.

Experiments with boundary condition (12) in combina-
tion with the Stefan algorithm to adapt the free boundary,
showed inaccuracies for a finite rate of reaction. The com-
puted shapes of the free boundary resemble the shapes shown
in Fig. 3. The approximation of the normal gradient ofc
used in (10) may be the cause of these instabilities. To
avoid this approximation, (7) is subtracted from (6) which
yields:

vn(x, y, t)= K
csol−cS

cpart
, (x, y) ∈ S(t), t ∈ (0, T] . (13)

Note that forK→∞, vn is bounded sincecS→ csol. How-
ever, when the difference betweencS andcsol is very small
it is not practical to use (13) because cancellation can
occur.

To adapt the free boundary the Stefan algorithm is com-
bined with (13). In this algorithm the velocities are used
in the mid-side points of the element boundaries, whereas
the concentrations are given in the vertices of the elements.
ThereforecS(xi− 1

2
) is approximated by averaging thecS in the

vertices and substitute this value into (13).

5 Numerical experiments

An algorithm has been developed to investigate the dissolu-
tion kinetics for a two-dimensional case with a first order re-
action at the interface. This algorithm has been implemented
in our finite element code SEPRAN [4]. As an example we
consider the dissolution of a needle shaped particle in a bar.
Due to the symmetry of this two-dimensional problem, we re-
strict the simulation to one quarter of the real geometry. First
we investigate the influence of the rate of the interface reac-
tion (K ) on the shape of the dissolving particle. Thereafter we
compare the influence of the extra terms used in (6) and (7). In
all our examples

diffusion coefficient D= 0.04858,
concentration in the particle cpart = 54,
initial concentration c0= 0.0011.

5.1 The influence of the interface reaction

We consider a square dissolving in a square forcsol= 3.88
and various choices ofK . In Fig. 6 we present the results as
given in ([5], Fig. 21) for the Dirichlet condition at the inter-
face. The next figures contain the results forK = 1000, 10,
and 0.1. ForK large we expect that the solution converges
to the solution of the Dirichlet problem. However, compar-
ing Figs. 6 and 7 it appears that the latter figure shows a more

Fig. 6. Free boundary of a bar dissolving in a bar using a Dirichlet boundary
condition

Fig. 7. Free boundary of a bar dissolving in a bar withK = 1000
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rounded profile of the particle. The reason for this is that in
Fig. 6 the fluxes are approximated by the normal derivative
of the concentration in the mid-side points. In the vicinity of
the corner these derivatives appear to be underestimated. For
K = 1000 the fluxes are approximated by (13), which is based
only on the concentration. When the grid is refined we ob-
serve that the Dirichlet solution converges to the solution as
given in Fig. 7. So we expect that this solution is more accu-
rate than the solution of the Dirichlet problem for the same
grid size.

For small values ofK the evolution of the position of the
interface is completely determined by the rate of the inter-
face reaction. Therefore one expects that the particle remains
square-like. This is in accordance with the results as given
in Figs. 8 and 9. Also the velocity of the interface decreases
whenK decreases.

5.2 The influence of the termcSvn

In the derivation of the model we have already noted that
in some references the termcSvn is deleted from (7). For
the problem as considered in Sect. 5.1 we have compared the
solution with and without this term and it appears that its in-
fluence is negligible. On the other hand whencsol is closer to
cpart the differences may be large. Therefore we consider an
academic problem wherecsol is 10 times as large:csol= 38.8
and takeK = 0.1. The results of the correct boundary con-
ditions are given in Fig. 10. Sincecsol is much larger the
velocity of the interface is much higher. Therefore the time-
steps used in these problems are equal to the time-steps of the

Fig. 8. Free boundary of a bar dissolving in a bar withK = 10

Fig. 9. Free boundary of a bar dissolving in a bar withK = 0.1

Fig. 10. Free boundary of a bar dissolving in a bar withK = 0.1 and
csol= 38.8

Fig. 11. Free boundary of a bar dissolving in a bar withK = 0.1 andcsol=
38.8 without the termcSvn

previous problem divided by 10. The results given in Fig. 11
are obtained when the termcSvn is deleted from (7). There
are considerable differences between both results. Neglect-
ing cSvn leads to an overestimate of the position of the free
boundary.

6 Conclusions

Particle dissolution in binary alloys is investigated by numer-
ical techniques. The mathematical model used is that of a free
boundary problem of Stefan type with a parameter which
allows to switch between “diffusion controlled” and “inter-
face controlled” migration. The problem is solved by a two-
dimensional finite element method. It has been shown that
this approach leads to an accurate solution of the problem.

It appears that the solution of the model with a fast re-
action on the interface leads to better results than the model
with a Dirichlet condition at the interface. Therefore we rec-
ommend to use the numerical solution of the model with an
interface reaction withK sufficiently large to approximate the
solution of the model with the Dirichlet boundary condition.
As expected the influence of the diffusion disappears when
the reaction is slow. In such a case the shape of the dissolving
particle remains the same during dissolution.

In some references the boundary conditions are only ap-
proximately true. It has been shown that this approximation is
allowed for the problems considered. However, in other appli-
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cations wherecsol andcpart have the same order of magnitude
all terms should be included in the boundary conditions.
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