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Coarse grid acceleration of a parallel block preconditioner
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Abstract

A block preconditioner is considered in a parallel computing environment. This preconditioner has good parallel properties,
however, the convergence deteriorates when the number of blocks increases. Two different techniques are studied to accelerate
the convergence: overlapping at the interfaces and using a coarse grid correction. It appears that the latter technique is indeed
scalable, so the wall clock time is constant when the number of blocks increases. Furthermore, the method is easily added to
an existing solution code. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Domain decomposition arises naturally in com-
putational fluid dynamics applications on structured
grids: complicated geometries are broken down into
(topologically) rectangular regions and discretized in
general coordinates, see e.g. [28], applying domain de-
composition to iteratively arrive at the solution on the
global domain. This approach provides easy exploita-
tion of parallel computing resources, and additionally
offers a solution to memory limitation problems.

In this paper, we present a parallel implementation
of a Krylov accelerated block Gauss–Jacobi method
for the DeFT Navier–Stokes solver. This research is
a continuation of our work presented in [2,3,9,25,27].
For an overview of the literature of related parallel
methods we refer to [9,27]. We report results for a
Poisson problem on a square domain, which is repre-
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sentative of the pressure system which must be solved
for the pressure correction method used in DeFT.

The main parallel operations required in Krylov
subspace methods are distributed matrix–vector
multiplications, vector updates, inner products, and
preconditioner-vector multiplications. For many prob-
lems, the matrix–vector multiplications require only
nearest neighbor communications, and are very effi-
cient. Vector updates are also easy to parallelize. Inner
products require global communication, so one has
to be careful in their parallel implementation. This
aspect of the Krylov subspace solver has been ad-
dressed in [9]. The parallelization of non-overlapping
block preconditioner operations is also trivial. How-
ever, the convergence behavior of the preconditioner
deteriorates considerably, when the number of blocks
increases (compare [9]).

In this paper, we consider the acceleration of par-
allel block preconditioned Krylov subspace methods
by overlapping and deflation. The parallel implemen-
tation is based on MPI subroutines [11]. The details
of the block preconditioner are given in Section 2.
In Section 3, overlapping of the subdomains is de-
fined, which can be used to enhance the convergence
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of the block preconditioner. Coarse grid correction,
presented in Section 4, is another promising technique
to accelerate the block preconditioned method. Sec-
tion 5 contains numerical experiments illustrating the
convergence of the various parallel iterative methods.

2. Block preconditioning and Krylov subspace
methods

2.1. The block Jacobi preconditioner

We consider an elliptic partial differential equa-
tion discretized using a cell-centered finite difference
method on a computational domain Ω . Let the do-
main be the union of M non-overlapping subdomains
Ωm, m = 1, . . . , M . Discretization results in a sparse
linear system Au = f , with u, f ∈ RN . When the un-
knowns in a subdomain are grouped together one gets
the block system



A11 · · · A1M

...
. . .

...

AM1 · · · AMM







u1
...

uM


 =




f1
...

fM


 . (1)

In this system, the diagonal blocks Amm express cou-
pling among the unknowns defined on Ωm, whereas
the off-diagonal blocks Amn, m �= n represent cou-
pling across subdomain boundaries. The only non-zero
off-diagonal blocks are those corresponding to neigh-
boring subdomains.

In order to solve system (1) with a Krylov subspace
method, we use the block Jacobi preconditioner

K =




A11
. . .

AMM


 .

When this preconditioner is used, systems of the form
Kv = r have to be solved. Since there is no overlap,
the diagonal blocks Ammvm = rm, m = 1, . . . , M ,
can be solved in parallel. In our method, these systems
are solved by an iterative method. Since the number
of inner iterations may vary in each outer iteration,
the effective preconditioner is non-linear and varies in
each outer iteration.

We use RILU preconditioned GMRES [1,17,24] to
solve the subdomain problems within a fixed tolerance.

Additionally, a blockwise application of the RILU
preconditioner is used.

2.2. The Krylov subspace methods

In this paper, we consider general linear systems
so that the coefficient matrix may be symmetric or
non-symmetric. For a symmetric matrix we use a par-
allel version of the preconditioned conjugate gradi-
ent method [6,18]. For this method, the preconditioner
should be the same in every outer iteration. This means
that only two choices for the preconditioner can be
used: a block RILU preconditioner or solving the sub-
domain problems with a small tolerance. In the lat-
ter choice the preconditioner is close to K−1.In our
application, pressure correction, the pressure system
resembles a discretized Poisson equation; however,
the coefficient matrix may be non-symmetric. For the
non-symmetric case we use the GCR method [8,22].
This is a Krylov subspace method which allows a vari-
able preconditioner. Using the conclusions of [9] we
choose the following orthogonalization methods: re-
orthogonalized classical Gram–Schmidt when the sub-
domain size is small, otherwise we take the modified
Gram–Schmidt method.

3. Overlapping of the subdomains

It is well known that the convergence of an overlap-
ping block preconditioner is nearly independent of the
subdomain grid size when the physical overlap region
is constant (see [7,16,19,20]).

To describe the overlapping block preconditioner
we define the subdomains Ω∗

m ⊂ Ω . The domain Ω∗
m

consists of Ωm and nover neighboring grid points (see
Fig. 1). The matrix corresponding to this subdomain
is denoted by A∗

mm. Application of the preconditioner
goes as follows: given r compute v using the steps

1. r∗
m is the restriction of r to Ω∗

m,
2. solve A∗

mmv∗
m = r∗

m in parallel,
3. form vm, which is the restriction of v∗

m to Ωm.

A related method is presented by Cai and co workers
[4,5]. A drawback of overlapping subdomains is that
the amount of work increases proportionally to nover.
Furthermore, it is not so easy to implement this ap-
proach on top of an existing software package.
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Fig. 1. The shaded region is subdomain Ω∗
1 for nover = 2.

4. Coarse grid correction

We present the coarse grid correction for a general
system Au = f . In our implementation, we use de-
flated Krylov methods as defined in [10,26] (see also
[12–15]). Let P and Q be given by

P = I − AZ(ZTAZ)−1ZT,

Q = I − Z(ZTAZ)−1ZTA,

where Z is a suitable subspace of dimension N ×
M . Note that for a symmetric matrix A, operator Q
is equal to PT. To solve the system Au = f using
deflation, note that u can be written as u = (I −
Q)u + Qu and that (I − Q)u = Z(ZTAZ)−1ZTAu =
Z(ZTAZ)−1ZTf can be computed immediately. In
light of the identity AQ = PA, we can solve the de-
flated system

PAũ = Pf (2)

for ũ and pre-multiplying the result with Q.
Deflation can be combined with preconditioning.

Suppose K is a suitable preconditioner of A, then (2)
can be replaced by: solve ũ from K−1PAũ = K−1Pf,
and form Qũ, or solve ṽ from PAK−1ṽ = Pf, and form
QK−1ṽ. Both systems can be solved by one’s favorite
Krylov subspace solver, such as: GMRES [17], GCR
[8,22], Bi-CGSTAB [21], etc.

For the coarse grid correction we choose the vectors
zm as follows:

zm(i) = 1, xi ∈ Ωm, zm(i) = 0, xi /∈ Ωm. (3)

We are able to give a sharp upperbound for the ef-
fective condition number of the deflated matrix, used
with and without classical preconditioning [10]. This
bound provides direction in choosing a proper decom-
position into subdomains and a proper choice of clas-
sical preconditioner. If grid refinement is done keeping
the subdomain resolutions fixed, the condition num-
ber can be shown to be independent of the number of
subdomains.

To specify the extra costs of our coarse grid ac-
celeration for a 2D problem, we consider a square
domain, which is subdivided into M subdomains,
where

√
M is an integer number. The grid on each

subdomain consists of n × n grid points, so N =
n2M . First the vectors Azm are computed in paral-
lel. The vectors zm and Azm are stored in memory
which takes N(2 + 4/n) memory positions. Then a
band LU decomposition of the matrix ZTAZ is com-
puted on processor 1. This part has to be done only
once.

In each iteration the extra work for the coarse grid
correction is the calculation of the product

Pw = I − AZ(ZTAZ)−1ZTw.

The part w̃ = ZTw costs n2 flops on each processor,
since only vector zm is non-zero on the mth subdomain.
The results are sent to processor 1, so M messages
containing one floating point number are sent. On pro-
cessor 1 the vector ẽ is computed from ZTAZẽ = w̃

which takes 2M3/2 flops. The result is sent to all pro-
cessors. Finally, the vector updates Pw = w − AZẽ

are performed, which cost 2n2 + 16n flops on each
processor.

Summarizing, we need one gather-broadcast com-
munication in which a set of M distributed floating
point numbers are gathered from the participating pro-
cessors and after some adaptations the whole set is re-
turned to each processor. The maximal extra amount
of work (on processor 1) is equal to 3n2+16n+2M3/2

flops. This is less than the work to perform two vector
updates.
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5. Numerical experiments

5.1. Block preconditioner results

As a test example, we consider a Poisson prob-
lem, discretized with the cell-centered finite volume
method on a square domain. We do not exploit the
symmetry of the Poisson matrix in these experiments.
The domain is composed of a

√
M × √

M array of
subdomains, each with an n×n grid. With h = �x =
�y = 1.0/(n

√
M), the discretization is

4ui,j − ui+1,j − ui−1,j − ui,j−1 − ui,j+1 = h2fi,j .

The right-hand side function is fi,j = f (ih, jh),
where f (x, y) = −32(x(1 − x) + y(1 − y)). Ho-
mogeneous Dirichlet boundary conditions u = 0 are
defined on ∂Ω , implemented by adding a row of ghost
cells around the domain, and enforcing the condition,
e.g., u0,j = −u1,j on boundaries. This ghost cell
scheme allows natural implementation of the block
preconditioner as well.

For the tests of this section, GCR is restarted after
30 iterations, and modified Gram–Schmidt was used
as the orthogonalization method for all computations.
The solution was computed to a fixed tolerance of
10−6. The subdomain approximations will be denoted
as follows:

• GMR6 = GMRES with a tolerance of 10−6 (pre-
conditioned with RILU);

• GMR2 = GMRES with a tolerance of 10−2 (pre-
conditioned with RILU);

• GMR1 = GMRES with a tolerance of 10−1 (pre-
conditioned with RILU);

• RILU = one application of an RILU precondi-
tioner.

We compare the results for a fixed problem size
on the 300 × 300 grid using 4, 9, 16 and 25 subdo-
mains, without overlapping of subdomains and coarse
grid acceleration. In Table 1, the wall clock times on
the Cray T3E are given together with the number of
outer iterations (in parentheses). Note that for all pre-
conditioners the number of outer iterations increases
when the number of blocks grow. This implies that
the parallel efficiency decreases when one uses more
processors. In the following sections, we present two
different approaches to diminish this drawback. The

Table 1
Wall clock times in seconds on the Cray T3E and number of outer
iterations in parentheses

M

4 9 16 25

GMR6 685 (78) 178 (83) 143 (145) 79 (168)
GMR2 167 (86) 102 (118) 63 (168) 37 (192)
GMR1 222 (139) 118 (225) 66 (287) 39 (303)
RILU 65 (341) 26 (291) 22 (439) 15 (437)

fastest solutions in each case are obtained with the
least accurate subdomain approximation — namely,
the block RILU preconditioner. Therefore, we use this
choice in our timing measurements in Section 5.5.

5.2. Block preconditioner and overlap

We consider a Poisson problem on a square do-
main with Dirichlet boundary conditions and a con-
stant right-hand side function. The problem is dis-
cretized by cell-centered finite differences. We con-
sider overlap of 0, 1 and 2 grid points and use A−1

mm
in the block preconditioner. Table 2 gives the number
of iterations necessary to reduce the initial residual by
a factor 106 using a decomposition into 3 × 3 blocks
with subgrid dimensions given in the table. Note that
the number of iterations is constant along the diago-
nals. This agrees with domain decomposition theory
that the number of iterations is independent of the sub-
domain grid size when the physical overlap remains
the same (see [7,16,19,20]).

In the second experiment, we take a 5 × 5 grid per
subdomain. The results for various number of blocks
are given in Fig. 2. Note that without overlap the
number of iterations increases considerably, whereas
the increase is much smaller when two grid points

Table 2
Iterations for various grid sizes

Grid size Overlap

0 1 2

5 × 5 10 8 7
10 × 10 14 9 8
20 × 20 19 13 10
40 × 40 26 18 14
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Fig. 2. Without coarse grid correction.

are overlapped. The large overlap (two grid points
on a 5 × 5 grid) that has been used in this test is
not affordable for real problems. In Section 5.5, we
present results with large subdomain grids without
overlap.

Fig. 3. With coarse grid correction.

5.3. Coarse grid correction

We do the same experiments using the coarse grid
correction (see Fig. 3). The subdomain grid size is
5 × 5. Initially, we see some increase of the number
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Fig. 4. Scalability for a non-symmetric problem, subdomain grid 50 × 50.

of iterations; however, for more than 16 blocks the
increase levels off. This phenomenon is independent
of the amount of overlap. The same conclusion holds
when block RILU is used instead of fully solving the
subdomain problems.

5.4. A non-symmetric example

We also illustrate the convergence of the coarse grid
correction for a convection-dominated problem

∇ · (a(x, y) u(x, y)) − �u(x, y) = f

on (0, 1) × (0, 1) with recirculating wind field
a1(x, y) = −80xy(1−x), a2(x, y) = 80xy(1−y) and
boundary conditions u(x, 0) ≡ u(y, 0) ≡ u(x, 1) ≡
0, ux(1, y) = 0. The resulting system is solved using
GCR truncated to a subspace of 20 vectors by drop-
ping the vector most nearly orthogonal to the current
search direction [23]. Classical preconditioning in the
form of RILU(0.975) is incorporated. Fig. 4 compares
the required number of GCR iterations as the number
of subdomains is increased keeping the subdomain
resolution fixed at n = 50. Although the number of
iterations is not bounded using coarse grid correc-

tion, it grows much slowly than without coarse grid
correction.

5.5. Timing results of coarse grid correction

Finally, we present some timing results on the Cray
T3E for a problem on a 480 × 480 grid. The re-
sults are given in Table 3. In this experiment, we use
GCR with the block RILU preconditioner combined
with coarse grid correction. Note that the number of
iterations decreases when the number of blocks in-
creases. This leads to an efficiency larger than 1. The
decrease in iterations is partly due to the improved

Table 3
Speedup of the iterative method using a 480 × 480 grid

M Iterations Time Speedup Efficiency

1 485 710 – –
4 322 120 5 1.2
9 352 59 12 1.3

16 379 36 20 1.2
25 317 20 36 1.4
36 410 18 39 1.1
64 318 8 89 1.4
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approximation of the RILU preconditioner for smaller
subdomains. On the other hand, when the number of
blocks increases more small eigenvalues are projected
to zero which also accelerates the convergence (see
[10]). We expect that there is some optimal value for
the number of subdomains, because at the extreme
limit there is only one point per subdomain and the
coarse grid problem is identical to the original prob-
lem, so there is no speedup at all.

6. Conclusions

From the experiments presented in this paper, we
conclude that the overlapping of the subdomains
makes the parallel iterative method more or less in-
dependent of the subdomain grid size. A drawback is
that overlapping is not so easy to implement on top
of an existing software package.

Examples of coarse grid correction are given for
symmetric and non-symmetric coefficient matrices.
Experiments show that there is only a slow increase of
the number of iterations when the subdomain grid size
is constant and the number of subdomains increases.
For a fixed global grid, it appears that the number of
iterations decreases when the number of processors in-
creases. This leads to efficiencies larger than 1. So we
conclude that coarse grid correction is a very efficient
technique to accelerate parallel block preconditioners.
Finally, coarse grid correction implemented by defla-
tion can easily be used in combination with existing
software.
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