Journal of Computational Physi&§2,426—-450 (2001)

®
doi:10.1006/jcph.2001.6795, available online at http://www.idealibrary.col DE &l.

The Construction of Projection Vectors for a
Deflated ICCG Method Applied to Problems
with Extreme Contrasts in the Coefficients

C. Wuik,* A. Segalf J. A. Meijerink; and G. T. Wijm&

*Delft University of Technology, Faculty of Information Technology and Systems, Department of Applied
Mathematical Analysis, Mekelweg 4, 2628 CD Delft, The Netherlands}&hdll International
Exploration and Production, P.O. Box 60, 2280 AB Rijswijk, The Netherlands
E-mail: c.vuik@math.tudelft.nl

Received January 4, 2000; revised April 12, 2001

To predict the presence of oil and natural gas in a reservoir, it is important to know
the fluid pressure in the rock formations. A mathematical model for the prediction of
the fluid pressure history is given by a time-dependent diffusion equation. Applica-
tion of the finite-element method leads to systems of linear equations. A complication
is that the underground consists of layers with very large contrasts in permeability.
This implies that the symmetric and positive definite coefficient matrix has a very
large condition number. Bad convergence behavior ofitmes method has been
observed, and a classical termination criterion is not valid in this problem. In [19]
we have shown that the number of small eigenvalues of the diagonally scaled matrix
is equal to the number of high-permeability domains, which are not connected to a
Dirichlet boundary. In this paper the proof is extended to an Incomplete Cholesky
decomposition. To annihilate the bad effect of these small eigenvalues on the conver-
gence, the Deflateidcc method is used. In [19] we have shown how to construct a
deflation subspace for the case of a set of more or less parallel layers. That subspace
proved to be a good approximation of the span of the “small” eigenvectors. As a
result of this, the convergencemfccais independent of the contrasts in the perme-
abilities. In this paper it is shown how to construct deflation vectors even in the case
of very irregular shaped layers, and layers with so-called inclusions. A theoretical
investigation and numerical experiments show thabtte method is not sensitive
to small perturbations of the deflation vectors. The efficiency obibec method
is illustrated by numerical experiments g 2001 Academic Press
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1. INTRODUCTION

Knowledge of the fluid pressure history in the subsurface is important for an oil compe
to predict the presence of oil and natural gas in reservoirs and a key factor in safety
environmental aspects of drilling a well. A mathematical model for the prediction of flu
pressures in a geological time scale is based on conservation of mass and Darcy’s law [.
The resulting time-dependent three-dimensional nonlinear diffusion equation is lineari
and integrated in time by the backwards Euler method. For the space discretization,
finite element method is applied. As a consequence in each time step, a large, sparse |
system of equations has to be solved.

We simplify the problem considerably, taking into account thatits characteristic propert
are kept. Assume that we have to solve the stationary linear diffusion equation,

—div(cVp) =0 onQ, (8]
with boundary conditions
p=f ondQP (Dirichlet) and % =g ondQN (Neuman,

wheredQ = aQP U aQN. In our problemsy 2P is the top boundary of the domain, unless
stated otherwise. The fluid pressure and permeability are denotedigo, respectively.
The domairt2 consists of a number of subdomains in whicts constant. Two values fer
are considered:" = 1 for high-permeability subdomains aatl= ¢ for low-permeability
subdomains (e.g., the permeabilities ratio for shale and sandstisrafthe order 107; see
[19]). The subdomains are denoted by the disjoint €gtsi € {1, ..., k}, which are such
that:UK_, 2 = Q and wherg; N Q; # @, theno; # ;. Note that in real-life applications,
the permeability is slightly varying in the subdomains. It is straightforward to adapt ou
method to construct the projection vectors for such a problem.

After a finite element discretization of (1), the linear system

Ax = b, (2

with A ¢ R™" has to be solved. In practical applications we are faced with large regio
in a three-dimensional space and as a consequence a large number of finite eleme
necessary. The matrix itself is sparse, but because of fill-in a direct method requires too
memory to fit in core. Therefore, only iterative methods are acceptable candidates for
solution of the linear systems of equations. Since the coefficient matrix of this systen
symmetric and positive definite, an Incomplete Cholesky Conjugate Gradient methey (
[13] seems to be a suitable iterative method. At this moment, we have not extended
method to nonsymmetrical problems. However, we expect that application to nonsymme
methods such asMRESandBI-CGSTABdoes not cause extra difficulties. Unfortunately, the
Earth’s crust consists of layers with large contrasts in permeability. Hence, a large differe
of the extreme eigenvalues is common in the system of equations to be solved. This lea
slow convergence ofcg, and conventional termination criteria [10] are no longer reliabls
(see [19] for details).

In[9, 19] it has been proven that the number of small eigenvalues of the diagonally sce
matrix is equal to the numbekY) of high-permeability domains, which boundaries do noi
contain a part of the Dirichlet boundary. A comparable spectrum has been observed fol
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IC preconditioned matrix. In this paper, we shall prove this observation. The bad effect
these eigenvalues on the convergenaeo& can be annihilated by using the corresponding
“small” eigenvectors as projection vectors in Deflatedc [19]. In [19] we have shown
how to construct approximate eigenvectors in case we have a set of nice, more or
parallel layers. In this paper we shall introduce a construction that is not limited to this ki
of layer, but can be used for fairly general types of layers. Even inclusions of sandston
shale can be tackled by this new construction method, something that was not possible
our previous method. Our new method involves the solution of a set of well-condition
subproblems. It appears that we may solve these subproblems with a very limited accu
without a deterioration of the good convergence properties of the method.

For a literature survey of iterative methods and applications where deflation is us
we refer to [19]. ThepiccG method has already been successfully used for complicate
magnetic field simulations [6]. A related method is recently presented in [15]. For mul
grid type methods for elliptic problems with highly discontinuous coefficients, we refer |
[1, 20]. Finally, in [4, 12] a preconditioner is analyzed for problems with large jumps in tf
permeabilities arising from reservoir simulation. The preconditioner is the inversg of
whereM is the matrix corresponding to a finite-element discretization of (1) with 1.
This preconditioner is only applicable when a fast solution method is available toxsolve
from Mx = b. Another application, where large differences in the coefficients occur, is tt
fictitious domain method applied to metal casting [14].

To define the DeflateatcG method, we need a set of projection vectars. . . , vy, that

form an independent set. The projection on the sgaperpendicular to spajvs, . . ., vm}
is defined as
P=1-VEYAV)T withE=(AV)'V and V =[vi...vny].

The solution vectox can be split into two partg = (I — P)x + PXx. The first part can
be calculated as followgl — P)x = VE™'VT Ax =V E~1VTh. For the second part, we
project the solutiorx; obtained fronpiccG to Px;.

The Deflatedcca algorithm reads (see Reference [19]):

DICCG
j=0 fo=PTro, pp=2z=L"TL y;
while ||Fj|l> > accuracydo
s o (Fizien)
V=141 =55
Xj = Xj-1+ajpj;
fj = fj—l — o PT Apj;

=Ty =1p.. p. (7))
ZJ =L L rJ’ﬁJ - (fj,l,Zj,l)’
Pj+1 = Zj + BjPj;
end while

Summary of the paper.In Section 2itis proven that not only the diagonally scaled matri>
hask® small eigenvalues, but that thisis also true fonthgreconditioned matrix. Thereafter,
anew and efficient construction of the projection vectors in general configurations is give!
Section 3. Furthermore, it is proven that the span of these vectors is a good approximatic
the “small” eigenspace. A corollary of this is that the convergencexfc does not depend
on the permeabilities ratie. The sensitivity of the method with respect to perturbation:
of the projection vectors is investigated in Section 4. Finally, in Section 5 some numeri
experiments are given.
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2. ANALYSIS OF THE IC PRECONDITIONED ITERATION MATRIX

First we repeat the definition of the Incomplete Cholesky freconditioner. After that
itis shown that the preconditioned matrix is scaling invariant. Thereafter, the results of [:
with respect to a simple diagonal preconditioner are generalized to the more complic:
case of thac preconditioner. In [19] it has already been observed numerically that tt
result is also valid for thec preconditioner, but no proof has been given. Finally, a remar
is given concerning an estimate of the condition of the matrix.

Theic preconditioner is defined as follows [13]:

DerFINITION 2.1. Determine the lower triangular mattixwith the following properties:

. |ij =0, whenaij =0,
e (LLT)jj = aj, whena; # 0, andl; > 0.
Let us defineA = D-2AD~z whereD is an arbitrary diagonal matrix with positive

elements on the diagonal. Theefactor of A is denoted by . In the next theorem, we prove
that the preconditioned matrix is scaling invariant.

THEOREM2.1. The matrices ELAL-T and L—1AL-T are identical.

Proof. The nonzero pattern df andL are the same. Suppoﬁe: D-:L and check
the second statement of Definition 2.1:

(ﬁET)i-=(D—%LLTD—%)..=L(LLT)i- t _ ¢ aj ! _
. NG TR Y

These identities imply thdt is equal toD~2 L. From this the theorem follows since
LA =L 'D3(D:AD Z)DiL T =Lt AL T, O

As a consequence of this theorantG has the same convergence behavior for the origine
systemAx = b and the diagonally scaled systdbTz AD~zy = D~zb with x = D~zy.
Therefore, we consider the diagonally scaled mafrix D-zAD"z with D = diag(A) in
the remainder of this section. In [19] it is shown tiehask® small eigenvalues. Below we
generalize this result to the Incomplete Cholesky preconditioned matrix.

We consider the following characteristic configurati@rs a rectangular domain, which
consists of R + 1 plain layers of equal thickness with a high-permeability layer at th
top and alternating low- and high-permeability layers further down (see Fig. 1). In order
simplify the proofs that will be given later on, the unknowns are renumbered in the follo
ing way: first, all high-permeability unknowns are numbered per layer from top to bottc
and next all low-permeability unknowns. Unknowns on the interface of a low- and hig
permeability layer will be considered as high-permeability unknowns AMstAPT, and
AP be the finite element matrices of the Laplacian on a single layer with respectively hor
geneous Neumann boundary conditions on all boundaries, Dirichlet boundary condition:
the top boundary, and Dirichlet boundary conditions on top and bottom boundarig’ In
andAP, a homogeneous Neumann boundary condition is posed on all other boundarie

THEOREM2.2. For the problem given aboy# appears that ik is small enoughtheic
preconditioned matrixt ~*AL~T has only R eigenvalues of @), wheree is the perme-
abilities ratio.
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Q, high—permeability
Q o

2 low—permeability
Q s ¢

2k low—permeability
(@ P " i

2k% + 1 high—permeability

FIG. 1. A problem with Z* 4 1 plain layers of equal thickness.

Proof. Using the finite element discretization as given in [19], the makroan be split
into ane dependent and anindependent part,

A=A +E&, (3)

whereA is the block-diagonal matrix with as first blogk>T, the diagonally scaled PT,
and then further down alternating?, the scaled\P, andA}, the scaledA. From [19]
it follows that ||€]|2 = O(/e).

Consider the Incomplete Cholesky decomposiiidn’ of the matrixA. Because of its
block diagonal structure the Cholesky factor is also block diagonal. The existence of
nonsingulanc decomposition oAPT and AP follows from [13]. Under mild conditions
(which are fullfilled in our problem) Kaasschieter ([11], Theorem 3.2) has proven that
Ic decomposition exists for the singular matAX' and that the resulting Cholesky factor
is nonsingular. This implies that exists andumin(LLT) > 0.

Inorderto provel LT = LLT + &, with | €]l = O(,/€), we first show that

L =L+ 0We). (4)

The elements of. are determined by the following formulas:

j—1
i\ij =0, Whené,-,- =0, elsefij = <é|] —Zfikfjk> /fjj fOI‘j <i, (5)
k=1

i—1
i = | & —Zﬂzk- (6)
k=1

Equation (4) is proven by induction. The Induction Hypothesis is

fij=Tj+0We. 1=<j=i. @)
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The start of the induction is possible because the first blook afid A are identical. For

lir1j, 1 <j <i we distinguish two cases:

() &+1; = O o
Using (5), (3), and (7) we obtaif,1 j = li11j + O(J/e€).

(i) &:1j = O/e) )
In this caséj1 ; = 0 and one has to show tHat; j = O(y/€). Because of our ordering of
the unknownsy 11 x = O(/¢) fork < j and thusfi+1,k = O(/¢) fork < j. Furthermore,
I;j =T} + O(/e), together with j; > 0, implies thafj; > 0 for e small enough. These
estimates combined with (5) show that; ;| = O(,/€).

Forli1i4+1, we obtain from (6), (3), and (7) that

i
livrive = \l Aisrit1— Zl?ﬂvk + O(e).

k=1

Sinceli 1.1 # 0, it follows thatl 1111 = [i11i41 + O(/e).
From Eq. (4) it easily follows that

CLT=LCLT 4+ &, with |€], = OW/e).
The minimax characterization ([8], Theorem 8.1.5) can be used to derive the inequaliti
Mnin(CLT) = Amin(CLLT) — O(Ve)  and Amad(LLT) < Amax(LLT) + O(Ve).

Fore small enough we have the boutign(LLT) > 2amin(LLT) > 0, whichisindependent
of €. The Courant—Fisher Minimax Theorem ([8], Theorem 8.1.2) can be used to show t

1

— e M(A) < A(LTTALTT A).
L) k(A) < Ak( ) (A)

IA

)»min(l— LT)

So the number and size of small eigenvaluef\aind L -2 AL~T are the same. By using
Theorem 3.1 from [19], the theorem is proverm

This section is concluded with a remark on estimating the conditioh ®¥hen a linear
system is solved by an iterative method, it is important to have an estimate of the condi
number of the matrix. This estimate can be combined with the machine precision to de
a lower bound for the norm of the residual. It makes no sense to iterate further when
norm of the residual is below this bound. Since the classical method to estimate the sma
eigenvalue fails [10, 19] we have no cheap test to detecifimill-conditioned because of
the large jumps in the permeability. Another method to estimate the condition of a matri;
to estimate the condition of its Cholesky factor [3, 5]. This method is also not usefull in tt
problem because it follows from the proof of Theorem 2.2 that the incomplete Choles
factor L is well conditioned.

3. THE CONSTRUCTION OF THE PROJECTION VECTORS

In[19] the “small” eigenvectors have been computed and analyzed for a simple test pi
lem. This analysis suggests that the eigenvectors are constant in high-permeability la
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and vary linearly in low-permeability layers with appropriate boundary conditions. Tt
computation of eigenvectors is expensive, and therefore an efficient way to construct
projection vectors for layered problems (see Fig. 1) is given in [19]. In this constructic
the vertical cross sections of the projection vecigrare made such that:

o the value ofy; is one in theé + 1th high-permeability layer including interface points
and zero in the other high-permeability layers,

e the value ofy; in low-permeability layers is a linear interpolation of its values on the
interfaces.

Below we give a generalization of the construction of the projection vectors for gene
geometries. Furthermore, a proof is given that the space spanned by these projection ve
is a good approximation of the “small” eigenspace of the (diagonat)goreconditioned
matrix.

AssumMPTION3.1. We assume thatthe number of small eigenvakigs{the diagonally
scaled (or IC preconditioned) matrix is equal to the number of high-permeability subdoma
not connected ta2P.

This assumption holds for a layered structure (see [19] and Theorem 2.2). To const
the projection vectors the subdomains are ordered as follows:

DerINITION 3.1. The high-permeability subdomains are numbered figt: i €
{1,...,Kk"}. Furthermore, the firsk® high-permeability subdomains are such tkatn
AP =0, i e{l,...,k5.

In other words the firgt®> subdomains are highly permeable and their boundaries do n
contain a part of the Dirichlet boundary. This ordering is a generalization of the orderi
used in Section 2.

DEeFINITION 3.2. The projection vectong fori € {1, ..., k} are defined as

e vi=1lonQ andv =00nQ;, j #i,j €(1,...,k"},
o v; satisfies the finite element discretization of the equation

—div(o;Vv) =0 on®j, je{k'+1,...,k, (8)

where Dirichlet boundary conditions are used at the interfag®s () €2) and homogeneous
Dirichlet and Neumann boundary conditions are used at outer boundarie(on S_zj N
920 and 2 = 0 onQ; N IQN).

Note that in this definition the linearly varying part is replaced by the solution of th
relatively small systems of Eq. (8). Each of these systems itself has a good condition. L
on we shall solve these systems (8) with a limited accuracy, so that only i@devsteps
per subsystem are necessary. This construction is definitely much more general thar
previous one, since it does not require parallel layers anymore. It even allows the possib
of inclusions of sandstone in shale layers, something that was not possible in the
method.

Anotherimportant feature of this new approach is that the permeability does not have t«
constant per layer. It may be a function of space, and we may even replace the permeal
by a full Cartesian permeability tensor that is a function of space. Of course, there is
reason why the permeability in the sandstone layer may not be variable as well.
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Note that the projection vectovsare independent &f In the high-permeability domains,
the vectorsa); can also be interpreted as a solution of (1) with Dirichlet boundary conditior
equal to 1 ford$2; and equal to 0 fodQj, j #1i, j € {1,...,k"}.

We first show thatfl D1 Avi ||« = O(¢), whereD = diag(A). Thereafter, we prove that
the vectorg; are independent, so spémn, ..., vk} approximates the “small” eigenspace
of the diagonally scaled matrix.

AsSSUMPTION3.2. We assume that the finite-element discretization is consistent, whi
means that the discretization error is zero for a constant function. The subddmairs
approximated by polygons and each element is contained in only one polygon. Finally,
assume that the off-diagonal elementsicdire nonpositive.

This last assumption means that the finite-element grid must satisfy certain requirem
with respect to the angles of the elements. This is a sufficient condition for our proc
however, the method has a wider range of applicability. Let the vegtoctontain the
space coordinates of grid point The jth component of vectow; is denoted byvi);j. A
consequence of Assumption 3.2 (consistency) is

n
D ag =0 forxm e 2\00P. 9)
=1

For every projection vectar; we define an index sét C {1, ..., n}, which contains the
indices of all points on the interfaces of the low-permeability domains which are neighb
of Q.

THEOREM 3.1. When AssumptioB.2is fulfilled the vectors; as defined in Definition
3.2are such that

ID™ Aviflo = OCe), i €{L,... k%
Proof. We first prove
(Avi))m=0 forme {1,...,n}\T. (20)

For xm € Q; U (§j Na), j €{1,...,k5} component(vi)m is equal to the compo-
nents ofvy; in the neighboring points. So (10) follows from Eq. (9). From Definition
3.2 we see that (10) holds fo, € ©2; U (§j NaR),jeks+1,....k"}. On a low-
permeability subdomairxf, € € U (§,~ NaQ), j e {(k"+1,...,k}), Eq. (10) also fol-
lows from Definition 3.2. Finally, wherxy, is on an interface where, has zero com-
ponents on the low-permeability subdomain then all components afe zero in the
high-permeability subdomain and thus Eq. (10) holds. This imgli&st Av;)m = 0 for
me {1,...,n\[.

For anm e T; we split its neighbors into two sef§, andJ!.. The setg", I\, contain
the indices of the neighboring points in the high-, low-permeability subdomain, resp
tively. The setﬂﬂl also contains the indices of the neighboring points at the interface. Tt
implies

amj =01, forje Jﬁq,
(11)
amj = O(e), forjel,.
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Assumption 3.2&n; < 0, j # m), together with (9) and (11), implies

Dinm=8mnm=—»_ amj = O(D). (12)

jemurh,
Equation (9) combined witkw;); = (vi)m for j € J*r; yields
(Av)m = Z amj((vi)j — (vi)m). (13)
jeth
From the maximum principle we know th@t); € [0, 1] so(Avi)m = O(e). Together with
Dmm = O(1), the result is proven. m

CoroLLARY 3.1. For mel;, an O(1) perturbation of (v)j, ] € J[; leads to
ID~*Avi || = O(1), whereas an QL) perturbation ofv;);, j € J\, leadsto] D~ Avi ||oc =
O(e).

This means that a large perturbationvpin the low-permeability layer leads to a small
perturbation in the matrix vector produbt > Av;.

DeFINITION 3.3.  The normalized eigenvectorsDf 1 A are denoted by;,
D_lAUiZKiUi, i=1...,n,
where the eigenvalues are ordergg:< 1, < --- < A,. Two matrices are definetys =
[U]_ e vks] andUks = [Ul s Uks].

In the following theorem, we show that the space spannegfy. ., v} is “nearly”
a subspace of the “small” eigenspace qpan. .., uxs}. With “nearly” a subspace we
mean that the norm of the component of a veatar {vy, . .., vs} outside the subspace
sparfus, . .., Ugs} is small.

THEOREM3.2. When Assumptiori1and3.2are fulfilled the expression holds
Vis =UsZ + E, (14)

where| E[l2 = O(/e).

Proof. The vectorv; can be written as a linear combination of the eigenvectors
n
v =) ajuj. (15)
j=1

Theorem 3.1 implie§ D~ Av||3 < O(¢?). Substitution of (15) gives

2

n
Z/\Jajuj

=1

ID~*Av |3 =

2

The eigenvectorsD%u,- of D~2AD™: are orthogonal. This property is used in the
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derivation
2

n 1
Z)»J'Otj DEUJ'

j=1

D" Avi[|3 > Amin(D™H)

2

n n
= Amax(D) Z X?“f” D%uj H; > Amax(D)Amin(D) Z)\'JZO{]Z
j=1 j=1

SinceAmax(D) = O(1) andimin(D) = O(e), we obtain
kS
Z,\ 2 + Z 3202 < OCe).
j=1 =ks+1
Rearranging the terms shows that
Aeis Z of < Aaf < O(e),
j=ks+1 j=ks+

becaus@'lilozj2 is bounded. Sincies 1 = O(1), itfollows thatZ?:kSHa]—z = O(¢). This

can be shown for eveny,i € {1, ..., k%} so the theorem is proven.m
Note that the projection vectois, ..., v are linearly independent, because fgr
Q,i €{1,...,k%, (vi)m = 1,and(v;)m = Oforj # i. Asaconsequence of this the matrix

VI Vis is nonsingular. This can be used to show that the “small” eigenspacgispan , Uys}
is “nearly” a subspace of the space spannefby. . ., vys}.

THEOREM 3.3. When Assumptiors1and3.2are fulfilled the expression holds
Uks = VkSZ_l + é, (16)

where| E|l2 = O(/2).

Proof. From Theorem 3.2 it follows that
ViiVie = ZTULUZ + E=ZTZ + E,

where|| E|; = O(4/¢). From the minimax characterization ([8], Theorem 8.1.5) we obtai
the bound

)\min(ZT Z) > )\min(VkIVks) - O(\/E)

SincerTsts is nonsingularimin(ZT Z) > 0 for ¢ small enough, and is nonsingular.
Postmultiplying (14) byz~* gives

Ue =VieZ 1 —EZ L (17)
The theorem now follows from (16) and (17) because

IEllz = EZ Y2 < (min(Z7 Z)) "2 || El2 = O(V?). ]
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This theorem motivates the use of the vectrs . . ., v} in the DeflatedcG method
applied to the diagonally scaled matrix to annihilate the effect of the small eigenvalues.
In Section 2, it has been shown that thepreconditioned matrix has’® eigenvalues of
O(e). Below we prove that the vectofs,, ..., vk} can also be used as projection vectors

in thebiccG method.

THEOREM 3.4. When AssumptioB.2 is fulfilled, the vectorsy; as defined in Defini-
tion 3.2are such that

IL-TLYAv ||l = O(e), ie{l,... k5.

Proof. The proof of this theorem is based on the results presented in Theorem 3.1.
use these results we note

IL"TL Avifl2 = IL"TL ' DD Auill2 < Amax(L T L™'D)|ID~* Avi|2.

SinceL=TL~1D and L-T L~ are similar, their spectra are identical. From the proof of
Theorem 2.2 we have thagax(L~TL™1) = 1/Amin(LLT) is bounded. This combined with
Theorem 3.1 leads to the inequality:

IL"TL A 12 < Amad( LT L7HV/NIID 7 Avi oo = O(e). n

Analogous to Theorem 3.3 one can prove that the “small” eigenspakce 'df 1 A is
“nearly” a subspace of the spian, .. ., vs}. This suggests that the convergenceaicG
is independent of the ratio of the high and low permeability. This is confirmed by numeric
experiments in Section 5.1.

We conclude this section with some remarks about an efficient implementation of 1
piccégmethod. It follows from Definition 3.2, that each projection veetas sparse because
it is zero everywhere except @ and its neighboring subdomains. The application of the
projection P to a vector consists of inner products and vector updates wvitnd Av; .
The matrix vector produchv; is less sparse than. The fill-in occurs at the grid points
connected to the domain wheovg is honzero. The number of grid points wheke; is
nonzero is defined al;. It is easy to see that the application Bfcosts approximately
32}‘; N; floating point operations. To stong and Av;, 22:‘; Ni memory positions
are necessary. In many applicatimis:,!‘i1 N; is less than A. However, one can have
problems whereN; ~ n, which makesdiCCG unattractive. An example of this: assume
that the domaiif2 consists of a low-permeability subdomain which cont&firsubdomains
with a high-permeability. Inspection of the computed projection vectors shows that lar
parts of them are close to zero. Ignoring the small components in the projection vect
makediccGfeasible again. To that end we introduce a tolerarared ignore all elements of
the projection vectors less tharin Section 5.3 such a problem is investigated by numerice
experiments.

Another important point is the cost to compute the projection vectors on the loy
permeability subdomains. The construction implies that a number of diffusion proble!
have to be solved. The amount of work to solve these subproblems is small with respe
the total amount of work. The reasons for this are

o the size of the subproblems is small,
o the submatrices are obtained by copying the relevant part of the original matrix,
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e the preconditioned submatrices are well conditioned,
e it is sufficient to have an approximation of the subsolution with a low accuracy.

The final reason is investigated in more detail in the following section.

4. SENSITIVITY INVESTIGATION OF DICCG

In Section 3 a method is given to construct projection vectors, which span is close
the “small” eigenspace. An important question is how sensiti®dsG to perturbations
in these approximations. This is a very important issue since our construction includes
solution of a subsystem per shale layer, and we would like to do that as cheap as possib
Section 4.1, we analyze the dependenae@fGto perturbations of the projection vectors in
a simple case. Some numerical experiments to validate our analysis are given in Sectior
Finally in Section 4.3 we investigate numerically the occurrence of small eigenvalues wi
a high-permeability domain is only weakly connected to a Dirichlet boundary.

4.1. Analysis of a Perturbed Projection Vector

We consider a problem where the matdxc = L~*AL~T has one small eigenvalue
A1. The normalized eigenvectors 8fc are denoted bw;. For simplicity we assume that
A2 = 1, and that the perturbed projection vector is given by

V1 = w1 + Qws. (18)

Since A|c is symmetric, the eigenvectors are orthonormal. The perturbed projection
operator is

P=1-vEYAcuw),

where E = (Aicv1)Tv1 = A1 + o Consider the eigenvectors d®' Ajc. From the
definition of P, it follows thatP™ A,c v, = 0. Furthermore, (18) implies th&" Ajcw; =

Mwi, for i =3,...,n. Finally, the vectorew; — w» is also an eigenvector dP' Ac
. . . (1 2 ~ .
and its eigenvalue iper = % Fora smalliper & 1 = . In Table | we givepe, for

A1 = 10~%and some values of. This analysis teaches us the following: when the projectio
vectors are perturbed the smallest eigenvalue remains exactly zero, however the sm:
but one eigenvalue can change considerably. So if the perturbation of a projection vect
too large, deflation with this perturbed vector does not help.

In order to us®ICCG we approximate the eigenvectarsof L~ L1 A. The eigenvectors
u; andw; are relatedw; = LTu; = I:TD%ui. From Section 2 we know that the elements
of L are O(1), whereas the elements ofz are O(21) in high-permeability domains and
O(4/¢) in low-permeability domains. So perturbationsaupfn a low-permeability domain
lead to small perturbations af; andie. In the following section, we compare the results
obtained from this analysis with numerical experiments.

TABLE |
Value of Ay for Various Values of o

o 0 10* 103 102 10! 1

Aper 1 0.0909 104 10° 107 2.10°°




438 VUIK ET AL.

TABLE 1l
Newly Introduced Small Eigenvalue Q) and Number of Iterations (n)
Needed beforeniccs (or icce) Reaches the Required Accuracy (Perturbation
« Is Restricted to the Shale Layers)

a 0 102 10 1 ICCG
Aper 0.164 0.164 0.164 2.-10°3 16-10°
n 14 14 15 24 54

4.2. Validation of the Perturbation Analysis

As a test problem we consider the straight layer problem as given in [19]. This proble
consists of seven horizontal layers with a sandstone layer {) at the top and alternately
shale ¢ = 10~7) and sandstone layers further down.

Two experiments are done. In the first experiment a random vector is added to
projection vector in the shale layers. The amplitude of this vectgr &d it is zero at
the interfaces. The results are given in Table Il. The number of iterations increases
increasinge, however even fotx = 1 DICCG is much faster tharmccc. We observe that
the smallest eigenvalue only changes considerably ferl. For this choice. pe is of the
same order as the square root of the smallest eigenvalue of the original matrix. This ag
well with our analysis. Moreover, it appears that the difference between the estimated
exact error is relatively small compared to the case of nodeflation.

In the second example we perturb the nonzero parts of the projection vectdss in
the sandstone layée;. In Table Il the smallest nonzero eigenvalug,, and the number
of iterations are given. Note that qualitatively there is a good correspondence betweer
results given in Table | and Table IIl.

4.3. The Influence of the Geometry on Small Eigenvalues

Initially we have assumed that a high-permeability domain, which is connected tc
Dirichlet boundary does not lead to a small eigenvalue of the diagonally scaled ma
(Assumption 3.1). In this section this assumption is investigated in more detail. The rea
for this is that in a groundwater flow problem (see Section 5.4), we observe a small eig
value, although the high-permeability inclusion is connected with a Dirichlet boundary.
our first experiments we consider configurations as in Fig. 2, with permeability const:
on = 1. In these tests, no small eigenvalues occur, which is expected from [19]. Therefc

TABLE 11l
Newly Introduced Small Eigenvalue Q) and Number of lterations (n)
Needed beforeviccs (or icce) Reaches the Required Accuracy (Perturbation
« in the Whole Domain)

a 0 104 102 102 101 ICCG

Aper 0.164 0.0825 910~ 9-10°° 9-10°8 1.6-107°
n 14 18 27 38 56 54
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1 10° 10°
S S, % %
A B C D E

FIG. 2. The test configurations with the permeability constants.

we usesy, = 100inthe rest of our experiments (in analogy to the groundwater flow problen
We consider five test problems. The geometry of the problems is presented in Fig. 2.
problems are solved on a grid of constant spacing. The first problem, with a medi
permeability, is only used for reference. In the second geometry a high-permeability
main is added. In the remaining problems, the connection width between the medium-
high-permeability domain is decreased because of a low-permeability layer. The smal
eigenvalue of the diagonally scaled matrices are given in Table IV. The results show cle
that adding a high-permeability domain with no Dirichlet boundary conditions decrea:
the smallest eigenvalue by a factor 55. This is of the same order as the contrast in
permeability constants in both domains. On top of that, the smallest eigenvalue decre
proportionally to a decrease of the connection width. Both effects enhance each ot
Since the ratio between the eigenvalues of the various configurations is independent o
grid-size, we expect that the smallest eigenvalue of the continuous problem has the <
behavior.

Based on these results, we make the following observations on the eigenvalues o
diagonally scaled matrix when a problem is considered with high (hedium 6,) and
low-permeability 6;) domains:

e A small eigenvalue occurs when a high-permeability domain is only connected t
Dirichlet boundary via a medium or a low-permeability domain.

¢ A high-permeability domain which is “weakly connected” (which means that th
connection width is small) via a medium-permeability domain to a Dirichlet bounda
leads to an eigenvalue of ordghr.

These observations imply that the method to construct the projection vect
(Definition 3.2) should be refined in more general problems. In Section 5.4 a groundwze
flow problem is solved, which contains high-, medium-, and low-permeability domair
together with “weakly connected” high-permeability domains.

TABLE IV
The Smallest Eigenvalues for Various Test Problems, Including Variations
of the Connection Width
Configuration A B C D E
Connection width [%] — 100 920 10 1
50 x 45 grid 27x10*% 49x10° 46x10° 69x107 —

100 x 90 grid 68 x 10° 12x10° 11x10°® 17 x 1077 23 x 108
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1280
1270 1o

1260 700

FIG. 3. The geometry of an oil flow problem.

5. NUMERICAL EXPERIMENTS

In this section we consider four test problems. The first problem is a three-dimensio
layered problem motivated by transport of oil in a reservoir. Secondly a two-dimensiol
problem is considered with variable anisotropic permeabilities. Thirdly a test problem
considered with many high-permeability inclusions in a low-permeability layer. Finally tt
fourth problem is the simulation of a two-dimensional groundwater flow.

5.1. An Oil Flow Problem

For the flow simulation of oil and natural gas in a reservoir it is necessary to predict fiL
pressures in rock layers. Therefore the diffusion equation (1) has to be solved in large th
dimensional geometries with a layered structure. This problem may also be solved with
method treated in [19], however, we have never applied that method to 3D problems, si
the definition of linearly varying vectors is much more complicated than in 2D. With ot
new method there is no problem with the definition of the approximate eigenvectors all

As a first problem we consider two sandstone layers=(10~* ando = 10) separated
by shale layerso = 1077). The layers vary in thickness and orientation (see Figs. 3 and 4
At the top of the first sandstone layer a Dirichlet boundary condition is posed, so there
only one small eigenvalue. The number of iterations and the total CPU time)focG are
shown in Table V for various grid sizes. The CPU time to construct the projection vectol
given too. We see that the construction time is relatively small.

Next we consider the same geometry, but now the domain consists of nine layers. |
sandstone layers are separated by four shale layers. The matrix of this problem has
small eigenvalues. Only.8 n memory positions are required to store the four projectior
vectors. The §)iccaG results are given in Table VI. There is a large gain in number ©
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Composition Permeability
-4
Sandstone/Shale 10
-7
Shale 10
Sandstone 10

k)

FIG. 4. Permeabilities for each layer.

iterations and CPU time. The convergence history of both methods is shown in Figs. 5
6. The norm of thaecca residual has four bumps (corresponding to the number of sme
eigenvalues) before the true error decreases. In this example, the second and third |
nearly coincide. The observed propertiesmi¢cc correspond well with the observations
made in [19] for simple two-dimensional test problems.

For the 9-layer problem we also investigate the effect of the jump in the permeabiliti
We use the grid with 19665 nodal points, take the permeability in the sandstone layers e
to 1, and vary the permeability in the shale layers. The results in Table VII confirm th
DICCG is independent of the value ofhae In our experiments a relative high accuracy
(107%) is used. In Table VIII the results are given for other accuracies. We conclude ti
the gain in CPU time is very large for accuracies (1,a.0~2), which are sufficient in many
applications.

5.2. A Flow Problem with Variable Anisotropic Permeabilities

In this problem we investigate the applicability of theecG method to a problem with
variable anisotropic permeabilities. We consider the equation

3 ap 8 ap

——0yy— — —0,,— =0, € [0, 10000 z € [—200Q 0],
oy ay 92770z ye[ ] [ ]
TABLE V
Number of Iterations and CPU Time for Various Grid Sizes
IcCCG DICCG
Nodal points Iterations CPU Iterations CPU CPU construction

2760 21 0.57 10 0.36 0.08
19665 38 9.01 20 5.80 0.60

148185 86 163 43 99.6 5.4
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TABLE VI
Number of Iterations and CPU Time for the 9-Layer Problem

ICCG DICCG
Nodal points Iterations CPU Iterations CPU CPU construction
2760 47 1.19 10 0.37 0.12
19665 83 19.1 20 6.22 1.29
148185 189 350 44 108 12.7

with
ply,2=1 z=0,

and homogeneous Neumann boundary conditions on all other boundaries. In a porous i
flow, the permeability is a function of the deth/\e use the following function ([16], [18]):
oyy = 300,; and

k(2) (0.5 — 0.1e!~6%2-03%)g(14- 350

0.5 + 0.1e(—60z-0.3?)

0722) =

The functionk is defined by

7 _
@ = {1cr z € [-100Q 0],
1 z € [-200Q —1000}

10 KL .'“I N N T T

10° 1
estimated
error

10° | 1
3= L,
A

min
—1
10_10 1 I I |||M rk||2
50 100 150 200 250

number of iterations

FIG.5. The convergence behavior fruca.
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20 30 40 50

The results forg)iccG are given in Figs. 7 and 8. The same behavior is observed as for t
previous example. UsingcG we can see the true error only decreases after 40 iteratio
and the estimated error is not reliable. In the caselofg, the true error decreases from
the beginning, and the estimated error is close to the true error. This proves that our
approach can also be applied for anisotropic and variable permeabilities.

number of iterations

FIG. 6. The convergence behavior forcca.

5.3. A Problem with Many High-Permeability Inclusions

At the end of Section 3 we have noted that there are problems in which the amoun
memory to store the projection vectors is proportional to the number of small eigenvalt

TABLE VII

The Smallest Nonzero Eigenvalue and the Number of
Iterations for the 9-Layer Problem

ICCG DICCG
Oshale Amin Iterations Amin Iterations
10°3 15.107? 26 69.107? 20
10 2.0.10° 39 87-10?2 19
10°° 22.10* 59 77-10°? 20
10°® 22.10° 73 78.107? 20
107 23.10° 82 77-10°2 20

60

443
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TABLE VIII
Varying the Accuracy for the 9-Layer Problem

ICCG DICCG
Accuracy Iterations CPU Iterations CPU
10°° 82 18.9 20 6.3
104 80 18.4 16 5.2
102 78 18.0 12 4.1
102 77 17.8 3 15
101 75 17.2 2 1.2

To diminish the required amount of memory, we have proposed the use of a toletance
The components of the projection vectors which are lessédlzaa set equal to zero. In this
subsection, we investigate the influence @in the properties aicca.

We consider a three-layer problem, where the shale layer contains eight sandstone it
sions (see Fig. 9). There are 12585 nodal points used in the finite element discretizatic
this problem. For one of the projection vectors, a contour plot is given in Fig. 10. From tt
figure we see that the value of the projection vector is very small in the shale layer exc
in the vicinity of one sand inclusion. This observation has motivated us to delete the sn
components of the projection vectors.

It is clear that this example cannot be treated with the method introduced in [19].
is impossible to define a linearly varying vector field in the shale region that also h

10 T T T T T T T
estimated
error

10° -

—5
107 -1 7
| IMe ]l
min
» %=1,
10_10 1 1 1 1 1 1 1
10 20 30 40 50 60 70

number of iterations

FIG. 7. The convergence behavior fca.
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min

estimated
error

—1
ML,

Ix=x,I

5 10 15 20 25 30 35 40
number of iterations

FIG. 8. The convergence behavior forcca.

sandstone

sandstone

FIG. 9. A problem with eight sandstone inclusions in the shale layer.
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LEVELS

0.000
0.059
0.118
0.176
0.235
0.294
0.353
0.412
0.471
0.529
0.588
0.647
0.706
0.765
0.824
0.882
0.941
1.000

FIG. 10. Contour plot of one of the projection vectors.

prescribed values in the sandstone inclusions. Only our new approach is able to solve
problem.

In Table IX the relevant results are given focG andbicca for various values of. We
see again a large decrease in CPU time and number of iterations when deflat@s) {s
used. However imICCG, 3.9n extra memory positions are required to store the projectio
vectors. Increasing the tolerance leads to the same number of iterations, less CPU tin
small increase in the true error, and a large decrease of the amount of extra memory. Sc
combination obiccG with a tolerance leads to an efficient solution method even when tt
problem has many high-permeability inclusions.

5.4. A Groundwater Flow Problem

In Section 4.3 we have seen that a small eigenvalue occurs when a high-permeat
layer is “weakly connected” to a Dirichlet boundary. In this section we will examine th
validity of this assumption in more detail. In [17], a Poisson-like equation has been solv

TABLE IX
Results oficce and pbicce for Various Values of §

ICCG DICCG
) 0 102 101
CPU 44 12 8.3 8.1
CPU construction 0 3.1 2.9 2.9
Iterations 616 76 76 76
Amin 4% 10° 8x 102 8x 1072 8x 102
True error 7x 1077 1.86x 10°° 1.87x 10°° 228 x 10°°

Extra memory 0 3In 16n 12n
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u=0

R S |
_ ey - u=
u=1 . 04 SN

u=0
FIG. 11. The coefficients and geometry of the groundwater problem.
on the structure shown in Fig. 11. The solution satisfies the equation
—V . (AVU) + B(X, Y)uy = F, where B(x,y) = 262Xt

The coefficientA is defined as shown in Fig. 11. The functiBris everywhere zero except
in the center section wheffe = 100. We have Dirichlet conditions on the complete oute

1 0 T T T T

estimated
error

A

min
—1
M L

Ixx, I

10_10 1 I I I I I I I
20 40 60 80 100 120 140 160

number of iterations

FIG. 12. The convergence behavior fruca.
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1 0 T T T T T T T T T T

A

min
estimated
error .

I,
—1
M

-10 I I I

10

10 20 30 40 50 60 70 80 90 100
number of iterations

FIG. 13. The convergence behavior forcca.

boundary. In [17]BI-CGSTAB andcGs have been used to solve the discretized system. |
both cases, an incomplete LU-factorization has been used as preconditioner. If we ta
look at the convergence behaviomyfcGsTABandcGsas reported in [17], there is a strong
resemblance with the convergence behaviocot applied to layered problems.

Since at this moment we are only interested in symmetric problems we will analyze
Poisson equation:V - (AVu) = F. Like before, the smallest eigenvalue of the discretizec
system has been calculated. Both the presence of the clay seatierl (%) as well as
the jump in permeabilities between the two sand sections have an influence on the sme
eigenvalue. To annihilate the effect of the smallest eigenvalue on the convergarme,
has been applied to this problem. The projection vector has been constructed by negle«
the small gap in the low-permeability layer. The convergence behaviardarandbiccG
(applied to the original geometry) is plotted in Figs. 12 and 13. The convergence behay
of biccG is much better than that afcc. The number of iterations decreases with a facto
of two, and a proper termination criterion can be used.

Note that in the shaded region we use a coefficiért 10°, while in the outer region
A = 1(0%. The reason for this is that the erratic behavior we observe from the convergel
of iIccGis only present if these coefficients differ. If both valuesfolire equal, no small
eigenvalues are present. See also the remark given in Section 4.3.

6. CONCLUSIONS

It has been shown that the Incomplete Cholesky greconditioned matrix is a scaling
invariant. This property is used to show that the number of small eigenvalues f the
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preconditioned matrix is equal to the number of high-permeability domains, which are |
connected to a Dirichlet boundary.

A detailed description has been given as to how to construct the projection vectors
cheap way. A proof is given to show that the span of these vectors approximates the “sn
eigenspace of the diagonaliarpreconditioned matrix. This implies that the convergence
behavior ofbiccais independent of the size of the jump in the coefficients.

It has been shown that perturbations of the projection vectors in the low-permeability f
have only a limited influence on the convergence propertiesaifc. This has important
consequences for the efficiency of the method:

e Itis sufficient to compute a low-accuracy solution of the subdomain problems, whi
are used in the construction of the projection vectors.

e Small components of the projection vectors can be neglected to save work and men
requirements.

The use of our projection vectors, in combination with thecc method, makes the
solver robust for elliptic problems with highly discontinuous coefficients. For this kind ¢
problem, a robust stopping criterion is available, which is not the case far¢keamethod.
For high accuracies, ttecce method converges considerably faster thandbe method.
However, for practical accuracies, the CPU time decreases with a factor of 10 to 20. 1
means that in the context of nonlinear problems or time-dependent prolbercs is
far superior abovecca. It has been shown that the construction of the projection vecto
can be done fully automatically and that the method can be applied to practical proble
We conclude thabiccg, ignoring of the small components in the projection vectors, is
very robust and extremely efficient method to solve problems with extreme contrasts in
coefficients.
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