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To predict the presence of oil and natural gas in a reservoir, it is important to know
the fluid pressure in the rock formations. A mathematical model for the prediction of
the fluid pressure history is given by a time-dependent diffusion equation. Applica-
tion of the finite-element method leads to systems of linear equations. A complication
is that the underground consists of layers with very large contrasts in permeability.
This implies that the symmetric and positive definite coefficient matrix has a very
large condition number. Bad convergence behavior of theICCG method has been
observed, and a classical termination criterion is not valid in this problem. In [19]
we have shown that the number of small eigenvalues of the diagonally scaled matrix
is equal to the number of high-permeability domains, which are not connected to a
Dirichlet boundary. In this paper the proof is extended to an Incomplete Cholesky
decomposition. To annihilate the bad effect of these small eigenvalues on the conver-
gence, the DeflatedICCG method is used. In [19] we have shown how to construct a
deflation subspace for the case of a set of more or less parallel layers. That subspace
proved to be a good approximation of the span of the “small” eigenvectors. As a
result of this, the convergence ofDICCG is independent of the contrasts in the perme-
abilities. In this paper it is shown how to construct deflation vectors even in the case
of very irregular shaped layers, and layers with so-called inclusions. A theoretical
investigation and numerical experiments show that theDICCGmethod is not sensitive
to small perturbations of the deflation vectors. The efficiency of theDICCG method
is illustrated by numerical experiments.c© 2001 Academic Press
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1. INTRODUCTION

Knowledge of the fluid pressure history in the subsurface is important for an oil company
to predict the presence of oil and natural gas in reservoirs and a key factor in safety and
environmental aspects of drilling a well. A mathematical model for the prediction of fluid
pressures in a geological time scale is based on conservation of mass and Darcy’s law [2, 7].
The resulting time-dependent three-dimensional nonlinear diffusion equation is linearized
and integrated in time by the backwards Euler method. For the space discretization, the
finite element method is applied. As a consequence in each time step, a large, sparse linear
system of equations has to be solved.

We simplify the problem considerably, taking into account that its characteristic properties
are kept. Assume that we have to solve the stationary linear diffusion equation,

−div(σ∇ p) = 0 onÄ, (1)

with boundary conditions

p = f on ∂ÄD (Dirichlet) and
∂p

∂n
= g on ∂ÄN (Neumann),

where∂Ä = ∂ÄD ∪ ∂ÄN . In our problems,∂ÄD is the top boundary of the domain, unless
stated otherwise. The fluid pressure and permeability are denoted byp andσ , respectively.
The domainÄ consists of a number of subdomains in whichσ is constant. Two values forσ
are considered:σ h = 1 for high-permeability subdomains andσ l = ε for low-permeability
subdomains (e.g., the permeabilities ratio for shale and sandstone:ε is of the order 10−7; see
[19]). The subdomains are denoted by the disjoint setsÄi , i ∈ {1, . . . , k}, which are such
that:∪k

i=1Ǟi = Ǟ and whenǞi ∩ Ǟ j 6= ∅, thenσi 6= σ j . Note that in real-life applications,
the permeabilityσ is slightly varying in the subdomains. It is straightforward to adapt our
method to construct the projection vectors for such a problem.

After a finite element discretization of (1), the linear system

Ax = b, (2)

with A ∈ Rn×n has to be solved. In practical applications we are faced with large regions
in a three-dimensional space and as a consequence a large number of finite elements is
necessary. The matrix itself is sparse, but because of fill-in a direct method requires too much
memory to fit in core. Therefore, only iterative methods are acceptable candidates for the
solution of the linear systems of equations. Since the coefficient matrix of this system is
symmetric and positive definite, an Incomplete Cholesky Conjugate Gradient method (ICCG)
[13] seems to be a suitable iterative method. At this moment, we have not extended our
method to nonsymmetrical problems. However, we expect that application to nonsymmetric
methods such asGMRESandBI-CGSTABdoes not cause extra difficulties. Unfortunately, the
Earth’s crust consists of layers with large contrasts in permeability. Hence, a large difference
of the extreme eigenvalues is common in the system of equations to be solved. This leads to
slow convergence ofICCG, and conventional termination criteria [10] are no longer reliable
(see [19] for details).

In [9, 19] it has been proven that the number of small eigenvalues of the diagonally scaled
matrix is equal to the number (ks) of high-permeability domains, which boundaries do not
contain a part of the Dirichlet boundary. A comparable spectrum has been observed for the
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IC preconditioned matrix. In this paper, we shall prove this observation. The bad effect of
these eigenvalues on the convergence ofICCGcan be annihilated by using the corresponding
“small” eigenvectors as projection vectors in DeflatedICCG [19]. In [19] we have shown
how to construct approximate eigenvectors in case we have a set of nice, more or less
parallel layers. In this paper we shall introduce a construction that is not limited to this kind
of layer, but can be used for fairly general types of layers. Even inclusions of sandstone in
shale can be tackled by this new construction method, something that was not possible with
our previous method. Our new method involves the solution of a set of well-conditioned
subproblems. It appears that we may solve these subproblems with a very limited accuracy
without a deterioration of the good convergence properties of the method.

For a literature survey of iterative methods and applications where deflation is used,
we refer to [19]. TheDICCG method has already been successfully used for complicated
magnetic field simulations [6]. A related method is recently presented in [15]. For multi-
grid type methods for elliptic problems with highly discontinuous coefficients, we refer to
[1, 20]. Finally, in [4, 12] a preconditioner is analyzed for problems with large jumps in the
permeabilities arising from reservoir simulation. The preconditioner is the inverse ofM ,
whereM is the matrix corresponding to a finite-element discretization of (1) withσ ≡ 1.
This preconditioner is only applicable when a fast solution method is available to solvex
from Mx = b. Another application, where large differences in the coefficients occur, is the
fictitious domain method applied to metal casting [14].

To define the DeflatedICCG method, we need a set of projection vectorsv1, . . . , vm that
form an independent set. The projection on the spaceA-perpendicular to span{v1, . . . , vm}
is defined as

P = I − V E−1(AV)T with E = (AV)T V and V = [v1 . . . vm].

The solution vectorx can be split into two partsx = (I − P)x + Px. The first part can
be calculated as follows:(I − P)x = V E−1VT Ax = V E−1VTb. For the second part, we
project the solutionxj obtained fromDICCG to Pxj .

The DeflatedICCG algorithm reads (see Reference [19]):

DICCG
j = 0, r̂0 = PTr0, p1 = z1 = L−T L−1r̂0;
while ‖r̂ j ‖2 > accuracydo

j = j + 1; α j = (r̂ j−1,zj−1)

(pj ,PT Apj )
;

xj = xj−1+ α j pj ;
r̂ j = r̂ j−1− α j PT Apj ;
zj = L−T L−1r̂ j ; β j = (r̂ j ,zj )

(r̂ j−1,zj−1)
;

pj+1 = zj + β j pj ;
end while

Summary of the paper.In Section 2 it is proven that not only the diagonally scaled matrix
hasks small eigenvalues, but that this is also true for theIC preconditioned matrix. Thereafter,
a new and efficient construction of the projection vectors in general configurations is given in
Section 3. Furthermore, it is proven that the span of these vectors is a good approximation of
the “small” eigenspace. A corollary of this is that the convergence ofDICCGdoes not depend
on the permeabilities ratioε. The sensitivity of the method with respect to perturbations
of the projection vectors is investigated in Section 4. Finally, in Section 5 some numerical
experiments are given.
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2. ANALYSIS OF THE IC PRECONDITIONED ITERATION MATRIX

First we repeat the definition of the Incomplete Cholesky (IC) preconditioner. After that
it is shown that the preconditioned matrix is scaling invariant. Thereafter, the results of [19]
with respect to a simple diagonal preconditioner are generalized to the more complicated
case of theIC preconditioner. In [19] it has already been observed numerically that this
result is also valid for theIC preconditioner, but no proof has been given. Finally, a remark
is given concerning an estimate of the condition of the matrix.

TheIC preconditioner is defined as follows [13]:

DEFINITION 2.1. Determine the lower triangular matrixL with the following properties:

• l i j = 0, whenai j = 0,
• (LLT )i j = ai j , whenai j 6= 0, andl i i > 0.

Let us defineÂ = D−
1
2 AD−

1
2 where D is an arbitrary diagonal matrix with positive

elements on the diagonal. TheIC factor of Â is denoted bŷL. In the next theorem, we prove
that the preconditioned matrix is scaling invariant.

THEOREM2.1. The matrices L−1AL−T and L̂−1 ÂL̂−T are identical.

Proof. The nonzero pattern ofL and L̂ are the same. SupposeL̂ = D−
1
2 L and check

the second statement of Definition 2.1:

(L̂ L̂T )i j =
(
D−

1
2 LLT D−

1
2
)

i j
= 1√

dii
(LLT )i j

1√
dj j
= 1√

dii
ai j

1√
dj j
= (D− 1

2 AD−
1
2
)

i j
.

These identities imply that̂L is equal toD−
1
2 L. From this the theorem follows since

L̂−1 ÂL̂−T = L−1D
1
2
(
D−

1
2 AD−

1
2
)
D

1
2 L−T = L−1 AL−T . j

As a consequence of this theorem,ICCG has the same convergence behavior for the original
systemAx = b and the diagonally scaled systemD−

1
2 AD−

1
2 y = D−

1
2 b with x = D−

1
2 y.

Therefore, we consider the diagonally scaled matrixÂ = D−
1
2 AD−

1
2 with D= diag(A) in

the remainder of this section. In [19] it is shown thatÂ hasks small eigenvalues. Below we
generalize this result to the Incomplete Cholesky preconditioned matrix.

We consider the following characteristic configuration:Ä is a rectangular domain, which
consists of 2ks + 1 plain layers of equal thickness with a high-permeability layer at the
top and alternating low- and high-permeability layers further down (see Fig. 1). In order to
simplify the proofs that will be given later on, the unknowns are renumbered in the follow-
ing way: first, all high-permeability unknowns are numbered per layer from top to bottom
and next all low-permeability unknowns. Unknowns on the interface of a low- and high-
permeability layer will be considered as high-permeability unknowns. Let1N

h , 1DT
h , and

1D
h be the finite element matrices of the Laplacian on a single layer with respectively homo-

geneous Neumann boundary conditions on all boundaries, Dirichlet boundary conditions on
the top boundary, and Dirichlet boundary conditions on top and bottom boundaries. In1DT

h

and1D
h , a homogeneous Neumann boundary condition is posed on all other boundaries.

THEOREM2.2. For the problem given above, it appears that ifε is small enough, theIC

preconditioned matrix̂L−1 ÂL̂−T has only ks eigenvalues of O(ε), whereε is the perme-
abilities ratio.
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FIG. 1. A problem with 2ks + 1 plain layers of equal thickness.

Proof. Using the finite element discretization as given in [19], the matrixÂ can be split
into anε dependent and anε independent part,

Â = 1̂+ E, (3)

where1̂ is the block-diagonal matrix with as first block̂1DT
h , the diagonally scaled1DT

h ,
and then further down alternatinĝ1D

h , the scaled1D
h , and1̂N

h , the scaled1N
h . From [19]

it follows that‖E‖2 = O(
√
ε).

Consider the Incomplete Cholesky decompositionL̃ L̃T of the matrix1̂. Because of its
block diagonal structure the Cholesky factor is also block diagonal. The existence of the
nonsingularIC decomposition of1̂DT and1̂D follows from [13]. Under mild conditions
(which are fullfilled in our problem) Kaasschieter ([11], Theorem 3.2) has proven that an
IC decomposition exists for the singular matrix1̂N and that the resulting Cholesky factor
is nonsingular. This implies that̃L exists andλmin(L̃ L̃T ) > 0.

In order to proveL̂ L̂T = L̃ L̃T + Ê, with ‖Ê‖2 = O(
√
ε), we first show that

L̂ = L̃ + O(
√
ε). (4)

The elements of̂L are determined by the following formulas:

l̂ i j = 0, whenâi j = 0, elsel̂ i j =
(

âi j −
j−1∑
k=1

l̂ ik l̂ jk

)/
l̂ j j for j < i, (5)

l̂ i i =
√√√√âi i −

i−1∑
k=1

l̂ 2
ik . (6)

Equation (4) is proven by induction. The Induction Hypothesis is

l̂ i j = l̃ i j + O(
√
ε), 1≤ j ≤ i . (7)
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The start of the induction is possible because the first block ofÂ and1̂ are identical. For
l̂ i+1, j , 1≤ j ≤ i we distinguish two cases:

(i) âi+1, j = O(1)
Using (5), (3), and (7) we obtain̂l i+1, j = l̃ i+1, j + O(

√
ε).

(ii) âi+1, j = O(
√
ε)

In this casẽl i+1, j = 0 and one has to show thatl̂ i+1, j = O(
√
ε). Because of our ordering of

the unknownŝai+1,k = O(
√
ε) for k < j and thuŝl i+1,k = O(

√
ε) for k < j . Furthermore,

l̂ j j = l̃ j j + O(
√
ε), together with̃l j j > 0, implies that̂l j j > 0 for ε small enough. These

estimates combined with (5) show thatl̂ i+1, j = O(
√
ε).

For l̂ i+1,i+1, we obtain from (6), (3), and (7) that

l̂ i+1,i+1 =
√√√√1̂i+1,i+1−

i∑
k=1

l̃ 2
i+1,k + O(

√
ε).

Sincel̃ i+1,i+1 6= 0, it follows thatl̂ i+1,i+1 = l̃ i+1,i+1+ O(
√
ε).

From Eq. (4) it easily follows that

L̂ L̂T = L̃ L̃T + Ê, with ‖Ê‖2 = O(
√
ε).

The minimax characterization ([8], Theorem 8.1.5) can be used to derive the inequalities

λmin(L̂ L̂T ) ≥ λmin(L̃ L̃T )− O(
√
ε) and λmax(L̂ L̂T ) ≤ λmax(L̃ L̃T )+ O(

√
ε).

Forε small enough we have the boundλmin(L̂ L̂T ) ≥ 1
2λmin(L̃ L̃T ) > 0, which is independent

of ε. The Courant–Fisher Minimax Theorem ([8], Theorem 8.1.2) can be used to show that

1

λmax(L̂ L̂T )
λk(Â) ≤ λk(L̂

−1 ÂL̂−T ) ≤ 1

λmin(L̂ L̂T )
λk(Â).

So the number and size of small eigenvalues ofÂ and L̂−1 ÂL̂−T are the same. By using
Theorem 3.1 from [19], the theorem is proven.j

This section is concluded with a remark on estimating the condition ofÂ. When a linear
system is solved by an iterative method, it is important to have an estimate of the condition
number of the matrix. This estimate can be combined with the machine precision to derive
a lower bound for the norm of the residual. It makes no sense to iterate further when the
norm of the residual is below this bound. Since the classical method to estimate the smallest
eigenvalue fails [10, 19] we have no cheap test to detect thatÂ is ill-conditioned because of
the large jumps in the permeability. Another method to estimate the condition of a matrix is
to estimate the condition of its Cholesky factor [3, 5]. This method is also not usefull in this
problem because it follows from the proof of Theorem 2.2 that the incomplete Cholesky
factor L̂ is well conditioned.

3. THE CONSTRUCTION OF THE PROJECTION VECTORS

In [19] the “small” eigenvectors have been computed and analyzed for a simple test prob-
lem. This analysis suggests that the eigenvectors are constant in high-permeability layers
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and vary linearly in low-permeability layers with appropriate boundary conditions. The
computation of eigenvectors is expensive, and therefore an efficient way to construct the
projection vectors for layered problems (see Fig. 1) is given in [19]. In this construction,
the vertical cross sections of the projection vectorsvi are made such that:

• the value ofvi is one in thei + 1th high-permeability layer including interface points
and zero in the other high-permeability layers,
• the value ofvi in low-permeability layers is a linear interpolation of its values on the

interfaces.

Below we give a generalization of the construction of the projection vectors for general
geometries. Furthermore, a proof is given that the space spanned by these projection vectors
is a good approximation of the “small” eigenspace of the (diagonal orIC) preconditioned
matrix.

ASSUMPTION3.1. We assume that the number of small eigenvalues (ks) of the diagonally
scaled (or IC preconditioned) matrix is equal to the number of high-permeability subdomains
not connected to∂ÄD.

This assumption holds for a layered structure (see [19] and Theorem 2.2). To construct
the projection vectors the subdomains are ordered as follows:

DEFINITION 3.1. The high-permeability subdomains are numbered first:Äi , i ∈
{1, . . . , kh}. Furthermore, the firstks high-permeability subdomains are such thatǞi ∩
∂ÄD = ∅, i ∈ {1, . . . , ks}.

In other words the firstks subdomains are highly permeable and their boundaries do not
contain a part of the Dirichlet boundary. This ordering is a generalization of the ordering
used in Section 2.

DEFINITION 3.2. The projection vectorsvi for i ∈ {1, . . . , ks} are defined as

• vi = 1 onǞi andvi = 0 onǞ j , j 6= i, j ∈ {1, . . . , kh},
• vi satisfies the finite element discretization of the equation

−div(σ j∇vi ) = 0 onÄ j , j ∈ {kh + 1, . . . , k}, (8)

where Dirichlet boundary conditions are used at the interfaces (∂Ä j ∩Ä) and homogeneous
Dirichlet and Neumann boundary conditions are used at outer boundaries (vi = 0 onǞ j ∩
∂ÄD and ∂vi

∂n = 0 onǞ j ∩ ∂ÄN).
Note that in this definition the linearly varying part is replaced by the solution of the

relatively small systems of Eq. (8). Each of these systems itself has a good condition. Later
on we shall solve these systems (8) with a limited accuracy, so that only a fewICCG steps
per subsystem are necessary. This construction is definitely much more general than the
previous one, since it does not require parallel layers anymore. It even allows the possibility
of inclusions of sandstone in shale layers, something that was not possible in the old
method.

Another important feature of this new approach is that the permeability does not have to be
constant per layer. It may be a function of space, and we may even replace the permeability
by a full Cartesian permeability tensor that is a function of space. Of course, there is no
reason why the permeability in the sandstone layer may not be variable as well.
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Note that the projection vectorsvi are independent ofε. In the high-permeability domains,
the vectorsvi can also be interpreted as a solution of (1) with Dirichlet boundary conditions
equal to 1 for∂Äi and equal to 0 for∂Ä j , j 6= i, j ∈ {1, . . . , kh}.

We first show that‖D−1Avi ‖∞ = O(ε), whereD = diag(A). Thereafter, we prove that
the vectorsvi are independent, so span{v1, . . . , vks} approximates the “small” eigenspace
of the diagonally scaled matrix.

ASSUMPTION3.2. We assume that the finite-element discretization is consistent, which
means that the discretization error is zero for a constant function. The subdomainsÄi are
approximated by polygons and each element is contained in only one polygon. Finally, we
assume that the off-diagonal elements ofA are nonpositive.

This last assumption means that the finite-element grid must satisfy certain requirements
with respect to the angles of the elements. This is a sufficient condition for our proofs;
however, the method has a wider range of applicability. Let the vectorxm contain the
space coordinates of grid pointm. The j th component of vectorvi is denoted by(vi ) j . A
consequence of Assumption 3.2 (consistency) is

n∑
j=1

amj = 0 for xm ∈ Ǟ\∂ÄD. (9)

For every projection vectorvi we define an index setIi ⊂ {1, . . . ,n}, which contains the
indices of all points on the interfaces of the low-permeability domains which are neighbors
of Äi .

THEOREM 3.1. When Assumption3.2 is fulfilled the vectorsvi as defined in Definition
3.2are such that

‖D−1Avi ‖∞ = O(ε), i ∈ {1, . . . , ks}.

Proof. We first prove

(Avi )m = 0 for m ∈ {1, . . . ,n}\Ii . (10)

For xm ∈ Ä j ∪ (Ǟ j ∩ ∂Ä), j ∈ {1, . . . , ks} component(vi )m is equal to the compo-
nents ofvi in the neighboring points. So (10) follows from Eq. (9). From Definition
3.2 we see that (10) holds forxm ∈ Ä j ∪ (Ǟ j ∩ ∂Ä), j ∈ {ks + 1, . . . , kh}. On a low-
permeability subdomain (xm ∈ Ä j ∪ (Ǟ j ∩ ∂Ä), j ∈ {kh + 1, . . . , k}), Eq. (10) also fol-
lows from Definition 3.2. Finally, whenxm is on an interface wherevi has zero com-
ponents on the low-permeability subdomain then all components ofvi are zero in the
high-permeability subdomain and thus Eq. (10) holds. This implies(D−1Avi )m = 0 for
m ∈ {1, . . . ,n}\Ii .

For anm ∈ Ii we split its neighbors into two setsJh
m andJl

m. The setsJh
m, Jl

m contain
the indices of the neighboring points in the high-, low-permeability subdomain, respec-
tively. The setJh

m also contains the indices of the neighboring points at the interface. This
implies

amj = O(1), for j ∈ Jh
m,

(11)
amj = O(ε), for j ∈ Jl

m.



434 VUIK ET AL.

Assumption 3.2 (amj ≤ 0, j 6= m), together with (9) and (11), implies

Dmm= amm= −
∑

j∈Jhm∪Jlm
amj = O(1). (12)

Equation (9) combined with(vi ) j = (vi )m for j ∈ Jh
m yields

(Avi )m =
∑
j∈Jlm

amj((vi ) j − (vi )m). (13)

From the maximum principle we know that(vi ) j ∈ [0, 1] so(Avi )m = O(ε). Together with
Dmm= O(1), the result is proven. j

COROLLARY 3.1. For m ∈ Ii , an O(1) perturbation of (vi ) j , j ∈ Jh
m leads to

‖D−1Avi ‖∞ =O(1),whereas an O(1)perturbation of(vi ) j , j ∈ Jl
m leads to‖D−1Avi ‖∞ =

O(ε).

This means that a large perturbation ofvi in the low-permeability layer leads to a small
perturbation in the matrix vector productD−1Avi .

DEFINITION 3.3. The normalized eigenvectors ofD−1A are denoted byui ,

D−1Aui = λi ui , i = 1, . . . ,n,

where the eigenvalues are ordered:λ1 ≤ λ2 ≤ · · · ≤ λn. Two matrices are defined:Vks =
[v1 · · · vks] andUks = [u1 · · ·uks].

In the following theorem, we show that the space spanned by{v1, . . . , vks} is “nearly”
a subspace of the “small” eigenspace span{u1, . . . ,uks}. With “nearly” a subspace we
mean that the norm of the component of a vectorv ∈ {v1, . . . , vks} outside the subspace
span{u1, . . . ,uks} is small.

THEOREM3.2. When Assumptions3.1and3.2are fulfilled, the expression holds,

Vks = Uks Z + E, (14)

where‖E‖2 = O(
√
ε).

Proof. The vectorv1 can be written as a linear combination of the eigenvectors

v1 =
n∑

j=1

α j u j . (15)

Theorem 3.1 implies‖D−1Av1‖22 ≤ O(ε2). Substitution of (15) gives

‖D−1Av1‖22 =
∥∥∥∥∥

n∑
j=1

λ jα j u j

∥∥∥∥∥
2

2

.

The eigenvectorsD
1
2 u j of D−

1
2 AD−

1
2 are orthogonal. This property is used in the
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derivation

‖D−1Av1‖22 ≥ λmin(D
−1)

∥∥∥∥∥
n∑

j=1

λ jα j D
1
2 u j

∥∥∥∥∥
2

2

= λmax(D)
n∑

j=1

λ2
jα

2
j

∥∥D
1
2 u j

∥∥2
2 ≥ λmax(D)λmin(D)

n∑
j=1

λ2
jα

2
j .

Sinceλmax(D) = O(1) andλmin(D) = O(ε), we obtain

ks∑
j=1

λ2
jα

2
j +

n∑
j=ks+1

λ2
jα

2
j ≤ O(ε).

Rearranging the terms shows that

λ2
ks+1

n∑
j=ks+1

α2
j ≤

n∑
j=ks+1

λ2
jα

2
j ≤ O(ε),

because
∑ks

j=1 α
2
j is bounded. Sinceλks+1 = O(1), it follows that

∑n
j=ks+1 α

2
j = O(ε). This

can be shown for everyvi , i ∈ {1, . . . , ks} so the theorem is proven.j

Note that the projection vectorsv1, . . . , vks are linearly independent, because forxm ∈
Äi , i ∈ {1, . . . , ks}, (vi )m = 1, and(v j )m = 0 for j 6= i . As a consequence of this the matrix
VT

ks Vks is nonsingular. This can be used to show that the “small” eigenspace span{u1, . . . ,uks}
is “nearly” a subspace of the space spanned by{v1, . . . , vks}.

THEOREM3.3. When Assumptions3.1and3.2are fulfilled, the expression holds,

Uks = Vks Z−1+ Ê, (16)

where‖Ê‖2 = O(
√
ε).

Proof. From Theorem 3.2 it follows that

VT
ks Vks = ZTU T

ksUks Z + Ẽ = ZT Z + Ẽ,

where‖Ẽ‖2 = O(
√
ε). From the minimax characterization ([8], Theorem 8.1.5) we obtain

the bound

λmin(Z
T Z) ≥ λmin

(
VT

ks Vks

)− O(
√
ε).

SinceVT
ks Vks is nonsingular,λmin(ZT Z) > 0 for ε small enough, andZ is nonsingular.

Postmultiplying (14) byZ−1 gives

Uks = Vks Z−1− E Z−1. (17)

The theorem now follows from (16) and (17) because

‖Ê‖2 = ‖E Z−1‖2 ≤ (λmin(Z
T Z))−

1
2‖E‖2 = O(

√
ε). j
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This theorem motivates the use of the vectors{v1, . . . , vks} in the DeflatedCG method
applied to the diagonally scaled matrix to annihilate the effect of the small eigenvalues.

In Section 2, it has been shown that theIC preconditioned matrix hasks eigenvalues of
O(ε). Below we prove that the vectors{v1, . . . , vks} can also be used as projection vectors
in theDICCG method.

THEOREM 3.4. When Assumption3.2 is fulfilled, the vectorsvi as defined in Defini-
tion 3.2are such that

‖L−T L−1Avi ‖2 = O(ε), i ∈ {1, . . . , ks}.

Proof. The proof of this theorem is based on the results presented in Theorem 3.1. To
use these results we note

‖L−T L−1Avi ‖2 = ‖L−T L−1DD−1Avi ‖2 ≤ λmax(L
−T L−1D)‖D−1Avi ‖2.

SinceL−T L−1D and L̂−T L̂−1 are similar, their spectra are identical. From the proof of
Theorem 2.2 we have thatλmax(L̂−T L̂−1) = 1/λmin(L̂ L̂T ) is bounded. This combined with
Theorem 3.1 leads to the inequality:

‖L−T L−1Avi ‖2 ≤ λmax(L̂
−T L̂−1)

√
n‖D−1Avi ‖∞ = O(ε). j

Analogous to Theorem 3.3 one can prove that the “small” eigenspace ofL−T L−1A is
“nearly” a subspace of the span{v1, . . . , vks}. This suggests that the convergence ofDICCG

is independent of the ratio of the high and low permeability. This is confirmed by numerical
experiments in Section 5.1.

We conclude this section with some remarks about an efficient implementation of the
DICCGmethod. It follows from Definition 3.2, that each projection vectorvi is sparse because
it is zero everywhere except on̄Äi and its neighboring subdomains. The application of the
projection P to a vector consists of inner products and vector updates withvi and Avi .
The matrix vector productAvi is less sparse thanvi . The fill-in occurs at the grid points
connected to the domain wherevi is nonzero. The number of grid points whereAvi is
nonzero is defined asNi . It is easy to see that the application ofP costs approximately
3
∑ks

i=1 Ni floating point operations. To storevi and Avi , 2
∑ks

i=1 Ni memory positions
are necessary. In many applications,

∑ks

i=1 Ni is less than 2n. However, one can have
problems whereNi ≈ n, which makesDICCG unattractive. An example of this: assume
that the domainÄ consists of a low-permeability subdomain which containsks subdomains
with a high-permeability. Inspection of the computed projection vectors shows that large
parts of them are close to zero. Ignoring the small components in the projection vectors,
makesDICCGfeasible again. To that end we introduce a toleranceδ and ignore all elements of
the projection vectors less thanδ. In Section 5.3 such a problem is investigated by numerical
experiments.

Another important point is the cost to compute the projection vectors on the low-
permeability subdomains. The construction implies that a number of diffusion problems
have to be solved. The amount of work to solve these subproblems is small with respect to
the total amount of work. The reasons for this are

• the size of the subproblems is small,
• the submatrices are obtained by copying the relevant part of the original matrix,
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• the preconditioned submatrices are well conditioned,
• it is sufficient to have an approximation of the subsolution with a low accuracy.

The final reason is investigated in more detail in the following section.

4. SENSITIVITY INVESTIGATION OF DICCG

In Section 3 a method is given to construct projection vectors, which span is close to
the “small” eigenspace. An important question is how sensitive isDICCG to perturbations
in these approximations. This is a very important issue since our construction includes the
solution of a subsystem per shale layer, and we would like to do that as cheap as possible. In
Section 4.1, we analyze the dependence ofDICCGto perturbations of the projection vectors in
a simple case. Some numerical experiments to validate our analysis are given in Section 4.2.
Finally in Section 4.3 we investigate numerically the occurrence of small eigenvalues when
a high-permeability domain is only weakly connected to a Dirichlet boundary.

4.1. Analysis of a Perturbed Projection Vector

We consider a problem where the matrixAIC = L−1AL−T has one small eigenvalue
λ1. The normalized eigenvectors ofAIC are denoted bywi . For simplicity we assume that
λ2 = 1, and that the perturbed projection vector is given by

v1 = w1+ αw2. (18)

Since AIC is symmetric, the eigenvectorswi are orthonormal. The perturbed projection
operator is

P = I − v1E−1(AICv1)
T ,

where E = (AICv1)
Tv1 = λ1+ α2. Consider the eigenvectors ofPT AIC . From the

definition of P, it follows that PT AICv1 = 0. Furthermore, (18) implies thatPT AICwi =
λiwi , for i = 3, . . . ,n. Finally, the vectorαw1− w2 is also an eigenvector ofPT AIC

and its eigenvalue isλper = λ1(1+α2)

λ1+α2 . Forα smallλper ≈ 1= λ2. In Table I we giveλper for
λ1 = 10−9 and some values ofα. This analysis teaches us the following: when the projection
vectors are perturbed the smallest eigenvalue remains exactly zero, however the smallest
but one eigenvalue can change considerably. So if the perturbation of a projection vector is
too large, deflation with this perturbed vector does not help.

In order to useDICCGwe approximate the eigenvectorsui of L−T L−1A. The eigenvectors
ui andwi are related:wi = LTui = L̂T D

1
2 ui . From Section 2 we know that the elements

of L̂ are O(1), whereas the elements ofD
1
2 are O(1) in high-permeability domains and

O(
√
ε) in low-permeability domains. So perturbations ofui in a low-permeability domain

lead to small perturbations ofwi andλper. In the following section, we compare the results
obtained from this analysis with numerical experiments.

TABLE I

Value ofλper for Various Values ofα

α 0 10−4 10−3 10−2 10−1 1

λper 1 0.0909 10−4 10−5 10−7 2 · 10−9
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TABLE II

Newly Introduced Small Eigenvalue (λper) and Number of Iterations (n)

Needed beforeDICCG (or ICCG) Reaches the Required Accuracy (Perturbation

α Is Restricted to the Shale Layers)

α 0 10−2 10−1 1 ICCG

λper 0.164 0.164 0.164 8.2 · 10−3 1.6 · 10−9

n 14 14 15 24 54

4.2. Validation of the Perturbation Analysis

As a test problem we consider the straight layer problem as given in [19]. This problem
consists of seven horizontal layers with a sandstone layer (σ = 1) at the top and alternately
shale (σ = 10−7) and sandstone layers further down.

Two experiments are done. In the first experiment a random vector is added to the
projection vector in the shale layers. The amplitude of this vector isα

2 and it is zero at
the interfaces. The results are given in Table II. The number of iterations increases for
increasingα, however even forα = 1 DICCG is much faster thanICCG. We observe that
the smallest eigenvalue only changes considerably forα = 1. For this choiceλper is of the
same order as the square root of the smallest eigenvalue of the original matrix. This agrees
well with our analysis. Moreover, it appears that the difference between the estimated and
exact error is relatively small compared to the case of nodeflation.

In the second example we perturb the nonzero parts of the projection vectorsvi also in
the sandstone layerÄi . In Table III the smallest nonzero eigenvalueλper and the number
of iterations are given. Note that qualitatively there is a good correspondence between the
results given in Table I and Table III.

4.3. The Influence of the Geometry on Small Eigenvalues

Initially we have assumed that a high-permeability domain, which is connected to a
Dirichlet boundary does not lead to a small eigenvalue of the diagonally scaled matrix
(Assumption 3.1). In this section this assumption is investigated in more detail. The reason
for this is that in a groundwater flow problem (see Section 5.4), we observe a small eigen-
value, although the high-permeability inclusion is connected with a Dirichlet boundary. In
our first experiments we consider configurations as in Fig. 2, with permeability constant
σh = 1. In these tests, no small eigenvalues occur, which is expected from [19]. Therefore,

TABLE III

Newly Introduced Small Eigenvalue (λper) and Number of Iterations (n)

Needed beforeDICCG (or ICCG) Reaches the Required Accuracy (Perturbation

α in the Whole Domain)

α 0 10−4 10−3 10−2 10−1 ICCG

λper 0.164 0.0825 9· 10−4 9 · 10−6 9 · 10−8 1.6 · 10−9

n 14 18 27 38 56 54
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FIG. 2. The test configurations with the permeability constants.

we useσh = 100 in the rest of our experiments (in analogy to the groundwater flow problem).
We consider five test problems. The geometry of the problems is presented in Fig. 2. All
problems are solved on a grid of constant spacing. The first problem, with a medium
permeability, is only used for reference. In the second geometry a high-permeability do-
main is added. In the remaining problems, the connection width between the medium- and
high-permeability domain is decreased because of a low-permeability layer. The smallest
eigenvalue of the diagonally scaled matrices are given in Table IV. The results show clearly
that adding a high-permeability domain with no Dirichlet boundary conditions decreases
the smallest eigenvalue by a factor 55. This is of the same order as the contrast in the
permeability constants in both domains. On top of that, the smallest eigenvalue decreases
proportionally to a decrease of the connection width. Both effects enhance each other.
Since the ratio between the eigenvalues of the various configurations is independent of the
grid-size, we expect that the smallest eigenvalue of the continuous problem has the same
behavior.

Based on these results, we make the following observations on the eigenvalues of the
diagonally scaled matrix when a problem is considered with high (σh), medium (σm) and
low-permeability (σl ) domains:

• A small eigenvalue occurs when a high-permeability domain is only connected to a
Dirichlet boundary via a medium or a low-permeability domain.
• A high-permeability domain which is “weakly connected” (which means that the

connection width is small) via a medium-permeability domain to a Dirichlet boundary
leads to an eigenvalue of orderσl

σh
.

These observations imply that the method to construct the projection vectors
(Definition 3.2) should be refined in more general problems. In Section 5.4 a groundwater
flow problem is solved, which contains high-, medium-, and low-permeability domains,
together with “weakly connected” high-permeability domains.

TABLE IV

The Smallest Eigenvalues for Various Test Problems, Including Variations

of the Connection Width

Configuration A B C D E

Connection width [%] — 100 90 10 1
50× 45 grid 2.7× 10−4 4.9× 10−6 4.6× 10−6 6.9× 10−7 —

100× 90 grid 6.8× 10−5 1.2× 10−6 1.1× 10−6 1.7× 10−7 2.3× 10−8
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FIG. 3. The geometry of an oil flow problem.

5. NUMERICAL EXPERIMENTS

In this section we consider four test problems. The first problem is a three-dimensional
layered problem motivated by transport of oil in a reservoir. Secondly a two-dimensional
problem is considered with variable anisotropic permeabilities. Thirdly a test problem is
considered with many high-permeability inclusions in a low-permeability layer. Finally the
fourth problem is the simulation of a two-dimensional groundwater flow.

5.1. An Oil Flow Problem

For the flow simulation of oil and natural gas in a reservoir it is necessary to predict fluid
pressures in rock layers. Therefore the diffusion equation (1) has to be solved in large three-
dimensional geometries with a layered structure. This problem may also be solved with the
method treated in [19], however, we have never applied that method to 3D problems, since
the definition of linearly varying vectors is much more complicated than in 2D. With our
new method there is no problem with the definition of the approximate eigenvectors all.

As a first problem we consider two sandstone layers (σ = 10−4 andσ = 10) separated
by shale layers (σ = 10−7). The layers vary in thickness and orientation (see Figs. 3 and 4).
At the top of the first sandstone layer a Dirichlet boundary condition is posed, so there is
only one small eigenvalue. The number of iterations and the total CPU time for (D)ICCG are
shown in Table V for various grid sizes. The CPU time to construct the projection vector is
given too. We see that the construction time is relatively small.

Next we consider the same geometry, but now the domain consists of nine layers. Five
sandstone layers are separated by four shale layers. The matrix of this problem has four
small eigenvalues. Only 1.5 n memory positions are required to store the four projection
vectors. The (D)ICCG results are given in Table VI. There is a large gain in number of
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FIG. 4. Permeabilities for each layer.

iterations and CPU time. The convergence history of both methods is shown in Figs. 5 and
6. The norm of theICCG residual has four bumps (corresponding to the number of small
eigenvalues) before the true error decreases. In this example, the second and third bump
nearly coincide. The observed properties of (D)ICCG correspond well with the observations
made in [19] for simple two-dimensional test problems.

For the 9-layer problem we also investigate the effect of the jump in the permeabilities.
We use the grid with 19665 nodal points, take the permeability in the sandstone layers equal
to 1, and vary the permeability in the shale layers. The results in Table VII confirm that
DICCG is independent of the value ofσshale. In our experiments a relative high accuracy
(10−5) is used. In Table VIII the results are given for other accuracies. We conclude that
the gain in CPU time is very large for accuracies (10−1, 10−2), which are sufficient in many
applications.

5.2. A Flow Problem with Variable Anisotropic Permeabilities

In this problem we investigate the applicability of theDICCG method to a problem with
variable anisotropic permeabilities. We consider the equation

− ∂

∂y
σyy

∂p

∂y
− ∂

∂z
σzz
∂p

∂z
= 0, y ∈ [0, 10000], z ∈ [−2000, 0],

TABLE V

Number of Iterations and CPU Time for Various Grid Sizes

ICCG DICCG

Nodal points Iterations CPU Iterations CPU CPU construction

2760 21 0.57 10 0.36 0.08
19665 38 9.01 20 5.80 0.60

148185 86 163 43 99.6 5.4
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TABLE VI

Number of Iterations and CPU Time for the 9-Layer Problem

ICCG DICCG

Nodal points Iterations CPU Iterations CPU CPU construction

2760 47 1.19 10 0.37 0.12
19665 83 19.1 20 6.22 1.29

148185 189 350 44 108 12.7

with

p(y, z) = 1, z= 0,

and homogeneous Neumann boundary conditions on all other boundaries. In a porous media
flow, the permeability is a function of the depthz. We use the following function ([16], [18]):
σyy = 30σzz and

σzz(z) =
k(z)

(
0.5− 0.1e(−60(z−0.3)2)

)3
e(14− 3800

283+0.03z)

0.5+ 0.1e(−60(z−0.3)2)
.

The functionk is defined by

k(z) =
{

10−7 z ∈ [−1000, 0],

1 z ∈ [−2000,−1000].

FIG. 5. The convergence behavior forICCG.
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FIG. 6. The convergence behavior forDICCG.

The results for (D)ICCG are given in Figs. 7 and 8. The same behavior is observed as for the
previous example. UsingICCG we can see the true error only decreases after 40 iterations
and the estimated error is not reliable. In the case ofDICCG, the true error decreases from
the beginning, and the estimated error is close to the true error. This proves that our new
approach can also be applied for anisotropic and variable permeabilities.

5.3. A Problem with Many High-Permeability Inclusions

At the end of Section 3 we have noted that there are problems in which the amount of
memory to store the projection vectors is proportional to the number of small eigenvalues.

TABLE VII

The Smallest Nonzero Eigenvalue and the Number of

Iterations for the 9-Layer Problem

ICCG DICCG

σshale λmin Iterations λmin Iterations

10−3 1.5 · 10−2 26 6.9 · 10−2 20
10−4 2.0 · 10−3 39 8.7 · 10−2 19
10−5 2.2 · 10−4 59 7.7 · 10−2 20
10−6 2.2 · 10−5 73 7.8 · 10−2 20
10−7 2.3 · 10−6 82 7.7 · 10−2 20
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TABLE VIII

Varying the Accuracy for the 9-Layer Problem

ICCG DICCG

Accuracy Iterations CPU Iterations CPU

10−5 82 18.9 20 6.3
10−4 80 18.4 16 5.2
10−3 78 18.0 12 4.1
10−2 77 17.8 3 1.5
10−1 75 17.2 2 1.2

To diminish the required amount of memory, we have proposed the use of a tolerance (δ).
The components of the projection vectors which are less thanδ are set equal to zero. In this
subsection, we investigate the influence ofδ on the properties ofDICCG.

We consider a three-layer problem, where the shale layer contains eight sandstone inclu-
sions (see Fig. 9). There are 12585 nodal points used in the finite element discretization of
this problem. For one of the projection vectors, a contour plot is given in Fig. 10. From this
figure we see that the value of the projection vector is very small in the shale layer except
in the vicinity of one sand inclusion. This observation has motivated us to delete the small
components of the projection vectors.

It is clear that this example cannot be treated with the method introduced in [19]. It
is impossible to define a linearly varying vector field in the shale region that also has

FIG. 7. The convergence behavior forICCG.
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FIG. 8. The convergence behavior forDICCG.

FIG. 9. A problem with eight sandstone inclusions in the shale layer.
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FIG. 10. Contour plot of one of the projection vectors.

prescribed values in the sandstone inclusions. Only our new approach is able to solve this
problem.

In Table IX the relevant results are given forICCG andDICCG for various values ofδ. We
see again a large decrease in CPU time and number of iterations when deflation (DICCG) is
used. However inDICCG, 3.9n extra memory positions are required to store the projection
vectors. Increasing the tolerance leads to the same number of iterations, less CPU time, a
small increase in the true error, and a large decrease of the amount of extra memory. So this
combination ofDICCG with a tolerance leads to an efficient solution method even when the
problem has many high-permeability inclusions.

5.4. A Groundwater Flow Problem

In Section 4.3 we have seen that a small eigenvalue occurs when a high-permeability
layer is “weakly connected” to a Dirichlet boundary. In this section we will examine the
validity of this assumption in more detail. In [17], a Poisson-like equation has been solved

TABLE IX

Results ofICCG and DICCG for Various Values of δ

ICCG DICCG

δ 0 10−2 10−1

CPU 44 12 8.3 8.1
CPU construction 0 3.1 2.9 2.9
Iterations 616 76 76 76
λmin 4× 10−9 8× 10−3 8× 10−3 8× 10−3

True error 7× 10−7 1.86× 10−5 1.87× 10−5 2.28× 10−5

Extra memory 0 3.9 n 1.6 n 1.2 n
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FIG. 11. The coefficients and geometry of the groundwater problem.

on the structure shown in Fig. 11. The solution satisfies the equation

−∇ · (A∇u)+ B(x, y)ux = F, where B(x, y) = 2e2(x2+y2).

The coefficientA is defined as shown in Fig. 11. The functionF is everywhere zero except
in the center section whereF = 100. We have Dirichlet conditions on the complete outer

FIG. 12. The convergence behavior forICCG.
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FIG. 13. The convergence behavior forDICCG.

boundary. In [17],BI-CGSTAB andCGShave been used to solve the discretized system. In
both cases, an incomplete LU-factorization has been used as preconditioner. If we take a
look at the convergence behavior ofBI-CGSTABandCGSas reported in [17], there is a strong
resemblance with the convergence behavior ofICCG applied to layered problems.

Since at this moment we are only interested in symmetric problems we will analyze the
Poisson equation:−∇ · (A∇u) = F . Like before, the smallest eigenvalue of the discretized
system has been calculated. Both the presence of the clay section (A = 10−5) as well as
the jump in permeabilities between the two sand sections have an influence on the smallest
eigenvalue. To annihilate the effect of the smallest eigenvalue on the convergence,DICCG

has been applied to this problem. The projection vector has been constructed by neglecting
the small gap in the low-permeability layer. The convergence behavior forICCG andDICCG

(applied to the original geometry) is plotted in Figs. 12 and 13. The convergence behavior
of DICCG is much better than that ofICCG. The number of iterations decreases with a factor
of two, and a proper termination criterion can be used.
Note that in the shaded region we use a coefficientA = 104, while in the outer region
A = 102. The reason for this is that the erratic behavior we observe from the convergence
of ICCG is only present if these coefficients differ. If both values ofA are equal, no small
eigenvalues are present. See also the remark given in Section 4.3.

6. CONCLUSIONS

It has been shown that the Incomplete Cholesky (IC) preconditioned matrix is a scaling
invariant. This property is used to show that the number of small eigenvalues of theIC
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preconditioned matrix is equal to the number of high-permeability domains, which are not
connected to a Dirichlet boundary.

A detailed description has been given as to how to construct the projection vectors in a
cheap way. A proof is given to show that the span of these vectors approximates the “small”
eigenspace of the diagonal orIC preconditioned matrix. This implies that the convergence
behavior ofDICCG is independent of the size of the jump in the coefficients.

It has been shown that perturbations of the projection vectors in the low-permeability part
have only a limited influence on the convergence properties ofDICCG. This has important
consequences for the efficiency of the method:

• It is sufficient to compute a low-accuracy solution of the subdomain problems, which
are used in the construction of the projection vectors.
• Small components of the projection vectors can be neglected to save work and memory

requirements.

The use of our projection vectors, in combination with theDICCG method, makes the
solver robust for elliptic problems with highly discontinuous coefficients. For this kind of
problem, a robust stopping criterion is available, which is not the case for theICCG method.
For high accuracies, theDICCGmethod converges considerably faster than theICCGmethod.
However, for practical accuracies, the CPU time decreases with a factor of 10 to 20. This
means that in the context of nonlinear problems or time-dependent problems,DICCG is
far superior aboveICCG. It has been shown that the construction of the projection vectors
can be done fully automatically and that the method can be applied to practical problems.
We conclude thatDICCG, ignoring of the small components in the projection vectors, is a
very robust and extremely efficient method to solve problems with extreme contrasts in the
coefficients.
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