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Abstract

In this paper we compare various preconditioners for the numerical solution of partial

differential equations. We start by investigating the influence of a so-called deflation precon-

ditioner on the convergence of the preconditioned conjugate gradient method. Thereafter, we

compare an additive coarse grid correction preconditioner and the balancing preconditioner,

both used in domain decomposition methods, with the deflation preconditioner. We prove

that the effective condition number of the deflated preconditioned system is always, i.e. for

all deflation vectors and all restrictions and prolongations, below the condition number of

the system preconditioned by the coarse grid correction or balancing preconditioner. This

implies that the conjugate gradient method applied to the deflated preconditioned system is

expected to converge always faster than the conjugate gradient method applied to the system

preconditioned by the coarse grid correction or balancing. Numerical results for porous media

flows emphasize the theoretical results.
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1 Introduction

It is well known that the convergence rate of the conjugate gradient method is bounded as a
function of the condition number of the system matrix to which it is applied. Let A ∈ R

n×n

be symmetric positive definite (SPD). We assume that the vector b ∈ R
n represents a discrete

function on a grid Ω and that we are searching for the vector x ∈ R
n on Ω which solves the linear

system
Ax = b.

Such systems are encountered, for example, when a finite volume/difference/element method is
used to discretize an elliptic partial differential equation defined on the continuous analogy of Ω.

Let us denote the i-th eigenvalue in non-decreasing order by λi(A) or simply by λi when it is
clear to which matrix we are referring. After k iterations of the conjugate gradient method, the
error is bounded by (cf. [8], Thm. 10.2.6)

‖x − xk‖A ≤ 2 ‖x − x0‖A

(√
κ − 1√
κ + 1

)k

, (1)
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where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of x is given
by ‖x‖A = (xT Ax)1/2. The convergence may be significantly faster if the eigenvalues of A are
clustered [22].

If the condition number of A is large, it is advisable to solve, instead, a preconditioned system
M−1Ax = M−1b, where the symmetric positive definite preconditioner M is chosen such that
M−1A has a more clustered spectrum or a smaller condition number than that of A. Furthermore,
M must be cheap to solve relative to the improvement it provides in convergence rate. A final
desirable property in a preconditioner is that it should parallelize well, especially on distributed
memory computers. Probably one of the most effective preconditioning strategy in common use
is to take M = LLT to be an incomplete Cholesky (IC) factorization of A [13]. We denote the
preconditioned conjugate gradient method by PCG.

With respect to the known preconditioners at least two problems remain:

• if there are large jumps in the coefficients of the discretized PDE the convergence of PCG
becomes very slow,

• if a block preconditioner is used in a domain decomposition algorithm the condition number
of the preconditioned matrix deteriorates if the number of blocks increases.

Both problems can be solved by a deflation technique [16, 23]. To describe the deflation method
we define the projection PD by

PD = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×r, (2)

where the column space of Z is the deflation subspace, i.e. the space to be projected out of the
residual, and I is the identity matrix of appropriate size. We assume that r � n and that Z has
rank r. Under this assumption E := ZT AZ may be easily computed and factored and moreover,
E is symmetric positive definite. Since x = (I − P T

D )x + P T
Dx and because

(I − P T
D )x = Z(ZT AZ)−1ZT Ax = ZE−1ZT b (3)

can be immediately computed, we only need to compute P T
Dx. In light of the identity AP T

D = PDA,
we can solve the deflated system

PDAx̃ = PDb (4)

for x̃ using the conjugate gradient method, premultiply this by P T
D and add it to (3). This is

correct because P T
D x̃ = P T

Dx.
Obviously (4) is singular. Kaasschieter [10] notes that a positive semidefinite system can

be solved as long as the linear system is consistent (i.e. as long as b = Ax for some x). This
is certainly true for (4), where the same projection is applied to both sides of the nonsingular
system. Furthermore, he notes (with reference to [22]) that because the null space never enters
the iteration, the corresponding zero-eigenvalues do not influence the convergence. Motivated by
this fact, we define the effective condition number of a positive semidefinite matrix C ∈ R

n×n with
r zero eigenvalues to be the ratio of its largest to smallest positive eigenvalues:

κeff(C) =
λn

λr+1
.

In this paper we start to investigate the convergence acceleration of deflation. Thereafter, we
prove that the effective condition number of the deflated preconditioned system is always below
the condition number of the system preconditioned by the coarse grid correction or balancing
preconditioner. This implies that for all matrices Z ∈ R

n×r and all positive definite preconditioners
M the conjugate gradient method applied to the deflated preconditioned system is expected to
converge always faster than the conjugate gradient method applied to the system preconditioned
by the coarse grid correction or balancing preconditioner. Some numerical results are given to
illustrate the theory.
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2 Convergence acceleration of deflation

In this section, first we will prove that the effective condition number of PDA is always lower than
the condition number of A for all choices of Z, see Theorem 2.1.

Theorem 2.1 Let A and PD be as defined in Section 1. Then the following inequality holds:

κeff(PDA) < κ(A). (5)

Thereafter we proof that this can be generalized in the case of using an SPD preconditioner M ,
see Theorem 2.2.

Theorem 2.2 Let A and PD be as defined in Section 1. Let M be an n × n SPD matrix. Then
the following inequality holds:

κeff(M
−1PDA) < κ(M−1A). (6)

Both theorems imply that using deflation always leads to an asymptotically faster convergence.
This section is organized as follows. We start with some auxiliary results in Subsection 2.1,

which are needed in the proofs of Theorem 2.1 and 2.2. Thereafter, in Subsection 2.2 the proof
of Theorem 2.1 is given after showing that the inequalities λr+1(PDA) ≥ λ1(A) and λn(PDA) <
λn(A) hold. Finally, we end up with the proof of Theorem 2.2 in the last subsection.

2.1 Auxiliary Results

A set of lemmata and a theorem, which are needed to prove Theorems 2.1 and 2.2, are given
below.

Lemma 2.3 Let Q be a projection matrix and let R be an SPD matrix with dimensions n × n
such that QR is symmetric. Then QR is also SPD.

Proof: By definition, uT Ru > 0 for all vectors u. In particular,

(QT u)T R(QT u) > 0

leading to
(QT u)T R(QT u) = uT QRQT u > 0.

In other words, QRQT = Q(RQT )T = Q2R = QR is SPD. �

Lemma 2.4 Matrix I − PD is a projector.

Proof: By definition, I − PD = AZE−1ZT so that

(I − PD)2 = AZE−1ZT AZE−1ZT = AZE−1EE−1ZT = AZE−1ZT = I − PD .

�

Next, two lemmata are given about the symmetry of some matrices.

Lemma 2.5 Define T := (I − PD)A with PD as defined in Section 1. Then T is symmetric.

Proof: Note first that T = (I − PD)A = −AZE−1ZT A. Since

T T = (−AZE−1ZT A)T = −AT ZE−T ZT A = −AZE−1ZT A = T,

matrix T is symmetric. �

Let M1/2 be the symmetric square root of M (see page 149 of [8]).
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Lemma 2.6 Let Â := M−1/2AM−1/2 with M to be SPD. Then Â is SPD.

Theorem 2.7 (see [14] Theorem 2.10) Let A ∈ R
n×n be symmetric positive definite. Let Z1 ∈

R
n×r and Z2 ∈ R

n×s with rank Z1 = r and rank Z2 = s. Let E1 := ZT
1 AZ1 and E2 := ZT

2 AZ2.
If ImZ1 ⊆ ImZ2, then

λn((I − AZ1E
−1
1 ZT

1 )A) ≥ λn((I − AZ2E
−1
2 ZT

2 )A), (7)

λr+1((I − AZ1E
−1
1 ZT

1 )A) ≤ λs+1((I − AZ2E
−1
2 ZT

2 )A). (8)

This theorem states that the effective condition number decreases if we increase the number
of deflation vectors.

2.2 Comparison of the (Effective) Condition Numbers of the Matrices
A and PDA

In this subsection, the proof of Theorem 2.1 is given.
Proof: [Proof of Theorem 2.1.] Note that

A − PDA = V A, V := AZE−1ZT = I − PD .

V = I − PD is a projector due to Lemma 2.4. Obviously, applying the identity PDA = AP T
D ,

we have that V A is symmetric. Next, since A is SPD, we obtain that V A is also SPD, by using
Lemma 2.3. Therefore, by definition, A ≺ PDA so that

λi(A) > λi(PDA),

by Theorem 4.3.1 of [9]. Thus in particular:

λn(A) > λn(PDA).

Now we prove that the inequality λ1(A) ≤ λr+1(PDA) holds. We start to prove that λ1(A) ≤
λ2(P(1)A), where P(1) is the deflation operator with Z(1) = z1. Note first that

P(1)A = A − Az1E
−1
(1)z

T
1 A = A + T.

with T = (I −P(1))A = −Az1E
−1
(1)z

T
1 A. Moreover, since E−1

(1) is a scalar, we write α := −E−1
(1) ∈ R.

Hence,
T = −Az1E

−1
(1)z

T
1 A = αAz1z

T
1 A.

Obviously, rank αAz1z
T
1 A = rank Az1z

T
1 A. Furthermore, since A is invertible,

rank Az1z
T
1 A = rank z1z

T
1 .

Because of rank z1z
T
1 = 1, we obtain that rank T = 1. Moreover, T is symmetric by applying

Lemma 2.5. Hence, the conditions of Theorem 4.3.6 of [9] have been satisfied, so we obtain
immediately

λ1(A) ≤ λ2(P(1)A).

Application of Theorem 2.7 leads to the inequality

λ1(A) ≤ λ2(P(1)A) ≤ λr+1(PDA).

In the previous two steps it has been proven that

λ1(A) ≤ λr+1(PDA), λn(A) > λn(PDA),

for all Z with rank Z = r. Hence, this leads to

κ̃(PDA) < κ(A).

�
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2.3 Comparison of the (Effective) Condition Numbers of the Matrices
M

−1
A and M

−1
PDA

As mentioned in the beginning of this section, Theorem 2.1 can be generalized to deflated pre-
conditioned systems M−1PDA where M is an SPD matrix. This leads to Theorem 2.2 whose the
proof can be found below.

Proof: [Proof of Theorem 2.2.] Let Â := M−1/2AM−1/2. Then Â is SPD from Lemma 2.6.
Note that

κeff(M
−1PDA) = κeff(M

−1/2PDAM−1/2) = κeff(M
−1/2PDM1/2Â) (9)

and
κ(M−1A) = κ(M−1/2AM−1/2) = κ(Â) (10)

using the fact that κ(B1B2) = κ(B2B1) (with the standard 2-norm) for two arbitrary invertible
symmetric matrices B1 and B2.

Next, define P̂D as
P̂D := I − ÂY Ê−1Y T , Ê := Y T ÂY

with Y := M1/2Z. Since M1/2 is invertible, Y is of rank r. Note further that

E = ZT AZ = (M−1/2Y )T AM−1/2Y = Y T ÂY = Ê.

Now we obtain
M−1/2PDM1/2 = M−1/2(I − AZE−1ZT )M1/2

= I − M−1/2AZE−1ZT M1/2

= I − ÂM1/2ZE−1ZT M1/2

= I − ÂY Ê−1Y T

= P̂D.

Hence, Equation (9) can now be rewritten as

κeff(M
−1PDA) = κeff(M

−1/2PDM1/2Â) = κeff(P̂DÂ). (11)

From Theorem 2.1 we know that κeff(PDA) < κ(A) for arbitrary Z with rank r and for arbitrary

SPD matrix A. In particular we can take PD = P̂D and A = Â, since Y is also of rank r and Â is
SPD. Therefore we obtain

κeff(P̂DÂ) < κ(Â),

which is equivalent to
κeff(M

−1PDA) < κ(M−1A).

�

3 Comparison of deflation and additive coarse grid correc-
tion

In this section we compare the deflation preconditioner with a well-known coarse grid correction
preconditioner of the form

PC = I + ZE−1ZT (12)

and in the preconditioned case

PCM−1 = M−1 + ZE−1ZT . (13)
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In the multigrid or domain decomposition language the matrices Z and ZT are known as
restriction and prolongation or interpolation operator. Moreover, the matrix E = ZT AZ is the
Galerkin operator.

The above coarse grid correction preconditioner belongs to the class of additive Schwarz pre-
conditioner. It is called the two level additive Schwarz preconditioner. If used in domain decom-
position methods, typically, M−1 is the sum of the local (exact or inexact) solves in each domain.
To speed up convergence a coarse grid correction ZE−1ZT is added.

These methods are introduced by Bramble, Paschiak and Schatz [1] and Dryja and Widlund
[2, 3, 4]. They show that under mild conditions the convergence rate of the PCG method is
independent of the grid sizes.

For more details about this preconditioner we refer to the books of Quarteroni and Valli [19],
and Smith, Bjørstad and Gropp [20]. A more abstract analysis of this preconditioner is given by
Padiy, Axelsson and Polman [17], recently. To make the condition number of PCM−1A smaller
Padiy, Axelsson and Polman used a parameter σ > 0 and considered

PCM−1(σ) = M−1 + σZE−1ZT . (14)

We compare this preconditioner to the corresponding deflated preconditioner

M−1PD. (15)

Then, we obtain the following theorem.

Theorem 3.1 Let A ∈ R
n×n and M ∈ R

n×n be symmetric positive definite. Let Z ∈ R
n×r with

rank Z = r. Then

λn(M−1PDA) ≤ λn(PCM−1 (σ)A), (16)

λr+1(M
−1PDA) ≥ λ1(PCM−1 (σ)A). (17)

Proof: See the proof of Theorem 2.11 in [14]. �

In this theorem we prove that the effective condition number of the deflated preconditioned
system M−1PDA is always below the condition number of the system preconditioned by the coarse
grid correction PCM−1(σ)A. This implies that for all matrices Z ∈ R

n×r and all positive definite
preconditioners M−1 the conjugate gradient method applied to the deflated preconditioned system
converges always faster than the conjugate gradient method applied to the system preconditioned
by the coarse grid correction. Finally, we note that the memory requirements and the amount
of work per iteration of both preconditioners are comparable. This implies, that in practice it is
better to use deflation instead of the additive coarse grid correction.

4 Comparison of deflation and balancing

In this section we compare the preconditioned deflation operator to the balancing preconditioner
proposed by Mandel [11, 12] and analyzed by Widlund et al. [5, 18, 21]. As the FETI algorithm [6,
7] the balancing Neumann-Neumann preconditioner is one of the domain decomposition methods
that have been most carefully implemented and severely tested on the very largest existing parallel
computer systems.

Applied to some specific symmetric positive definite problems the balancing Neumann-Neumann
preconditioner leads to moderately growing condition numbers if the size of the systems increases
[20]. Moreover, if an appropriate scaling is used, the condition numbers are independent of jumps
in the coefficients in the matrices [20].

In our notation the balancing preconditioner is given by

PB = (I − ZE−1ZT A)M−1(I − AZE−1ZT ) + ZE−1ZT , (18)
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where Z ∈ R
n×r, E = ZT AZ and M is a symmetric positive definite matrix. Note that PB is

symmetric and positive definite. For more details we refer to [11] and the books [19, 20, 21].
As a first comparison of both preconditioners we observe that the balancing preconditioner

needs per iteration 3 matrix vector products and the coarse grid operator is used 2 times. This
makes the balancing preconditioner per iteration more expensive than the deflation approach.
However, if an optimal implementation of the balancing preconditioner is used (see e.g. [21]), the
amount of work per iteration is the same.

Theorem 4.1 Suppose that the spectrum of M−1PDA is given by:

spectrum(M−1PDA) = {0, . . . , 0, µr+1, . . . , µn},

then
spectrum(PBA) = {1, . . . , 1, µr+1, . . . , µn}.

Proof: See the proof of Theorem 2.8 in [15]. �

Thus both preconditioners lead to almost the same spectra with the same clustering. The zero
eigenvalues of the deflation preconditioned system are replaced by eigenvalues which are one if the
balancing preconditioner is used. It follows from Theorem 4.1 that

κ(PBA) ≥ κeff (M−1PDA)

so the convergence bound based on the effective condition number implies that preconditioned
deflated CG never converges slower than CG preconditioned by the balancing preconditioner.
This combined with memory requirements and work per iteration counts suggested that it is
better to use the deflation preconditioner instead of the balancing preconditioner.

5 Numerical experiments

In all our numerical experiments, the multiplication y = E−1b is done by solving y directly from
Ey = b, where E is decomposed in its Cholesky factor. In this section, coarse grid correction
is abbreviated as CGC. The choice of the boundary conditions is such that all problems have as
exact solution the vector with components equal to 1. In order to make the convergence behavior
representative for general problems we chose a random vector as starting solution, in stead of the
zero starting vector.

We simulate a porous media oil flow in a 3-dimensional layered geometry, where the layers vary
in thickness and orientation (see Figure 1 and 2 for a 4 layer problem). The fluid pressure and
permeability are denoted by p and σp, respectively. The pressure p satisfies the equation:

−div(σp∇p) = 0 on Ω, (19)

with boundary conditions

p = 1 on ∂ΩD (Dirichlet) and
∂p

∂n
= 0 on ∂ΩN (Neumann),

where ∂Ω = ∂ΩD ∪∂ΩN . In this problem ∂ΩD is the top boundary of the domain. Figure 1 shows
a part of the earth’s crust. The depth of this part varies between 3 and 6 kilometers, whereas
horizontally its dimensions are 40× 60 kilometers. The upper layer is a mixture of sandstone and
shale and has a permeability of 10−4. Below this layer, shale and sandstone layers are present
with permeabilities of 10−7 and 10 respectively. An incomplete Cholesky factorization with no
fill in is used as preconditioner [13]. We consider a problem with 9 layers: 5 sandstone layers are
separated by 4 shale layers. Due to the Dirichlet boundary condition at the top the preconditioned
matrix has 4 small eigenvalues. We use 4 physical projection vectors [24] and stop if ‖rk‖2 ≤ 10−5.
Trilinear hexahedral elements are used and the total number of gridpoints is equal to 148185.
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The number of iterations and the CPU time of ICCG are given in Table 1. From this table
it appears that the coarse grid correction preconditioner takes more iterations than the deflation
preconditioner, which makes the required CPU time longer. It appears that the norm of the
residuals of the deflation and balancing preconditioners are the same. Due to extra work per
iteration, the balancing preconditioner costs more CPU time. The computations are performed on
an AMD Athlon, 1.4 GHz processor with 256 Mb of RAM. The code is compiled with FORTRAN
g77 on LINUX.
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Figure 1: The geometry of an oil flow problem
with 4 layers
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Figure 2: Permeabilities for each layer

method deflation CGC balancing
iterations 36 47 36

CPU time in seconds 6.3 8.2 9.8

Table 1: The results for the ICCG method combined with various preconditioners applied to the
oil flow problem

6 Conclusions

In this paper we have compared various preconditioners for the numerical solution of partial dif-
ferential equations: deflation, coarse grid correction and balancing. It appears from theory and
experiments that all these preconditioners lead to a (much) faster convergence of PCG. Further-
more, these preconditioners solve the problems concerning large jumps in the coefficients and the
deterioration of the convergence for a block preconditioner if the number of blocks increases.

A comparison of the deflation preconditioner with the coarse grid correction preconditioner
shows that the amount of work per iteration is the same, but the number of iterations with the
coarse grid correction preconditioner is considerably higher than with the deflation preconditioner.
Finally, it appears that the convergence of the balancing preconditioner is comparable to the
convergence of the deflation preconditioner, but the amount of work per iteration is higher for the
balancing preconditioner.
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