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KRYLOV SUBSPACE SOLVERS AND PRECONDITIONERS

C. Vuik1

Abstract. In these lecture notes an introduction to Krylov subspace solvers and preconditioners
is presented. After a discretization of partial differential equations large, sparse systems of linear
equations have to be solved. Fast solution of these systems is very urgent nowadays. The size of the
problems can be 1013 unknowns and 1013 equations. Iterative solution methods are the methods of
choice for these large linear systems. We start with a short introduction of Basic Iterative Methods.
Thereafter preconditioned Krylov subspace methods, which are state of the art, are describeed. A
distinction is made between various classes of matrices.

At the end of the lecture notes many references are given to state of the art Scientific Computing
methods. Here, we will discuss a number of books which are nice to use for an overview of background
material. First of all the books of Golub and Van Loan [19] and Horn and Johnson [26] are classical
works on all aspects of numerical linear algebra. These books also contain most of the material,
which is used for direct solvers. Varga [50] is a good starting point to study the theory of basic
iterative methods. Krylov subspace methods and multigrid are discussed in Saad [38] and Trottenberg,
Oosterlee and Schüller [42]. Other books on Krylov subspace methods are [1, 6, 21,34,39].

1. Basic iterative solution methods for linear systems

1.1. Introduction and model problem

Problems coming from discretized partial differential equations lead in general to large sparse systems of
equations

Ax = b,

where A ∈ Rn×n is a non-singular matrix. Direct solution methods, based on an LU -decomposition can be
impractical if A is large and sparse. In this case the factors L ∈ Rn×n (a lower triangular matrix with ones on
the main diagonal) and U ∈ Rn×n (an upper triangular matrix) can be dense. This is especially the case for
3D problems. So a considerable amount of memory is required and even the solution of the triangular system
costs many floating point operations.

In contrast to the direct methods are the iterative methods. These methods generate a sequence of approximate
solutions

{
x(k)

}
and essentially involve the matrix A only in the context of matrix-vector multiplication. The

evaluation of an iterative method invariably focuses on how quickly the iterates x(k) converge. The study of round
off errors is in general not very well developed. A reason for this is that the iterates are only approximations of
the exact solution, so round off errors in general only influence the speed of convergence but not the quality of
the final approximation.
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The use of iterative solution methods is very attractive in time dependent and nonlinear problems. For these
problems the solution of the linear system is part of an outer loop: time stepping for a time dependent problem
and Newton Raphson (or other nonlinear methods) for a nonlinear problem. So good start vectors are in general
available: the solution of the preceding outer iteration, whereas the required accuracy is in general low for these
problems. Both properties lead to the fact that only a small number of iterations is sufficient to obtain the
approximate solution of the linear system. Before starting the description and analysis of iterative methods we
describe a typical model problem obtained from a discretized partial differential equation. The properties and
definitions of the given methods are illustrated using this problem.

Model problem
Consider the discrete approximation of the Poisson equation

∂2w

∂x2
+
∂2w

∂y2
= G(x, y) , 0 < x < 1 , 0 < y < 1,

and boundary conditions

w(x, y) = g(x, y) , x ∈ {0, 1} , or y ∈ {0, 1} .

In the sequel vij is an approximation of w(xi, yj) where xi = ih and yj = jh, 0 ≤ i ≤ m+ 1, 0 ≤ j ≤ m+ 1.
The finite difference approximation may be written as:

4vi,j − vi+1,j − vi−1,j − vi,j+1 − vi,j−1 = −h2 G(xi, yj).

The ordering of the nodal points is given in Figure 1 for m = 3. The kth component uk of the vector u is the
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Figure 1. The natural (lexicographic) ordering of the nodal points

unknown corresponding to the grid point labeled k. When all the boundary terms are moved to the right-hand
side, the system of difference equations can be written as:

4 −1 0 −1
−1 4 −1 0 −1 �

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
� −1 0 −1 4 −1

−1 0 −1 4





u1

u2

u3

u4

u5

u6

u7

u8

u9


=



g11 + g15 − h2G1

g12 − h2G2

g13 + g16 − h2G3

g17 − h2G4

− h2G5

g18 − h2G6

g19 + g22 − h2G7

g23 − h2G8

g20 + g24 − h2G9


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If the unknowns on lines parallel to the x-axis are grouped together the given system can be written as: A1,1 A1,2 0
A2,1 A2,2 A2,3

0 A3,2 A3,3

 U1

U2

U3

 =

 F1

F2

F3

 ,
where the unknowns on line k are denoted by Uk. The lines and grid points are given in Figure 2.1. The
matrices Ai,j are given by:

Ak,k =

 4 −1 0
−1 4 −1

0 −1 4

 and Ak+1,k = Ak,k+1 =

 −1 0 0
0 −1 0
0 0 −1

 .
The submatrix Ak,l gives the coupling of the unknowns from line k to those on line l.

1.2. Basic iterative methods

The basic idea behind iterative methods for the solution of a linear system Ax = b is: starting from a given
x(k), obtain a better approximation x(k+1) of x in a cheap way. Note that b− Ax(k) is small if x(k) is close to
x. This motivates the iteration process

x(k+1) = x(k) +M−1(b−Ax(k)) (1)

One immediately verifies that if this process converges, x is a possible solution.
So if ‖b−Ax(k)‖2 is large we get a large change of x(k) to x(k+1). The choice of M is crucial in order to obtain
a fast converging iterative method. Rewriting of (1) leads to:

Mx(k+1) = Nx(k) + b (2)

where the matrix N is given by N = M −A. The formula A = M −N is also known as a splitting of A. It can
easily be seen that if x(k+1) → x the vector x should satisfy

Mx = Nx+ b ⇔ Ax = (M −N)x = b.

As a first example we describe the point Gauss Jacobi method. First we define DA = diag (A) and LA and UA
which are the respectively strictly lower and the strictly upper part of A. So that A = DA + LA + UA.

Gauss Jacobi (point).
The choice M = DA and N = −(LA + UA) leads to the point Gauss Jacobi iteration. This algorithm can be
described by the following formula:

for i = 1, . . . , n do

x
(k+1)
i =

bi − n∑
j=1

j 6=i

aijx
(k)
j

 /aii

end for

(3)

One immediately sees that only memory is required to store the matrix A, the right-hand side vector b and the
approximation vector x(k) which can be overwritten in the next step. For our model problem it is sufficient
to store 7 vectors in memory, because the matrix A has only 7 non-zero elements per row. Furthermore, one
iteration costs approximately as much work as a matrix vector product.
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Whether or not the iterates obtained by formula (2) converge to x = A−1b depends upon the eigenvalues of
M−1N . The set of eigenvalues of A is denoted as the spectrum of A. The spectral radius of a matrix A is
defined by

ρ(A) = max {|λ|, where λ ∈ spectrum of A} .

The size of ρ(M−1N) is critical to the convergence behavior of (2).

Theorem 1.1. Suppose b ∈ IRn and A = M −N ∈ IRn×n is nonsingular. If M is nonsingular and the spectral
radius of M−1N is less than 1, then the iterates x(k) defined by (2) converge to x = A−1b for any starting vector
x(0).

Proof: Let e(k) = x(k) − x denote the error in the kth iterate. Since Mx = Nx+ b it follows that

M(x(k+1) − x) = N(x(k) − x)

and thus the error in x(k+1) given by e(k+1) satisfies:

e(k+1) = M−1Ne(k) = (M−1N)ke(0) (4)

From [19], p. 336, Lemma 7.3.2 it follows that (M−1N)k → 0 for k → ∞ if ρ(M−1N) < 1, so e(k+1) → 0 for
k →∞. �

As an example we note that point Gauss Jacobi is convergent if the matrix A is strictly diagonal dominant. To
show this we note that

ρ(M−1N) ≤ ‖M−1N‖∞ = ‖D−1
A (LA + UA)‖∞ = max

1≤i≤n

n∑
j=1

j 6=i

|aij |
|aii|

.

Since a strictly diagonal dominant matrix has the property that
n∑
j=1

j 6=i

|aij | < |aii| it follows that ρ(M−1N) < 1.

In many problems an increase of the diagonal dominance leads to a decrease of the number of iterations.

Summarizing the results given above we see that a study of basic iterative methods proceeds along the following
lines:

- a splitting A = M −N is given where systems of the form Mz = d (d given and z unknown) are cheaply
solvable in order to obtain a practical iteration method by (2),

- classes of matrices are identified for which the iteration matrix M−1N satisfies ρ(M−1N) < 1.
- further results about ρ(M−1N) are established to gain intuition about how the error e(k) tends to zero.

For Gauss Jacobi we note that M is a diagonal matrix so that systems of the form Mz = d are easily solvable.
We have specified a class of matrices such that convergence occurs. The final point given above is used to obtain
new methods with a faster rate of convergence or a wider class of matrices such that ρ(M−1N) < 1.

Below we first give a block variant of the Gauss Jacobi method. Thereafter other methods are specified. In the
remainder of this section we suppose that Ax = b is partitioned in the form A1,1 . . . A1,q

...
...

Aq,1 . . . Aq,q


 X1

...
Xq

 =

 B1

...
Bq

 ,
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where Ai,j is an ni × nj submatrix and n1 + n2 . . .+ nq = n. Here the Xi and Bi represent subvectors of order
ni. Furthermore, we define

DA =

 A1,1 �
. . .

� Aq,q

 , LA =


©
A2,1 �

...
. . .

Aq,1 Aq,q−1 ©

 and UA =


© A1,2 A1,q

. . .

� Aq−1,q

©


Gauss Jacobi (block)
For the given matrices DA, LA and UA the Gauss Jacobi method is given by M = DA and N = −(LA + UA).
The iterates can be obtained by the following algorithm:

for i = 1, . . . , q do

X
(k+1)
i = A−1

i,i

Bi − q∑
j=1

j 6=i

AijX
(k)
j

 .

end for

For the special case ni = 1, i = 1, . . . , n we get the point Gauss Jacobi back. In our example a natural block
ordering is obtained if we take ni = 3. In that case the diagonal block matrices Ai,i are tridiagonal matrices for
which cheap methods exist to solve systems of the form Ai,iz = d.

Note that in the Gauss Jacobi iteration one does not use the most recently available information when computing

X
(k+1)
i . For example X

(k)
1 is used in the calculation of X

(k+1)
2 even though component X

(k+1)
1 is already known.

If we revise the Gauss Jacobi iteration so that we always use the most recent estimate of the exact Xi then we
obtain:

Gauss Seidel (block)
The Gauss Seidel method is given by M = DA + LA and N = −UA. The iterates can be obtained by

for i = 1, . . . , q do

X
(k+1)
i = A−1

i,i

(
Bi −

i−1∑
j=1

Ai,jX
(k+1)
j −

q∑
j=i+1

Ai,jX
(k)
j

)
.

end for

Note that again the solution of systems of the form Mz = d are easily obtained since M = DA +LA and LA is
a strictly lower triangular block matrix. As an example for the convergence results that can be proved for the
point Gauss Seidel method (Ai,i = ai,i), we give the following theorem:

Theorem 1.2. If A ∈ IRn×n is symmetric and positive definite, then the point Gauss Seidel iteration converges
for any x(0).

Proof: see [19], p. 512, Theorem 10.1.2.

This result is frequently applicable because many of the matrices that arise from discretized elliptic partial
differential equations are symmetric positive definite. Gauss Seidel converges faster than Gauss Jacobi. Fur-
thermore, block versions converge faster than point versions. For these results and further detailed convergence
proofs we refer to [51], [54], [24], and [3].

The Gauss Seidel iteration is in general a slowly converging process. Inspections of the iterates show that the
approximations are monotonously increasing or decreasing. Hence, we expect an improvement of the rate of
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convergence if we use an extrapolation in the direction of the expected change. This leads to the so called
successive over-relaxation (SOR) method:

SOR (block)
The successive over-relaxation method is obtained by choosing a constant ω ∈ IR and compute the iterates by

Mωx
(k+1) = Nωx

(k) + ωb,

where Mω = DA + ωLA and Nω = (1− ω)DA − ωUA. Note that ωA = Mω −Nω. The idea behing the use of
ω is to damp (if ω > 1) or increase (if ω > 1) the computed adaptation. The following algorithm can be used:

for i = 1, . . . , q do

X
(k+1)
i = ωA−1

i,i

(
Bi −

i−1∑
j=1

Ai,jX
(k+1)
j −

q∑
j=i+1

Ai,jX
(k)
j

)
+ (1− ω)X

(k)
i .

end for

It can be shown that for 0 < ω < 2 the SOR method converges if A is symmetric and positive definite. For ω < 1
we have underrelaxation and for ω > 1 we have overrelaxation. In most examples overrelaxation is used. For
a few structured (but important) problems such as our model problem, the value of the relaxation parameter
ω that minimizes ρ(M−1

ω Nω) is known. Moreover, a significant reduction of ρ(M−1
ωoptNωopt) with respect to

ρ(M−1
1 N1) can be obtained. Note that for ω = 1 we get the Gauss Seidel method. As an example it appears

that for the model problem the number of Gauss Seidel iterations is proportional to 1
h2 whereas the number

of SOR iterations with optimal ω is proportional to 1
h . So for small values of h a considerable gain in work

results. However, in more complicated problems it may be necessary to perform a fairly sophisticated eigenvalue
analysis in order to determine an appropriate ω. A complete survey of ”SOR theory” appeared in [54]. Some
practical schemes for estimating the optimum ω are discussed in [5], [7], and [53].

Chebyshev
The SOR method is presented as an acceleration of the Gauss Seidel method. Another method to accelerate
the convergence of an iterative method is the Chebyshev method. Suppose x(1), . . . , x(k) have been obtained
via (2), and we wish to determine coefficients γj(k), j = 0, . . . , k such that

y(k) =

k∑
j=0

γj(k)x(j) (5)

is an improvement of x(k). If x(0) = . . . = x(k) = x, then it is reasonable to insist that y(k) = x. Hence we
require

k∑
j=0

γj(k) = 1 (6)

and consider how to choose the γj(k) so that the error y(k) − x is minimized. It follows from the proof of

Theorem 1.1 that e(k) = (M−1N)ke(0) where e(k) = x(k) − x. This implies that

y(k) − x =

k∑
j=0

γj(k)(x(j) − x) =

k∑
j=0

γj(k)(M−1N)je(0). (7)

Using the 2-norm we look for γj(k) such that ‖y(k)−x‖2 is minimal. To simplify this minimization problem we
use the following inequality:

‖y(k) − x‖2 ≤ ‖pk(M−1N)‖2‖x(0) − x‖2 (8)
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where pk(z) =
k∑
j=0

γj(k)zj and pk(1) = 1. We now try to minimize ‖pk(M−1N)‖2 for all polynomials satisfying

pk(1) = 1. Another simplification is the assumption that M−1N is symmetric with eigenvalues λi that satisfy
0 < α ≤ λn . . . ≤ λ1 ≤ β < 1. Using these assumptions we see that

‖pk(M−1N)‖2 = max
λi
|pk(λi)| ≤ max

α<λ<β
|pk(λ)|.

So to make the norm of pk(M−1N) small we need a polynomial pk(z) that is small on [α, β] subject to the
constraint that pk(1) = 1. This is a minimization problem of polynomials on the real axis. The solution of this
problem is obtained by Chebyshev polynomials. These polynomials cj(z) can be generated by the following
recursion

c0(z) = 1,
c1(z) = z,
cj(z) = 2zcj−1(z)− cj−2(z).

These polynomials satisfy |cj(z)| ≤ 1 on [−1, 1] but grow rapidly in magnitude outside this interval. As a
consequence the polynomial

pk(z) =
ck

(
−1 + 2 z−αβ−α

)
ck

(
1 + 2 1−β

β−α

)
satisfies pk(1) = 1, since −1 + 2 1−α

β−α = 1 + 2 1−β
β−α , and tends to be small on [α, β]. The last property can be

explained by the fact that

−1 ≤ −1 + 2
z − α
β − α

≤ 1 for z ∈ [α, β] so the

numerator is less than 1 in absolute value, whereas the denominator is large in absolute value since 1+2 1−β
β−α > 1.

This polynomial combined with (8) leads to

‖y(k) − x‖2 ≤
‖x− x(0)‖2

|ck
(

1 + 2 1−β
β−α

)
|
. (9)

Calculation of the approximation y(k) by formula (5) costs much time and memory, since all the vectors
x(0), . . . , x(k) should be kept in memory. Furthermore, to calculate y(k) one needs to add k + 1 vectors, which
for the model problem costs for k ≥ 5 more work than one matrix vector product. Using the recursion of the
Chebyshev polynomials it is possible to derive a three term recurrence among the y(k). It can be shown that
the vectors y(k) can be calculated as follows:

y(0) = x(0)

solve z(0) from Mz(0) = b−Ay(0) then y(1) is given by

y(1) = y(0) + 2
2−α−β z

(0)

solve z(k) from Mz(k) = b−Ay(k) then y(k+1) is given by

y(k+1) =
4− 2β − 2α

β − α

ck

(
1 + 2 1−β

β−α

)
ck+1

(
1 + 2 1−β

β−α

) (y(k) − y(k−1) +
2

2− α− β
z(k)

)
+ y(k−1) .
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We refer to this scheme as the Chebyshev semi-iterative method associated with My(k+1) = Ny(k) + b. Note
that only 4 vectors are needed in memory and the extra work per iteration consists of the addition of 4 vectors.
In order for the acceleration to be effective it is necessary to have good lower and upper bounds of α and
β. These parameters may be difficult to obtain. Chebyshev semi-iterative methods are extensively analyzed
in [51], [20] and [24].

In deriving the Chebyshev acceleration we assumed that the iteration matrix M−1N is symmetric. Thus our
simple analysis does not apply to the SOR iteration matrix M−1

ω Nω because this matrix is not symmetric. To
repair this, Symmetric SOR (SSOR) is proposed. In SSOR one SOR step is followed by a backward SOR step.
In this backward step the unknowns are updated in reversed order. For further details see [19], Section 10.1.5.
Finally we present some theoretical results for the Chebyshev method 1. Suppose that the matrix M−1A is
symmetric and positive definite and that the eigenvalues µi are ordered as follows 0 < µ1 ≤ µ2 . . . ≤ µn. It is
then possible to prove the following theorem:

Theorem 1.3. If the Chebyshev method is applied and M−1A is symmetric positive definite then

‖y(k) − x‖2 ≤ 2

(√
K2(M−1A)− 1√
K2(M−1A) + 1

)k
‖x(0) − x‖2.

Proof Since M−1A = M−1(M −N) = I −M−1N we see that the eigenvalues satisfy the following relation:

µi = 1− λi or λi = 1− µi.

This combined with (9) leads to the inequality:

‖y(k) − x‖2 ≤
‖x− x(0)‖2

|ck
(

1 + 2 (1−(1−µ1))
(1−µ1)−(1−µn)

)
|
. (10)

So it remains to estimate the denominator. Note that

ck

(
1 +

2(1− (1− µ1))

(1− µ1)− (1− µn)

)
= ck

(
µn + µ1

µn − µ1

)
= ck

(
1 + µ1

µn

1− µ1

µn

)
.

The Chebyshev polynomial can also be given by

ck(z) =
1

2

{(
z +

√
z2 − 1

)k
+
(
z −

√
z2 − 1

)k}
[1], p. 180.

This expression can be used to show that

ck

(
1+

µ1
µn

1− µ1
µn

)
> 1

2

(
1+

µ1
µn

1− µ1
µn

+

√(
1+

µ1
µn

1− µ1
µn

)2

− 1

)k
=

= 1
2

(
1+

µ1
µn

+2
√

µ1
µn

1− µ1
µn

)k
= 1

2

(
1+

√
µ1
µn

1−
√

µ1
µn

)k
.

(11)

1These results are used in the following chapters to analyze the converge behavior of other iterative methods
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The condition number K2(M−1A) is equal to µn
µ1

. Together with (10) and (11) this leads to

‖y(k) − x‖2 ≤ 2

(√
K2(M−1A)− 1√
K2(M−1A) + 1

)k
‖x(0) − x‖2.

�
Chebyshev type methods which are applicable to a wider range of matrices are given in the literature. In [28] a
Chebyshev method is given for matrices with the property that their eigenvalues are contained in an ellipse in
the complex plane, and the origin is no element of this ellipse. For a general theory of semi-iterative methods
of Chebyshev type we refer to [8].

1.3. Starting vectors and termination criteria

Starting vectors

All the given iterative solution methods used to solve Ax = b start with a given vector x(0). In this subsection
we shall give some ideas how to choose a good starting vector x(0). These choices depend on the problem to
be solved. If no further information is available one always starts with x(0) = 0. The solution of a nonlinear
problem is in general approximated by the solution of a number of linear systems. In such a problem the final
solution of the iterative method at a given outer iteration can be used as a starting solution for the iterative
method used to solve the next linear system.

Suppose we have a time dependent problem. The solution of the continuous problem is denoted by u(n). In

every time step this solution is approximated by a discrete solution u
(n)
h satisfying the following linear system

A(n)u
(n)
h = b(n).

These systems are approximately solved by an iterative method where the iterates are denoted by x(n,k). An

obvious choice for the starting vector is x(n+1,0) = x(n,kn) where kn denotes the number of iterations in the

nth time step. A better initial estimate can be obtained by the following extrapolation:

u(n+1) ∼= u(n) +4tdu
(n)

dt
,

where du(n)

dt is approximated by x(n,kn)−x(n−1,kn−1)

4t . This leads to the following starting vector

x(n+1,0) = 2x(n,kn) − x(n−1,kn−1) .

Finally starting vectors can sometimes be obtained by solution of related problems, e.g., analytic solution of a
simplified problem, a solution computed by a coarser grid, a numerical solution obtained by a small change in
one of the parameters etc.

Termination criteria
In Subsection 1.2 we have specified iterative methods to solve Ax = b. However, no criteria to stop the iterative
process have been given. The iterative method should be stopped if the approximate solution is accurate enough.
To measure the accuracy we can use the norm of the error: ‖x−x(i)‖. However, to compute the error the exact
solution x should be known, which is impossible to have during the iterations. A good termination criterion is
very important for an iterative method, because if the criterion is too weak the approximate solution is useless,
whereas if the criterion is too severe the iterative solution method never stops or costs too much work.



10 ESAIM: PROCEEDINGS AND SURVEYS

We start by giving a termination criterion for a linear convergent process. An iterative method is linear
convergent if the iterates satisfy the following equation:

‖x(i) − x(i−1)‖2 ≈ r‖x(i−1) − x(i−2)‖2, r < 1 (12)

and x(i) → A−1b for i → ∞. Relation (12) is easily checked during the computation. In general, initially (12)

is not satisfied but after some iterations the quantity ‖x(i)−x(i−1)‖2
‖x(i−1)−x(i−2)‖2

converges to r. The Gauss Jacobi, Gauss

Seidel and SOR methods are linear convergent.

Theorem 1.4. For a linear convergent process we have the following inequality

‖x− x(i)‖2 ≤
r

1− r
‖x(i) − x(i−1)‖2.

Proof
Using (12) we obtain the following inequality for k ≥ i+ 1.

‖x(k) − x(i)‖2 ≤
k−1∑
j=i

‖x(j+1) − x(j)‖2 ≤
k−i∑
j=1

rj‖x(i) − x(i−1)‖2

= r 1−rk−i−1

1−r ‖x(i) − x(i−1)‖2 .

Since lim
k→∞

x(k) = x this implies that

‖x− x(i)‖2 ≤
r

1− r
‖x(i) − x(i−1)‖2.

�
The result of this theorem can be used to give a stopping criterion for linear convergent methods. Sometimes
the iterations are stopped if ‖x(i) − x(i−1)‖2 is small enough. If r is close to one this may lead to inaccurate
results since r

1−r‖x
(i) − x(i−1)‖2 and thus ‖x− x(i)‖2 may be large. A safe stopping criterion is: stop if

r

1− r
‖x(i) − x(i−1)‖2
‖x(i)‖2

≤ ε.

If this condition holds then the relative error is less than ε:

‖x− x(i)‖2
‖x‖2

∼=
‖x− x(i)‖2
‖x(i)‖2

≤ r

1− r
‖x(i) − x(i−1)‖2
‖x(i)‖2

≤ ε.

Furthermore, Theorem 1.4 yields the following result:

‖x− x(i)‖2 ≤
ri

1− r
‖x(1) − x(0)‖2 . (13)

So assuming that the expression (13) can be replaced by an equality

log ‖x− x(i)‖2 = i log (r) + log

(
‖x(1) − x(0)‖2

1− r

)
. (14)

This implies that the curve log ‖x−x(i)‖2 is a straight line as function of i. This is the motivation for the term
linear convergent process. Given the quantity r, which is also known as the rate of convergence, or reduction
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factor, the required accuracy and ‖x(1) − x(0)‖2 it is possible to estimate the number of iterations to achieve
this accuracy. In general r may be close to one and hence a small increase of r may lead to a large increase of
the required number of iterations.

For iterative methods, which have another convergence behavior, most stopping criteria are based on the norm
of the residual. Below we shall give some of these criteria and comment on their properties.

Criterion 1 ‖b−Ax(i)‖2 ≤ ε.

The main disadvantage of this criterion is that it is not scaling invariant. This implies that if ‖b−Ax(i)‖2 < ε
this does not hold for ‖100(b − Ax(i))‖2. Although the accuracy of x(i) remains the same. So a correct choice
of ε depends on properties of the matrix A.

The remaining criteria are all scaling invariant.

Criterion 2 ‖b−Ax
(i)‖2

‖b−Ax(0)‖2
≤ ε

The number of iterations is independent of the initial estimate x(0). This may be a drawback since a better
initial estimate does not lead to a decrease of the number of iterations.

Criterion 3 ‖b−Ax
(i)‖2

‖b‖2 ≤ ε

This is a good termination criterion. The norm of the residual is small with respect to the norm of the right-hand
side. Replacing ε by ε/K2(A) we can show that the relative error in x is less than ε. It follows that:

‖x− x(i)‖2
‖x‖2

≤ K2(A)
‖b−Ax(i)‖2
‖b‖2

≤ ε.

In general ‖A‖2 and ‖A−1‖2 are not known. Some iterative methods gives approximations of these quantities.

Criterion 4 ‖b−Ax
(i)‖2

‖x(i)‖2
≤ ε/‖A−1‖2

This criterion is closely related to Criterion 3. In many cases this criterion also implies that the relative error
is less than ε:

‖x− x(i)‖2
‖x‖2

∼=
‖x− x(i)‖2
‖x(i)‖2

=
‖A−1(b−Ax(i))‖2

‖x(i)‖2
≤ ‖A

−1‖2‖b−Ax(i)‖2
‖x(i)‖2

≤ ε

Sometimes physical relations lead to other termination criteria. This is the case if the residual has a physical
meaning, for instance the residual is equal to some energy or the deviation from a divergence free vector field
etc.

It is well known that due to rounding errors the solution x represented on a computer has a residual which may
be of the magnitude of u‖b‖2, where u is the machine precision. So we cannot expect that a computed solution
by an iterative solution method has a smaller norm of the residual. In a good implementation of an iterative
method, a warning is given if the required accuracy is too high. If for instance the termination criterion is
‖b − Ax(i)‖2 ≤ ε and ε is chosen less than 1000u‖b‖2 a warning should be given and ε should be replaced by
ε = 1000u‖b‖2. The arbitrary constant 1000 is used for safety reasons.
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1.4. Exercises

(1) Suppose ‖E‖ < 1 for some matrix E ∈ IRn×n. Show that

(I − E)−1 =

∞∑
k=0

Ek and ‖(I − E)−1‖ ≤ 1

1− ‖E‖
.

(2) Show that if A is strictly diagonal dominant then the Gauss Seidel method converges.
(3) Suppose that A is symmetric and positive definite.

(a) Show that one can write A = DA−LA−LTA where DA is diagonal with dii > 0 for each 1 ≤ i ≤ n
and LA is strictly lower triangular. Further show that DA − LA is nonsingular.

(b) Let Tg = (DA − LA)−1LTA and P = A− TTg ATg. Show that P is symmetric.

(c) Show that Tg can also be written as Tg = I − (DA − LA)−1A.
(d) Let Q = (DA − LA)−1A. Show that Tg = I −Q and

P = QT (AQ−1 −A+ (QT )−1A)Q.

(e) Show that P = QTDAQ and P is symmetric and positive definite.
(f) Let λ be an eigenvalue of Tg with eigenvector x. Use part (b) to show that xTPx > 0 implies that
|λ| < 1.

(g) Show that the Gauss Seidel method converges.
(4) Extend the method of proof in Exercise 3 to the SOR method with 0 < ω < 2.
(5) Suppose that µ̃1 is an estimate for µ1 and µ̃n for µn.

(a) Show that in general the Chebyshev method converges slower if 0 < µ̃1 < µ1 and µ̃n > µn if µ̃1

and µ̃n are used in the Chebyshev method.
(b) Show that divergence can occur if µ̃n < µn.

(6) (a) Do two iterations with Gauss Jacobi to the system:

(
2 0
−2 2

)(
x1

x2

)
=

(
2
2

)

Note that the second iterate is equal to the exact solution.
(b) Is the following claim correct?

The Gauss Jacobi method converges in mostly n iterations if A is a lower triangular matrix

2. A Krylov subspace method for systems with a symmetric positive definite
matrix

2.1. Introduction

In the basic iterative solution methods we compute the iterates by the following recursion:

xi+1 = xi +M−1(b−Axi) = xi +M−1ri
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Writing out the first steps of such a process we obtain:

x0 ,

x1 = x0 + (M−1r0),

x2 = x1 + (M−1r1) = x0 +M−1r0 +M−1(b−Ax0 −AM−1r0)

= x0 + 2M−1r0 −M−1AM−1r0,
...

This implies that

xi ∈ x0 + span
{
M−1r0,M

−1A(M−1r0), . . . , (M−1A)i−1(M−1r0)
}
.

The subspace Ki(A; r0) := span
{
r0, Ar0, . . . , A

i−1r0

}
is called the Krylov-space of dimension i corresponding

to matrix A and initial residual r0. An xi calculated by a basic iterative method is an element of x0 +
Ki(M−1A;M−1r0).

In the preceding chapter we tried to accelerate convergence by the Chebyshev method. In this method one
approximates the solution x by a vector xi ∈ x0 + Ki(M−1A;M−1r0) such that ‖x − xi‖2 is minimized in a
certain way. One of the drawbacks of that method is that information on the eigenvalues of M−1A should be
known. In this chapter we shall describe the Conjugate Gradient method. This method minimizes the error
x− xi in an adapted norm, without having to know any information about the eigenvalues. In Section 2.3 we
give theoretical results concerning the convergence behavior of the CG method.

2.2. The Conjugate Gradient (CG) method

In this section we assume that M = I, and x0 = 0 so r0 = b. These assumptions are only needed to facilitate
the formulas. They are not necessary for the CG method itself. Furthermore, we assume that A satisfies the
following condition.

Condition 3.2.1
The matrix A is symmetric (A = AT ) and positive definite (xTAx > 0 for x 6= 0).

This condition is crucial for the derivation and success of the CG method. Later on we shall derive extensions
to non-symmetric matrices.

The first idea could be to construct a vector xi ∈ Ki(A, r0) such that ‖x − xi‖2 is minimal. The first iterate
x1 can be written as x1 = α0r0 where α0 is a constant which has to be chosen such that ‖x− x1‖2 is minimal.
This leads to

‖x− x1‖22 = (x− α0r0)T (x− α0r0) = xTx− 2α0r
T
0 x+ α2

0r
T
0 r0 . (15)

The norm given in (15) is minimized if α0 =
rT0 x

rT0 r0
. Since x is unknown this choice cannot be determined, so this

idea does not lead to a useful method. Note that Ax = b is known so using an adapted inner product implying
A could lead to an α0 which is easy to calculate. To follow this idea we define the following inner product and
related norm.

Definition 3.2.2
The A-inner product is defined by

(y, z)A = yTAz,

and the A-norm by ‖y‖A =
√

(y, y)A =
√
yTAy.
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It is easy to show that if A satisfies Condition 3.2.1 (., .)A and ‖.‖A satisfy the rules for inner product and norm
respectively. In order to obtain x1 such that ‖x− x1‖A is minimal we note that

‖x− x1‖2A = xTAx− 2α0r
T
0 Ax+ α2

0 r
T
0 Ar0,

so α0 =
rT0 Ax

rT0 Ar0
=

rT0 b

rT0 Ar0
. We see that this new inner product leads to a minimization problem, which can be

easily solved. In the next iterations we compute xi such that

‖x− xi‖A = min
y∈Ki(A;r0)

‖x− y‖A (16)

The solution of this minimization problem leads to the conjugate gradient method. First we specify the CG
method, thereafter we summarize some of its properties.

Conjugate Gradient method

k = 0 ; x0 = 0 ; r0 = b initialization
while rk 6= 0 do termination criterion

k := k + 1 k is the iteration number
if k = 1 do

p1 = r0

else

βk =
rTk−1rk−1

rTk−2rk−2
pk is the search direction vector

pk = rk−1 + βkpk−1 to update xk−1 to xk
end if

αk =
rTk−1rk−1

pTkApk

xk = xk−1 + αkpk update iterate
rk = rk−1 − αkApk update residual

end while

The first description of this algorithm is given in [25]. For more recent results see [47]. Besides the two vectors
xk, rk and matrix A only two extra vectors pk and Apk should be stored in memory. Note that the vectors
from the previous iteration can be overwritten. One iteration of CG costs one matrix vector product and 10
n flops for vector calculations. If the CG algorithm is used in a practical application the termination criterion
should be replaced by one of the criteria given in Section 1.3. In this algorithm rk is computed from rk−1 by the
equation rk = rk−1−αkApk. This is done in order to save one matrix vector product for the original calculation
rk = b − Axk. In some applications the updated residual obtained from the CG algorithm can deviate much
from the exact residual b − Axk due to rounding errors. So it is strongly recommended to recompute b − Axk
after the termination criterion is satisfied for the updated residual and compare the norm of the exact and
updated residual. If the exact residual does not satisfy the termination criterion, the CG method should be
restarted with xk as its starting vector.

The vectors defined in the CG method have the following properties:
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Theorem 2.1.

1. span {p1, . . . , pk} = span {r0, . . . , rk−1} = Kk(A; r0), (17)

2. rTj ri = 0 i = 0, . . . , j − 1 ; j = 1, . . . , k , (18)

3. rTj pi = 0 i = 1, . . . , j ; j = 1, . . . , k , (19)

4. pTj Api = 0 i = 1, . . . , j − 1 ; j = 2, . . . , k (20)

5. ‖x− xk‖A = min
y∈Kk(A;r0)

‖x− y‖A. (21)

Proof: see [19], Section 10.2.

Remarks on the properties given in Theorem 2.1

- It follows from (17) and (18) that the vectors r0, . . . , rk−1 form an orthogonal basis of Kk(A; r0).
- In theory the CG method is a finite method. After n iterations the Krylov subspace is identical to IRn.

Since ‖x − y‖A is minimized over Kn(A; r0) = IRn the norm is equal to zero and xn = x. However in
practice this property is never utilized for two reasons: firstly in many applications n is very large so
that it is not feasible to do n iterations, secondly even if n is small, rounding errors can spoil the results
such that the properties given in Theorem 2.1 do not hold for the computed vectors.

- The sequence ‖x− xk‖A is monotone decreasing, so

‖x− xk+1‖A ≤ ‖x− xk‖A .

This follows from (21) and the fact that Kk(A; r0) ⊂ Kk+1(A; r0). In practice ‖x− xk‖A is not easy to
compute since x is unknown. The norm of the residual is given by ‖rk‖2 = ‖b−Axk‖2 = ‖x− xk‖ATA.
This sequence is not necessarily monotone decreasing. In applications it may occur that ‖rk+1‖2 is
larger than ‖rk‖2. This does not mean that the CG process becomes divergent. The inequality

‖rk‖2 = ‖Axk − b‖2 ≤
√
‖A‖2‖x− xk‖A

shows that ‖rk‖2 is less than the monotone decreasing sequence
√
‖A‖2‖x−xk‖A, so after some iterations

the norm of the residual decreases again.
- The search vector pj is A-orthogonal or A-conjugate to all pi with index i less than j. This is the

motivation for the name of the method: the search directions or gradients of the updates are mutually
conjugate.

- In the algorithm we see two ratios, one to calculate βk and the other one for αk. If the denominator is
equal to zero, the CG method breaks down. With respect to βk this implies that rTk−2rk−2 = 0, which
implies rk−2 = 0 and thus xk−2 = x. The linear system is solved. The denominator of αk is zero if
pTkApk = 0 so pk = 0. Using property (17) this implies that rk−1 = 0 so again the problem is already
solved.
Conclusion: If the matrix A satisfies Condition 3.2.1 then the CG method is robust.

In a following chapter we shall give CG type methods for general matrices A. But first we shall extend Condition
3.2.1 in such a way that also singular matrices are permitted. If the matrix A is symmetric and positive semi
definite (xTAx ≥ 0) the CG method can be used to solve the linear system Ax = b, provided b is an element of
the column space of A (range(A)). This is a natural condition because if it does not hold there is no vector x
such that Ax = b. For further details and references see [27].
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2.3. The convergence behavior of the CG method

An important research topic is the rate of convergence of the CG method. The optimality property enables

one to obtain easy to calculate upper bounds of the distance between the kth iterate and the exact solution.

Theorem 2.2. The iterates xk obtained from the CG algorithm satisfy the following inequality:

‖x− xk‖A ≤ 2

(√
K2(A)− 1√
K2(A) + 1

)k
‖x− x0‖A.

Proof
We shall only give a sketch of the proof. It is easily seen that x− xk can be written as a polynomial, say pk(A)
with pk(0) = 1, times the initial residual (compare to the Chebyshev method)

‖x− xk‖A = ‖pk(A)(x− x0)‖A.

Due to the minimization property every other polynomial qk(A) with qk(0) = 1 does not decrease the error
measured in the A-norm:

‖x− xk‖A ≤ ‖qk(A)(x− x0)‖A.
The right-hand side can be written as

‖qk(A)(x− x0)‖A = ‖qk(A)
√
A(x− x0)‖2 ≤ ‖qk(A)‖2‖

√
A(x− x0)‖2 = ‖qk(A)‖2‖x− x0‖A

Taking qk(A) equal to the Chebyshev polynomial gives the desired result. �

Note that the rate of convergence of CG is comparable to that of the Chebyshev method, however it is not
necessary to estimate or calculate eigenvalues of the matrix A. Furthermore, increasing diagonal dominance
leads to a better rate of convergence.

Initially the CG method was not very popular. The reason for this is that the convergence can be slow for
systems where the condition number K2(A) is very large. On the other hand the fact that the solution is found
after n iteration is also not useful in practice. Firstly n may be very large, secondly the property does not hold
in the presence of rounding errors. To illustrate this we consider the following classical example:

Example 1

The linear system Ax = b should be solved where n = 40 and b = (1, 0, . . . , 0)T . The matrix A is given by

A =



5 −4 1
−4 6 −4 1 �

1 −4 6 −4 1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
� 1 −4 6 −4

1 −4 5


.

This can be seen as a finite difference discretization of the bending beam equation:
u′′′′ = f . The eigenvalues of this matrix are given by:

λk = 16sin4 kπ

82
k = 1, . . . , 40.
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The matrix A is symmetric positive definite so the CG method can be used to solve the linear system. The

condition number of A is approximately equal to
(

82
π

)4
. The resulting rate of convergence given by√

K2(A)− 1√
K2(A) + 1

∼= 0.997

is close to one. This explains a slow convergence of the CG method for the first iterations. However after 40
iterations the solution should be found. In Figure 2 the convergence behavior is given where the rounding error
is equal to 10−16, [18]. This example suggests that CG has only a restricted range of applicability. These ideas
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Figure 2. The convergence behavior of CG applied to Example 1.

however changed after the publication of [35]. Herein it is shown that the CG method can be very useful for
a class of linear systems, not as a direct method, but as an iterative method. These problems originate from
discretized partial differential equations. It appears that it is not the size of the matrix that is important for
convergence but rather the extreme eigenvalues of A.

One of the results which is based on the extreme eigenvalues is given in Theorem 2.2. This inequality is an
upper bound for the error of the CG iterates, and suggests that the CG method is a linearly convergent process
(see Figure 3). However, in practice the convergence behavior looks like the one given in Figure 4. This is
called a superlinear convergence behavior. So the upper bound is only sharp for the initial iterates. It seems
that after some iterations the condition number in Theorem 2.2 is replaced by a smaller ”effective” condition
number. To illustrate this we give the following example:

Example 2
The matrix A is the discretized Poisson operator. The physical domain is the two-dimensional unit square. The
grid used consists of an equidistant distribution of 30× 30 grid points. The dimension of A is equal to 900 and
the eigenvalues are given by

λk,l = 4− 2cos
πk

31
− 2cos

πl

31
, 1 ≤ k, l ≤ 30.
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log  || x   - x || A

i

i

Figure 3. A linear convergent behavior

A
log  || x   - x ||

i

i

Figure 4. A super linear convergent behavior

Using Theorem 2.2 it appears that 280 iteration are necessary to ensure that

‖x− xi‖A
‖x− x0‖A

≤ 10−12.

Computing the solution it appears that CG iterates satisfy the given termination criterion after 120 iterations.
So in this example the estimate given in Theorem 2.2 is not sharp.

To obtain a better idea of the convergence behavior we have a closer look at the CG method. We have seen that
CG minimizes ‖x− xi‖A over the Krylov subspace. This can also be seen as the construction of a polynomial
qi of degree i with qi(0) = 1 such that

‖x− xi‖A = ‖qi(A)(x− x0)‖A = min
q̃i,

q̃i(0) = 1

‖q̃i(A)(x− x0)‖A .

Suppose that the orthonormal eigensystem of A is given by: {λj , yj}j=1,...,n where

Ayj = λjyj , λj ∈ R, ‖yj‖2 = 1, yTj yi = 0, j 6= i, and 0 < λ1 ≤ λ2 . . . ≤ λn. The initial errors can be written as
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x− x0 =
n∑
j=1

γjyj , which implies that

x− xi =

n∑
j=1

γjqi(λj)yj . (22)

If for instance λ1 = λ2 and γ1 6= 0 and γ2 6= 0 it is always possible to change y1 and y2 into ỹ1 and ỹ2 such that
γ̃1 6= 0 but γ̃2 = 0. This combined with equation (22) implies that if qi(λj) = 0 for all different λj then xi = x.
So if there are only m < n different eigenvalues the CG method stops at most after m iterations. Furthermore,
the upper bound given in Theorem 2.2 can be sharpened.

Remark

For a given linear system Ax = b and a given x0 (note that x−x0 =
n∑
j=1

γjyj) the quantities α and β are defined

by:

α = min {λj |γj 6= 0} ,
β = max {λj |γj 6= 0} .

It is easy to show that the following inequality holds:

‖x− xi‖A ≤ 2


√

β
α − 1√
β
α + 1

i

‖x− x0‖A. (23)

The ratio β
α is called the effective condition number of A.

It follows from Theorem 2.1 that r0, . . . , rk−1 forms an orthogonal basis for Kk(A; r0). So the vectors r̃i =
ri/‖ri‖2, i = 0, . . . , k − 1 form an orthonormal basis for Kk(A; r0). We define the following matrices

Rk ∈ IRn×k and the jth column of Rk is r̃j ,

Tk = RTkARk where Tk ∈ IRk×k.

The Ritz matrix Tk can be seen as the projection of A on Kk(A; r0). It follows from Theorem 2.1 that Tk is a
tridiagonal symmetric matrix. The coefficients of Tk can be calculated from the αi’s and βi’s of the CG process.
The eigenvalues θi of the matrix Tk are called Ritz values of A with respect to Kk(A; r0). If zi is an eigenvector
of Tk so that Tkzi = θizi and ‖zi‖2 = 1 then Rk zi is called a Ritz vector of A. Ritz values and Ritz vectors
are approximations of eigenvalues and eigenvectors and play an important role in a better understanding of the
convergence behavior of CG. The important properties of the Ritz values are:

- the rate of convergence of a Ritz value to its limit eigenvalue depends on the distance of this eigenvalue
to the rest of the spectrum

- in general the extreme Ritz values converge the fastest and their limits are α and β.

In practical experiments we see that, if Ritz values approximate the extreme eigenvalues of A, then the rate
of convergence seems to be based on a smaller effective condition number (the extreme eigenvalues seem to be
absent). We first give a heuristic explanation. Thereafter an exact result from the literature is cited.

From Theorem 2.1 it follows that rk = A(x− xk) is perpendicular to the Krylov subspace Kk(A; r0). If a Ritz
vector is a good approximation of an eigenvector yj of A this eigenvector is nearly contained in the subspace
Kk(A; r0). These two combined yields that (A(x−xk))T yj ∼= 0. The exact solution and the approximation can
be written as

x =

n∑
i=1

(xT yi)yi and xk =

n∑
i=1

(xTk yi)yi.
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From (A(x − xk))T yj = (x − xk)Tλjyj ∼= 0 it follows that xT yj ∼= xTk yj . So the error x − xk has a negligible
component in the eigenvector yj . This suggest that λj does no longer influence the convergence of the CG
process.

For a more precise result we define a comparison process. The iterates of this process are comparable to that
of the original process, but its condition number is less than that of the original process.

Definition
Let xi be the i-th iterate of the CG process for Ax = b. For a given integer i let xj denote the j-th iterate of
the comparison CG process for this equation, starting with x0 such that x−x0 is the projection of x− xi onto
span{y2, . . . , yn}.

Note that for the comparison process the initial error has no component in the eigenvector y1.

Theorem 2.3. [44]
Let xi be the i-th iterate of CG, and xj the j-th iterate of the comparison process. Then for any j there holds:

‖x− xi+j‖A ≤ Fi‖x− xj‖A ≤ Fi
‖x− xj‖A
‖x− x0‖A

‖x− xi‖A

with Fi =
θ
(i)
1

λ1
max
k≥2

|λk−λ1|
|λk−θ(i)1 |

, where θ
(i)
1 is the smallest Ritz value in the i-th step of the CG process.

Proof: see [44], Theorem 2.1.

The theorem shows that from any stage i on for which θ
(i)
1 does not coincide with an eigenvalue λk, the error

reduction in the next j steps is at most the fixed factor Fi worse than the error reduction in the first j steps
of the comparison process in which the error vector has no y1-component. As an example we consider the case

that λ1 < θ
(i)
1 < λ2 we then have

Fi =
θ

(i)
1

λ1

λ2 − λ1

λ2 − θ(i)
1

,

which is a kind of relative convergence measure for θ
(i)
1 relative to λ1 and λ2 − λ1. If

θ
(i)
1 −λ1

λ1
< 0.1 and

θ
(i)
1 −λ1

λ2−λ1
< 0.1 then we have Fi < 1.25. Hence, already for this modest degree of convergence of θ

(i)
1 the process

virtually converges as well as the comparison process (as if the y1-component was not present). For more general
results and experiments we refer to [44].

2.4. Exercises

(1) Show that (y, z)A =
√
yTAz is an inner product if A is symmetric and positive definite.

(2) Give the proof of inequality (23).
(3) (a) Show that an A-orthogonal set of nonzero vectors associated with a symmetric and positive definite

matrix is linearly independent.
(b) Show that if {v(1), v(2), . . . , v(n)} is a set of A-orthogonal vectors in IRn and zT v(i) = 0 for i =

1, . . . , n then z = 0.
(4) Define

tk =
(v(k), b−Ax(k−1))

(v(k), Av(k))

and x(k) = x(k−1) + tkv
(k), then (r(k), v(j)) = 0 for j = 1, . . . , k, if the vectors v(j) form an A-orthogonal

set. To prove this, use the following steps using mathematical induction:
(a) Show that (r(1), v(1)) = 0.
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(b) Assume that (r(k), v(j)) = 0 for each k ≤ l and j = 1, . . . , k and show that this implies that

(r(l+1), v(j)) = 0 for each j = 1, . . . , l.

(c) Show that (r(l+1), v(l+1)) = 0.

(5) Take A =

 1 0 0
0 1 0
0 0 2

 and b =

 2
1
−1

. We are going to solve Ax = b.

(a) Show that Conjugate Gradients applied to this system should convergence in 1 or 2 iterations
(using the convergence theory).

(b) Choose x(0) =

 0
0
0

 and do 2 iterations with the Conjugate Gradients method.

(6) Suppose that A is nonsingular, symmetric, and indefinite. Give an example to show that the Conjugate
Gradients method can break down.

3. Preconditioning of Krylov subspace methods

We have seen that the convergence behavior of Krylov subspace methods depends strongly on the eigenvalue
distribution of the coefficient matrix. A preconditioner is a matrix that transforms the linear system such that
the transformed system has the same solution but the transformed coefficient matrix has a more favorable
spectrum. As an example we consider a matrix M which resembles the matrix A. The transformed system is
given by

M−1Ax = M−1b ,

and has the same solution as the original system Ax = b. The requirements on the matrix M are the following:

- the eigenvalues of M−1A should be clustered around 1,
- it should be possible to obtain M−1y at a low cost.

Most of this chapter contains preconditioners for symmetric positive definite systems (Section 3.1). For non-
symmetric systems the ideas are analogously, so in Section 3.2 we give some details, which can be used only for
non-symmetric systems.

3.1. The Preconditioned Conjugate Gradient (PCG) method

In Section 2.3 we observed that the rate of convergence of CG depends on the eigenvalues of A. Initially the
condition number λn

λ1
determines the decrease of the error. After a number of iterations the λn

λ1
is replaced by

the effective condition number λn−1

λ1
etc. So the question arises, is it possible to change the linear system Ax = b

in such a way that the eigenvalue distribution becomes more favorable with respect to the CG convergence?
This is indeed possible and the approach is known as: preconditioning of a linear system. Consider the n × n
symmetric positive definite linear system Ax = b. The idea behind Preconditioned Conjugate Gradients is to
apply the ”original” Conjugate Gradient method to the transformed system

Ãx̃ = b̃ ,

where Ã = P−1AP−T , x = P−T x̃ and b̃ = P−1b, and P is a nonsingular matrix. The matrix M defined
by M = PPT is called the preconditioner. The resulting algorithm can be rewritten in such a way that only
quantities without a ˜ sign occurs.



22 ESAIM: PROCEEDINGS AND SURVEYS

Preconditioned Conjugate Gradient method

k = 0 ; x0 = 0 ; r0 = b ; initialization
while (rk 6= 0) do termination criterion

zk = M−1rk preconditioning
k := k + 1
if k = 1 do
p1 = z0

else

βk =
rTk−1zk−1

rTk−2zk−2
update of pk

pk = zk−1 + βkpk−1

end if

αk =
rTk−1zk−1

pTkApk

xk = xk−1 + αkpk update iterate
rk = rk−1 − αkApk update residual

end while

Observations and properties for this algorithm are:

- it can be shown that the residuals and search directions satisfy:

rTj M
−1ri = 0 , i 6= j ,

pTj (P−1AP−T )pi = 0 , i 6= j .

- The denominators rTk−2zk−2 = zTk−2Mzk−2 never vanish for rk−2 6= 0 because M is a positive definite
matrix.

With respect to the matrix P we have the following requirements:

- the multiplication of P−TP−1 by a vector should be cheap. (comparable with a matrix vector product
using A). Otherwise one iteration of PCG is much more expensive than one iteration of CG and hence
preconditioning leads to a costlier algorithm.

- The matrix P−1AP−T should have a favorable distribution of the eigenvalues. It is easy to show that
the eigenvalues of P−1AP−T are the same as for P−TP−1A and AP−TP−1. So we can choose one of
these matrices to study the spectrum.

In order to give more details on the last requirement we note that the iterate xk obtained by PCG satisfies

xk ∈ x0 +Kk(P−TP−1A ; P−TP−1r0), and (24)

‖x− xk‖A ≤ 2

(√
K2(P−1AP−T )− 1√
K2(P−1AP−T ) + 1

)k
‖x− x0‖A . (25)

So a small condition number of P−1AP−T leads to fast convergence. Two extreme choices of P show the
possibilities of PCG. Choosing P = I we get the original CG method back, whereas if PTP = A the iterate x1

is equal to x so PCG converges in one iteration. For a classical paper on the success of PCG we refer to [29].
In the following pages some typical preconditioners are discussed.

Diagonal scaling
A simple choice for P is a diagonal matrix with diagonal elements pii =

√
aii. Note that aii > 0 for i = 1, . . . , n

since A is SPD. In [43] it has been shown that this choice minimizes the condition number of P−1AP−T if P

is restricted to be a diagonal matrix. For this preconditioner it is advantageous to apply CG to Ãx̃ = b̃. The
reason is that P−1AP−T is easily calculated. Furthermore, diag (Ã) = 1 which saves n multiplications in the
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matrix vector product.

Basic iterative method
The basic iterative methods described in Section 1.2 use a splitting of the matrix A = M −N . In the beginning
of Section 2.2 we show that the k-th iterate yk from a basic method is an element of x0 +Kk(M−1A,M−1r0).
Using this matrix M in the PCG method we see that the iterate xk obtained by PCG satisfies the following
inequality:

‖x− xk‖A = min
z∈Kk(M−1A;M−1r0)

‖x− z‖A .

This implies that ‖x−xk‖A ≤ ‖x−yk‖A, so measured in the ‖ . ‖A norm, the error of a PCG iterate is less than
the error of a corresponding result of a basic iterative method. The extra costs to compute a PCG iterate with
respect to the basic iterate are in general negligible. This leads to the notion that any basic iterative method
based on the splitting A = M − N can be accelerated by the Conjugate Gradient method as long as M (the
preconditioner) is symmetric and positive definite.

Incomplete decomposition
This type of preconditioner is a combination of an iterative method and an approximate direct method. As an
illustration we use the model problem defined in Section 1.1. The coefficient matrix of this problem A ∈ IRn×n is
a matrix with at most 5 nonzero elements per row. Furthermore, the matrix is symmetric and positive definite.
The nonzero diagonals are numbered as follows: m is the number of grid points in the x-direction.

A =



a1 b1 c1
b1 a2 b2 c2
...

. . .
. . .

. . . ©/
c1 bm am+1 bm+1 cm+1

. . . ©/
. . .

. . .
. . . ©/

. . .

©/


(26)

An optimal choice with respect to convergence is to take a lower triangular matrix L such that A = LTL and
P = L (L is the Cholesky factor). However it is well known that the zero elements in the band of A become
non zero elements in the band of L. So the amount of work to construct L is large. With respect to memory
we note that A can be stored in 3n memory positions, whereas L needs m . n memory positions. For large
problems the memory requirements are not easily fulfilled.

If the Cholesky factor L is calculated one observes that the absolute value of the elements in the band of L
decreases considerably if the ”distance” to the non zero elements of A increases. The non zero elements of L on
positions where the elements of A are zero are called ”fill-in” elements. The observation of the decrease of fill-in
motivates to discard fill in elements entirely, which leads to an incomplete Cholesky decomposition of A. Since
the Cholesky decomposition is very stable this is possible without break down for a large class of matrices. To
specify this in a more precise way we use the following definition:

Definition
The matrix A = (aij) is an M -matrix if aij ≤ 0 for i 6= j, the inverse A−1 exists and has positive elements
(A−1)ij ≥ 0.

The matrix of our model problem is an M -matrix. Furthermore, we give a notation for the elements of L which
should be kept to zero. The set of all pairs of indices of off-diagonal matrix entries is denoted by

Qn = {(i, j)| i 6= j , 1 ≤ i ≤ n , 1 ≤ j ≤ n } .

The subset Q of Qn are the places (i, j) where L should be zero. Now the following theorem can be proved:
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Theorem 3.1. If A is a symmetric M -matrix, there exists for each Q ⊂ Qn having the property that (i, j) ∈ Q
implies (j, i) ∈ Q, a uniquely defined lower triangular matrix L and a symmetric nonnegative matrix R with
lij = 0 if (i, j) ∈ Q and rij = 0 if (i, j) ∈/Q, such that the splitting A = LLT −R leads to a convergent iterative
process

LLTxi+1 = Rxi + b for every choice x0 ,

where xi → x = A−1b.

Proof (see [29]; p.151.)

After the matrix L is constructed it is used in the PCG algorithm. Note that in this algorithm multiplications
by L−1 and L−T are necessary. This is never done by forming L−1 or L−T . It is easy to see that L−1 is a full
matrix. If for instance one wants to calculate z = L−1r we compute z by solving the linear system Lz = r.
This is cheap since L is a lower triangular matrix so the forward substitution algorithm can be used.

Example
We consider the model problem and compute a slightly adapted incomplete Cholesky decomposition: A =
LD−1LT −R where the elements of the lower triangular matrix L and diagonal matrix D satisfy the following
rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,
b) lii = dii,
c) (LD−1LT )ij = aij for all (i, j) where aij 6= 0 i ≥ j.

In this example Q0 = {(i, j)| |i− j| 6= 0, 1,m}
If the elements of L are given as follows:

L =



d̃1

b̃1 d̃2

. . .
. . . ©/

c̃1 b̃m d̃m+1

. . . ©/
. . .

. . .

©/


(27)

it is easy to see that (using the notation as given in (26))

d̃i = ai −
b2i−1

d̃i−1
− c2i−m

d̃i−m

b̃i = bi
c̃i = ci

 i = 1, ..., n . (28)

where elements that are not defined should be replaced by zeros. For this example the amount of work for
P−TP−1 times a vector is comparable to the work to compute A times a vector. The combination of this
incomplete Cholesky decomposition process with Conjugate Gradients is called the ICCG(0) method ( [29]; p.
156). The 0 means that no extra diagonals are used for fill in. Note that this variant is very cheap with respect
to memory: only one extra vector to store D is needed.

Another successfull variant is obtained by a smaller set Q. In this variant the matrix L has three more diagonals
than the lower triangular part of the original matrix A. This preconditioning is obtained for the choice

Q3 = {(i, j)| |i− j| 6= 1, 2,m− 2,m− 1,m}

For the formula’s to obtain the decomposition we refer to ( [29]; p. 156). This preconditioner combined with
PCG is known as the ICCG(3) method. A drawback is that all the elements of L are different from the
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corresponding elements of A so 6 extra vectors are needed to store L in memory.

To give an idea of the power of the ICCG methods we have copied some results from [29]. As a first example
we consider the model problem, where the boundary conditions are somewhat different:

∂u
∂x (x, y) = 0 for

{
x = 0 , y ∈ [0, 1]
x = 1 , y ∈ [0, 1]

,

∂u
∂y (x, y) = 0 for y = 1 , x ∈ [0, 1] ,

u(x, y) = 1 for y = 0 , x ∈ [0, 1] .

The distribution of the grid points is equidistant with h = 1
31 . The results for CG, ICCG(0) and ICCG(3) are

plotted in Figure 5.

From inequality (25) it follows that the rate of convergence can be bounded by

r =

√
K2(P−1AP−T )− 1√
K2(P−1AP−T ) + 1

. (29)

To obtain a better insight in the fast convergence of ICCG(0) and ICCG(3) the eigenvalues of A, (L0L
T
0 )−1A

and (L3L
T
3 )−1A are computed and given in Figure 6. For this result given in [29] a small matrix of order n = 36

is used, so all eigenvalues can be calculated.
The eigenvalues as given in Figure 6 can be substituted in formula (29). We then obtain

r = 0.84 for CG ,
r = 0.53 for ICCG(0) ,
r = 0.23 for ICCG(3) ,

(30)

which explains the fast convergence of the PCG variants. In our explanation of the convergence behavior we
have also used the notion of Ritzvalues. Applying these ideas to the given methods we note the following:

- For CG the eigenvalues of A are more or less equidistantly distributed. So if a Ritzvalue has converged
we only expect a small decrease in the rate of convergence. This agrees with the results given in Figure 5,
the CG method has a linear convergent behavior.

- For the PCG method the eigenvalue distribution is very different. Looking to the spectrum of (L3L
T
3 )−1A

we see that λ36 = 0.446 is the smallest eigenvalue. The distance between λ36 and the other eigenvalues
is relatively large which implies that there is a fast convergence of the smallest Ritz-value to λ36. Fur-
thermore, if the smallest Ritzvalue is a reasonable approximation of λ36 the effective condition number
is much less than the original condition number. Thus super linear convergence is expected. This again
agrees very well with the results given in Figure 5.

So the faster convergence of ICCG(3) comes from a smaller condition number and a more favorable distribution
of the internal eigenvalues.

Finally, the influence of the order of the matrix on the number of iterations required to reach a certain precision
was checked for both ICCG(0) and ICCG(3). Therefore several uniform rectangular meshes have been chosen,
with mesh spacings varying from ∼ 1/10 up to ∼ 1/50. This resulted in linear systems with matrices of order
100 up to about 2500. In each case it was determined how many iterations were necessary, in order that the
magnitude of each entry of the residual vector was below some fixed small number ε. In Figure 7 the number
of iterations are plotted against the order of the matrices for ε = 10−2, ε = 10−6 and ε = 10−10. It can be seen
that the number of iterations, necessary to get the residual vector sufficiently small, increases only slowly for
increasing order of the matrix. The dependence of K2(A) for this problem is O( 1

h2 ). For ICCG preconditioning

it can be shown that there is a cluster of large eigenvalues of (L0L
T
0 )−1A in the vicinity of 1, whereas the small
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Figure 5. The results for the CG, ICCG(0) and ICCG(3) methods, compared with SIP
(Strongly Implicit Procedure) and SLOR (Successive Line Over Relaxation method)

eigenvalues are of order O(h2) and the gaps between them are relatively large. So also for ICCG(0) the condition
number is O( 1

h2 ). Faster convergence can be explained by the fact that the constant before 1
h2 is less for the

ICCG(0) preconditioned system than for A and the distribution of the internal eigenvalues is much better so
super linear convergence sets in after a small number of iterations.

The success of the ICCG method has led to many variants. In the following we describe two of them MICCG(0)
given in [23] (MICCG means Modified ICCG) and RICCG(0) given in [2] (RICCG means Relaxed ICCG).

MICCG
In the MICCG method the MIC preconditioner is constructed by slightly adapted rules. Again A is splitted as
follows A = LD−1LT −R, where L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,
b) lii = dii,
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c) rowsum (LD−1LT )=rowsum(A) for all rows and (LD−1LT )ij = aij for all (i, j) where aij 6= 0 i > j .

A consequence of c) is that LD−1LT

 1
...
1

 = A

 1
...
1

 so (LD−1LT )−1A

 1
...
1

 =

 1
...
1

. this means that

if Ax = b and x and/or b are slowly varying vectors this incomplete Cholesky decomposition is a very good
approximation for the inverse of A with respect to x and/or b.
Using the same notation of L as given in (27) we obtain

d̃i = ai − (bi−1 + ci−1) bi−1

d̃i−1
− (bi−m + ci−m) ci−m

d̃i−m

b̃i = bi
c̃i = ci

 i = 1, .., n (31)

It can be proved that for this preconditioning there is a cluster of small eigenvalues in the vicinity of 1 and the
largest eigenvalues are of order 1

h and have large gap ratio’s. So the condition number is O(1/h).

In many problems the initial iterations of MICCG(0) converge faster than ICCG(0). Thereafter for both
methods super linear convergence sets in. Using MICCG the largest Ritz values are good approximations of the
largest eigenvalues of the preconditioned matrix. A drawback of MICCG is that due to rounding errors nonzero
components in eigenvectors related to large eigenvalues appear again after some iterations. This deteriorates
the rate of convergence. So if many iterations are needed ICCG can be better than MICCG.

In order to combine the advantages of both methods the RIC preconditioner is proposed in [2], which is an
average of the IC and MIC preconditioner. For the details we refer to [2]. Only the algorithm is given: choose
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the average parameter α ∈ [0, 1] then d̃i, b̃i and c̃i are given by:

d̃i = ai − (bi−1 + αci−1) bi−1

d̃i−1
− (αbi−m + ci−m) ci−m

d̃i−m

b̃i = bi
c̃i = ci

 i = 1, ..., n (32)

However the question remains: how to choose α? In Figure 8 which is copied from [45] a typical convergence
behavior as function of α is given. This motivates the choice α = 0.95, which leads to a very good rate of
convergence on a wide range of problems.

Diagonal scaling
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The above given preconditioners IC, MIC and RIC can be optimized with respect to work. One way to do this
is to look at the explicitly preconditioned system:

D1/2L−1AL−TD1/2y = D1/2L−1b (33)

Applying CG to this system one has to solve lower triangular systems of equations with matrix LD−1/2. The
main diagonal of this matrix is equal to D1/2. It saves time if we can change this in such a way that the main
diagonal is equal to the identity matrix. One idea could be to replace (33) by

D1/2L−1D1/2D−1/2AD−1/2D1/2L−TD1/2y = D1/2L−1D1/2D−1/2b .

with Ã = D−1/2AD−1/2 , L̃ = D−1/2LD−1/2 and b̃ = D−1/2b we obtain

L̃−1ÃL̃−T y = L̃b̃ . (34)

Note that L̃ii = 1 for i = 1, ..., n. PCG now is the application of CG to this preconditioned system.

Eisenstat implementation
In this section we restrict ourselves to the IC(0), MIC(0) and RIC(0) preconditioner. We have already noted
that the amount of work of one PCG iteration is approximately twice as large as for a CG iteration. In [9] it
is shown that much of the extra work can be avoided. If CG is applied to (34) products of the following form

are calculated: vj+1 = L̃−1ÃL̃−T vj . For the preconditioners used, the off diagonal part of L̃ is equal to the

off-diagonal part of Ã. Using this we obtain:

vj+1 = L̃−1ÃL̃−T vj = L̃−1(L̃+ Ã− L̃− L̃T + L̃T )L̃−T vj (35)

= L̃−T vj + L̃−1(vj + (diag (Ã)− 2I)L̃−T vj)

So vj+1 can be calculated by a multiplication by L̃−T and L̃−1 and some vector operations. The saving in CPU
time is the time to calculate the product of A times a vector. Now one iteration of PCG costs approximately
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the same as one iteration of CG.

General stencils
In practical problems the stencils in finite element methods may be larger or more irregularly distributed than
for finite difference methods. The same type of preconditioners can be used. However there are some differences.
We restrict ourselves to the IC(0) preconditioner. For the five point stencil we see that the off diagonal part of
L is equal to the strictly lower triangular part of A. For general stencils this property does not hold. Drawbacks
are: All the elements of L should be stored, so the memory requirements of PCG are twice as large as for
CG. Furthermore, the Eisenstat implementation can no longer be used. This motivates another preconditioner
constructed by the following rules:

ICD (Incomplete Cholesky restricted to the Diagonal).
A is again splitted as A = LD−1LT −R and L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j
b) lii = dii, i = 1, ..., n
c) lij = aij for all (i, j) where aij 6= 0 i > j

(LD−1LT )ii = aii i = 1, ..., n.

This enables us to save memory (only the diagonal D should be stored) and CPU time (since now Eisenstat
implementation can be used) per iteration. For large problems the rate of convergence of ICD is worse than for
IC. Also MICD and RICD preconditioners can be given.

3.2. Preconditioning for general matrices

The preconditioning for non-symmetric matrices goes along the same lines as for symmetric matrices. There
is a large amount of literature for generalization of the incomplete Cholesky decompositions. In general it is
much more difficult to prove that the decomposition does not break down or that the resulting preconditioned
system has a spectrum which leads to fast convergence. Since symmetry is no longer important the number of
possible preconditioners is much larger. Furthermore, if we have an incomplete LU decomposition of A, we can
apply the iterative methods from 4.3.3 to the following three equivalent systems of equations:

U−1L−1Ax = U−1L−1b , (36)

L−1AU−1y = L−1b , x = U−1y , (37)

or

AU−1L−1y = b , x = U−1L−1y . (38)

The rate of convergence is approximately the same for all variants. When the Eisenstat implementation is applied
one should use (37). Otherwise we prefer (38) because then the stopping criterion is based on ‖r‖2 = ‖b−Axk‖2
whereas for (36) it is based on ‖U−1L−1rk‖2, and for (37) it is based on ‖L−1rk‖2.

3.3. Exercises

(1) Derive the preconditioned CG method using the CG method applied to Ãx̃ = b̃.
(2) (a) Show that the formula’s given in (28) are correct.

(b) Show that the formula’s given in (31) are correct.

(3) (a) Suppose that ai = 4 and bi = −1. Show that lim
i→∞

d̃i = 2 +
√

3, where d̃i is as defined in (28).

(b) Do the same for ai = 4, bi = −1 and ci = −1 with m = 10, and show that lim
i→∞

d̃i = 2 +
√

2.

(c) Prove that the LD−1LT decomposition (28) exists if ai = a, bi = b, ci = c and A is diagonally
dominant.



ESAIM: PROCEEDINGS AND SURVEYS 31

(4) A practical exercise
Use as test matrices:

[a, f ] = poisson(30, 30, 0, 0,′ central′)

(a) Adapt the matlab cg algorithm such that preconditioning is included. Use a diagonal preconditioner
and compare the number of iterations with cg without preconditioner.

(b) Use the formula’s given in (28) to obtain an incomplete LD−1LT decomposition of A. Make a plot
of the diagonal elements of D. Can you understand this plot?

(c) Use the LD−1LT preconditioner in the method given in (a) and compare the convergence behavior
with that of the diagonal preconditioner.

4. Krylov subspace methods for general matrices

4.1. Introduction

In a preceding chapter we discuss the Conjugate Gradient method. This Krylov subspace method can only
be used if the coefficient matrix is symmetric and positive definite. In this chapter we discuss Krylov subspace
methods for an increasing class of matrices. For these classes we give different iterative methods. At this
moment there is no method which is the best for all cases. This is in contrast with the symmetric positive
definite case. In Subsection 4.3.4 we give some guidelines for choosing an appropriate method for a given
system of equations. In Section 4.2 we consider symmetric indefinite systems. General real valued matrices are
the subject of Section 4.3. We end this chapter with a section containing iterative methods for complex valued
linear systems.

4.2. Indefinite symmetric matrices

In this section we relax the condition that A should be positive definite (Chapter 2), and only assume that A
is symmetric. This means that xTAx > 0 for some x and possibly yTAy < 0 for some y. For the real eigenvalues
this implies that A has positive and negative eigenvalues. For this type of matrices ‖.‖A defines no longer a
norm. Furthermore, CG may have a serious break down since pTkApk may be zero whereas ‖pk‖2 is not zero.
In this section we give two different (but related) methods to overcome these difficulties. These methods are
defined in [31].

SYMMLQ

In the CG method we have defined the orthogonal matrix Rk ∈ IRn×k where the jth column of Rk is equal to
the normalized residual rj/‖rj‖2. It appears that the following relation holds

ARk = Rk+1T̄k, (39)

where T̄k ∈ IRk+1×k is a tridiagonal matrix. This decomposition is also known as the Lanczos algorithm for
the tridiagonalisation of A ( [19]; p.477). This decomposition is always possible for symmetric matrices, also
for indefinite ones. The CG iterates are computed as follows:

xk = Rkyk, where (40)

RTkARkyk = Tkyk = RTk b. (41)

Note that Tk consists of the first k rows of T̄k. If A is positive definite then Tk is positive definite. It appears
further that in the CG process an LDLT factorization of Tk is used to solve (41). This can lead to break
down because Tk may be indefinite in this section (compare [19]; Section 9.3.1, 9.3.2, 10.2.6). In the SYMMLQ
method [31] problem (41) is solved in a stable way by using an LQ decomposition. So Tk is factorized in the
following way:

Tk = L̄kQk where QTkQk = I (42)
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with L̄k lower triangular. For more details to obtain an efficient code we refer to [31] section 5.

MINRES
In SYMMLQ we have solved (41) in a stable way and obtain the ”CG” iteration. However since ‖.‖A is no longer
a correct norm, the optimality properties of CG are lost. To get these back we can try to use the decomposition

ARk = Rk+1T̄k

and minimize the error in the ‖.‖ATA norm. This is a norm if A is nonsingular. This leads to the following
approximation:

xk = Rkyk, (43)

where yk is such that

‖Axk − b‖2 = min
y∈IRk

‖ARky − b‖2. (44)

Note that ‖ARky − b‖2 = ‖Rk+1T̄ky − b‖2 using (39).

Starting with x0 = 0 implies that r0 = b. Since Rk+1 is an orthogonal matrix and b = Rk+1‖r0‖2e1, where

e1 =


1
0
...
0

 ∈ IRk+1, we have to solve the following least squares problem

min
y∈IRk

‖T̄ky − ‖r0‖2e1‖2 . (45)

Again for more details see [31]; Section 6.7. A comparison of both methods is given in [31]. In general the rate
of convergence of SYMMLQ or MINRES for indefinite symmetric systems of equations is much worse than of
CG for definite systems. Preconditioning techniques for these methods are specified in [36].

4.3. Iterative methods for general matrices

In this section we consider iterative methods to solve Ax = b where the only requirement is that A ∈ IRn×n
is nonsingular. In the symmetric case we have seen that CG has the following three nice properties:

- the approximation xi is an element of Ki(A; r0),
- optimality, the error is minimal measured in a certain norm,
- short recurrences, only the results of one foregoing step is necessary so work and memory do not increase

for an increasing number of iterations.

It is shown in [13] that it is impossible to obtain a Krylov method based on Ki(A; r0), which has these properties
for general matrices. So either the method has an optimality property but long recurrences, or no optimality
and short recurrences, or it is not based on Ki(A; r0). Some surveys on general iteration methods have been
published: [6], [19] Section 10.4, [15], [39], [21], [3].

It appears that there are essentially three different ways to solve non-symmetric linear systems, while maintaining
some kind of orthogonality between the residuals:

(1) Solve the normal equations ATAx = AT b with Conjugate Gradients.
(2) Construct a basis for the Krylov subspace by a 3-term bi-orthogonality relation.
(3) Make all the residuals explicitly orthogonal in order to have an orthogonal basis for the Krylov subspace.

These classes form the subject of the following subsections. An introduction and comparison of these classes is
given in [30].
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4.3.1. CG applied to the normal equations

The first idea to apply CG to the normal equations

ATAx = AT b, (46)

or
AAT y = b with x = AT y (47)

is obvious. The first method is known as the CGNR method, whereas the second method is known as the CGNE
method. When A is nonsingular ATA is symmetric and positive definite. So all the properties and theoretical
results for CG can be used. There are however some drawbacks first the rate of convergence now depends on
K2(ATA) = K2(A)2. In many applications K2(A)2 is very large so the convergence of CG applied to (46) is
very slow. Another difference is that CG applied to Ax = b depends on the eigenvalues of A whereas CG applied
to (46) depends on the eigenvalues of ATA, which are equal to the square of the singular values of A.

Per iteration a multiplication with A and AT is necessary, so the amount of work is approximately twice as
much as for the CG method. Furthermore, in several (FEM, parallel) applications Av is easily obtained but
AT v not, due to the unstructured grid and the data structure used.
Finally, not only the convergence depends on K2(A)2 but also the error due to rounding errors. To improve
the numerical stability it is suggested in [4] to replace inner products like pTATAp by (Ap)TAp. Another
improvement is the method LSQR proposed by [32]. This method is based on the application of the Lanczos
method to the auxiliary system (

I A
AT 0

)(
r
x

)
=

(
b
0

)
.

This is a very reliable algorithm. It uses reliable stopping criteria and estimates of standard errors for x and
the condition number of A.

4.3.2. Bi-CG type methods

In this type of methods we have short recurrences but no optimality property. We have seen that CG is
based on the Lanczos algorithm. The Lanczos algorithm for non-symmetric matrices is called the bi-Lanczos
algorithm. Bi-CG type methods are based on bi-Lanczos. In the Lanczos method we try to find a matrix Q
such that QTQ = I and

QTAQ = T tridiagonal.

In the Bi-Lanczos algorithm we construct a similarity transformation X such that

X−1AX = T tridiagonal.

To obtain this matrix we construct a basis r0, ..., ri−1, which are the residuals, forKi(A; r0) such that rj⊥Kj(AT ; s0)
and s0, ..., si−1 form a basis for Ki(AT ; s0) such that sj⊥Kj(A; r0), so the sequences {ri} and {si} are bi-
orthogonal. Using these properties and the definitions Rk = [r0...rk−1], Sk = [s0...sk−1] the following relation
can be proved [46]:

ARk = RkTk + αkrke
T
k , (48)

and
STk (Axk − b) = 0 .

Using (48), r0 = b and xk = Rky we obtain

STk RkTky = s0r
T
0 e1. (49)

Since STk Rk is a diagonal matrix with diagonal elements rTj sj , we find, that if all these diagonal elements are
nonzero,

Tky = e1 , xk = Rky .
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We see that this algorithm fails when a diagonal element of STk Rk becomes (nearly) zero, because these elements
are used to normalize the vectors sj (compare [19] §9.3.6). This is called a serious (near) break down. The
way to get around this difficulty is the so-called look-ahead strategy. For details on look-ahead we refer to [33],
and [16]. Another way to avoid break down is to restart as soon as a diagonal element gets small. This strategy
is very simple, but one should realize that at a restart the Krylov subspace that has been built up so far, is
thrown away, which destroys possibilities for faster (super linear) convergence. (The description of the methods
given below is based on those given in [46].)

Bi-CG
As has been shown for Conjugate Gradients, the LU decomposition of the tridiagonal system Tk can be updated
from iteration to iteration and this leads to a recursive update of the solution vector. This avoids having to
save all intermediate r and s vectors. This variant of Bi-Lanczos is usually called Bi-Conjugate Gradients, or
shortly Bi-CG [14]. Of course one can in general not be sure that an LU decomposition (without pivoting) of
the tridiagonal matrix Tk exists, and if it does not exist then a serious break down of the Bi-CG algorithm
occurs. This break down can be avoided in the Bi-Lanczos formulation of this iterative solution scheme. The
algorithm is given as follows:

Bi-CG
x0 is given; r0 = b−Ax0;
r̂0 is an arbitrary vector (r̂0, r0) 6= 0
possible choice r̂0 = r0 ;
ρ0 = 1
p̂0 = p0 = 0
for i = 1, 2, ...

ρi = (r̂i−1, ri−1) ; βi = (ρi/ρi−1) ;
pi = ri−1 + βipi−1 ;
p̂i = r̂i−1 + βip̂i−1 ;
vi = Api
αi = ρi/(p̂i, vi);
xi = xi−1 + αipi
ri = ri−1 − αivi
r̂i = r̂i−1 − αiAT p̂i

end for

Note that for symmetric matrices, Bi-Lanczos generates the same solution as Lanczos, provided that s0 = r0,
and under the same condition, Bi-CG delivers the same iterates as CG, for symmetric positive definite matrices.
However, the Bi-orthogonal variants do so at the cost of two matrix vector operations per iteration.

QMR
The QMR method [17] relates to Bi-CG in a similar way as MINRES relates to CG. For stability reasons the
basis vectors rj and sj are normalized (as is usual in the underlying Bi-Lanczos algorithm).

If we group the residual vectors rj , for j = 0, ..., i− 1 in a matrix Ri, then we can write the recurrence relations
as

ARi = Ri+1T̄i ,
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with
←− i −→

T̄i =



. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .



↑

i+ 1

↓

.

Similar as for MINRES we would like to construct the xi, with

xi ∈ span {r0, Ar0, ..., A
i−1r0} , xi = Riȳ,

for which

‖Axi − b‖2 = ‖ARiȳ − b‖2
= ‖Ri+1T̄iy − b‖2
= ‖Ri+1{T̄iy − ‖r0‖2e1}‖2

is minimal. However, in this case that would be quite an amount of work since the columns of Ri+1 are not
necessarily orthogonal. In [17] it is suggested to solve the minimum norm least squares problem

min
y∈IRi

‖T̄iy − ‖r0‖2e1‖2 . (50)

This leads to the simplest form of the QMR method. A more general form arises if the least squares problem
(50) is replaced by a weighted least squares problem. No strategies are yet known for optimal weights, however.
In [17] the QMR method is carried out on top of a look-ahead variant of the bi-orthogonal Lanczos method,
which makes the method more robust. Experiments suggest that QMR has a much smoother convergence
behavior than Bi-CG, but it is not essentially faster than Bi-CG. For the algorithm we refer to [3] page 24.

CGS
For the bi-conjugate gradient residual vectors it is well-known that they can be written as rj = Pj(A)r0 and
r̂j = Pj(A

T )r̂0, where Pj is a polynomial of degree j such that Pj(0) = 1. From the bi-orthogonality relation
we have that

(rj , r̂i) = (Pj(A)r0, Pi(A
T )r̂0) = (Pi(A)Pj(A)r0, r̂0) = 0 , for i < j.

The iteration parameters for bi-conjugate gradients are computed from innerproducts like above. Sonneveld
observed in [41] that we can also construct the vectors rj = P 2

j (A)r0, using only the latter form of the inner-
product for recovering the bi-conjugate gradients parameters (which implicitly define the polynomial Pj). By
doing so, it can be avoided that the vectors r̂j have to be formed, nor is there any multiplication with the matrix
AT . The resulting CGS [41] method works in general very well for many non-symmetric linear problems. It
converges often faster than Bi-CG (about twice as fast in some cases). However, CGS usually shows a very
irregular convergence behavior. This behavior can even lead to cancellation and a spoiled solution [45].

The following scheme carries out the CGS process for the solution of Ax = b, with a given preconditioner K:

Conjugate Gradient Squared method
x0 is an initial guess; r0 = b−Ax0;
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r̃0 is an arbitrary vector, such that
(r0, r̃0) 6= 0 ,
e.g., r̃0 = r0 ; ρ0 = (r0, r̃0) ;
β−1 = ρ0 ; p−1 = q0 = 0 ;
for i = 0, 1, 2, ... do

ui = ri + βi−1qi ;
pi = ui + βi−1(qi + βi−1pi−1) ;
p̂ = K−1pi ;
v̂ = Ap̂ ;
αi = ρi

(r̃0,v̂) ;

qi+1 = ui − αiv̂ ;
û = K−1(ui + qi+1)
xi+1 = xi + αiû ;
if xi+1 is accurate enough then quit;
ri+1 = ri − αiAû ;
ρi+1 = (r̃0, ri+1) ;
if ρi+1 = 0 then method fails to converge!;
βi = ρi+1

ρi
;

end for

In exact arithmetic, the αj and βj are the same constants as those generated by Bi-CG. Therefore, they can be
used to compute the Petrov-Galerkin approximations for eigenvalues of A.

Bi-CGSTAB
Bi-CGSTAB [46] is based on the following observation. Instead of squaring the Bi-CG polynomial, we can

construct other iteration methods, by which xi are generated so that ri = P̃i(A)Pi(A)r0 with other ith degree

polynomials P̃i. An obvious possibility is to take for P̃i a polynomial of the form

Qi(x) = (1− ω1x)(1− ω2x)...(1− ωix) ,

and to select suitable constants ωj ∈ IR. This expression leads to an almost trivial recurrence relation for the
Qi. In Bi-CGSTAB ωj in the jth iteration step is chosen so as to minimize rj , with respect to ωj , for residuals
that can be written as rj = Qj(A)Pj(A)r0.
The preconditioned Bi-CGSTAB algorithm for solving the linear system Ax = b, with preconditioning K reads
as follows:

Bi-CGSTAB method
x0 is an initial guess; r0 = b−Ax0;
r̄0 is an arbitrary vector, such that (r̄0, r0) 6= 0, e.g., r̄0 = r0 ;
ρ−1 = α−1 = ω−1 = 1 ;
v−1 = p−1 = 0 ;
for i = 0, 1, 2, ... do

ρi = (r̄0, ri) ; βi−1 = (ρi/ρi−1)(αi−1/ωi−1) ;
pi = ri + βi−1(pi−1 − ωi−1vi−1) ;
p̂ = K−1pi ;
vi = Ap̂ ;
αi = ρi/(r̄0, vi) ;
s = ri − αivi ;
if ‖s‖ small enough then
xi+1 = xi + αip̂ ; quit;

z = K−1s ;
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t = Az ;
ωi = (t, s)/(t, t) ;
xi+1 = xi + αip̂+ ωiz ;
if xi+1 is accurate enough then quit;
ri+1 = s− ωit ;

end for

The matrix K in this scheme represents the preconditioning matrix and the way of preconditioning [46]. The
above scheme in fact carries out the Bi-CGSTAB procedure for the explicitly postconditioned linear system

AK−1y = b ,

but the vector yi has been transformed back to the vector xi corresponding to the original system Ax = b.
Compared to CGS two extra innerproducts need to be calculated per iteration.

In exact arithmetic, the αj and βj have the same values as those generated by Bi-CG and CGS. Hence, they
can be used to extract eigenvalue approximations for the eigenvalues of A (see Bi-CG).

An advantage of these methods is that they use short recurrences. A disadvantage is that there is only a semi-
optimality property. As a result of this, more matrix vector products are needed and no convergence properties
have been proved. In experiments we see that the convergence behavior looks like CG for a large class of
problems. However, the influence of rounding errors is much more important than for CG. Small changes in the
algorithm can lead to instabilities. Finally, it is always necessary to compare the norm of the updated residual
to the exact residual ‖b − Axk‖2. If ”near” break down had occurred, these quantities may be different by
several orders of magnitude. In such a case the method should be restarted.

4.3.3. GMRES-type methods

These methods are based on long recurrences, and have certain optimality properties. The long recurrences
imply that the amount of work per iteration and required memory grow for increasing number of iterations.
Consequently in practice one cannot afford to run the full algorithm, and it becomes necessary to use restarts or
to truncate vector recursions. In this section we describe GMRES, GCR and a combination of both GMRESR.

GMRES
In this method, Arnoldi’s method is used for computing an orthonormal basis {v1, ..., vk} of the Krylov subspace
Kk(A; r0). The modified Gram-Schmidt version of Arnoldi’s method can be described as follows [40]:

(1) Start: choose x0 and compute r0 = b−Ax0 and v1 = r0/‖r0‖2,
(2) Iterate: for j = 1, ..., k do:

vj+1 = Avj
for i = 1, .., j do:

hij := vTj+1vi , vj+1 := vj+1 − hijvi ,
end for
hj+1,j := ‖vj+1‖2 , vj+1 := vj+1/hj+1,j

end for
The entries of the upper k + 1× k Hessenberg matrix H̄k are the scalars hij .

In GMRES (General Minimal RESidual method) the approximate solution xk = x0 + zk with zk ∈ Kk(A; r0)
is such that

‖rk‖2 = ‖b−Axk‖2 = min
z∈Kk(A;r0)

‖r0 −Az‖2 (51)

As a consequence of (51) it appears that rk is orthogonal to AKk(A; r0), so rk⊥Kk(A;Ar0). If A is symmetric
the GMRES method is equivalent to the MINRES method as described in [31]. Using the matrix H̄k it follows
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that AVk = Vk+1H̄k where the n × k matrix Vk is defined by Vk = [v1, ..., vk]. With this equation it is shown
in [40] that xk = x0 + Vkyk where yk is the solution of the following least squares problem:

‖βe1 − H̄kyk‖2 = min
y∈IRk

‖βe1 − H̄ky‖2 (52)

with β = ‖r0‖2 and e1 is the first unit vector in IRk+1. GMRES is a stable method and no break down occurs,
if hj+1,j = 0 than xj = x so this is a ”lucky” break down (see [40]; Section 3.4).

Due to the optimality (see inequality (51)) convergence proofs are possible [40]. If the eigenvalues of A are
real the same bounds on the norm of the residual can be proved as for the CG method. For a more general
eigenvalue distribution we give a result in the following theorem. Let Pm be the space of all polynomials of
degree less than m and let σ represent the spectrum of A.

Theorem 4.1. Suppose that A is diagonalizable so that A = XDX−1, σ = {λ1, ..., λn}, and let

ε(m) = min
p∈Pm
p(0)=1

max
λi∈σ

|p(λi)|

Then the residual norm of the m-th iterate satisfies:

‖rm‖2 ≤ K(X)ε(m)‖r0‖2 (53)

where K(X) = ‖X‖2‖X−1‖2. If furthermore all eigenvalues are enclosed in a circle centered at C ∈ IR with
C > 0 and having radius R with C > R, then

ε(m) ≤
(
R

C

)m
. (54)

Proof: see [40]; p. 866.

For GMRES we see in many cases a super linear convergence behavior comparable to CG. The same type of
results are proved for GMRES [48]. As we have already noted in the beginning, work per iteration and memory
requirements increase for an increasing number of iterations. In this algorithm the Arnoldi process requires k
vectors in memory in the k-th iteration. Furthermore, 2k2·n flops are needed for the total Gram Schmidt process.
To restrict work and memory requirements one stops GMRES after m iterations, forms the approximate solution
and uses this as a starting vector for a following application of GMRES. This is denoted by the GMRES(m)
procedure. Not restarted GMRES is denoted by full GMRES. However restarting destroys many of the nice
properties of full GMRES, for instance the optimality property is only valid inside a GMRES(m) step and the
super linear convergence behavior is lost. This is a severe drawback of the GMRES(m) method [11,22].

GCR
Slightly earlier than GMRES, [10] proposed the GCR method (Generalized Conjugate Residual method). The
algorithm is given as follows:

GCR algorithm
choose x0, compute r0 = b−Ax0

for i = 1, 2, ... do
si = ri−1 ,
vi = Asi ,
for j = 1, ..., i− 1 do

α = (vj , vi) ,
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si := si − αsj , vi := vi − αvj ,
end for
si := si/‖vi‖2 , vi := vi/‖vi‖2
xi := xi−1 + (vi, ri−1)si ;
ri := ri−1 − (vi, ri−1)vi ;

end for

The storage of si and vi costs two times as much memory as for GMRES. The rate of convergence of GCR and
GMRES are comparable. However, there are examples where GCR breaks down. So comparing full GMRES
and full GCR the first one is preferred in many applications.
When the required memory is not available GCR can be restarted. Furthermore, another strategy is possible
which is known as truncation. An example of this is to replace the j-loop by

for j = i−m, ..., i− 1 do

Now 2m vectors are needed in memory. Other truncation variants to discard search direction are possible. In
general we see that truncated methods have a better convergence behavior especially if super linear convergence
plays an important role. So if restarting or truncation is necessary truncated GCR is in general better than
restarted GMRES. For convergence results and other properties we refer to [10].

GMRESR
A number of methods are proposed to diminish the disadvantages of restarting and or truncation. One of these
methods is GMRESR proposed in [49] and further investigated in [52]. This method consists of an outer- and
an inner loop. In the inner loop we approximate the solution of a linear system with GMRES to find a good
search direction. Thereafter in the outer loop the minimal residual approximation using these search directions
is calculated by a GCR approach.

GMRESR algorithm
choose x0 and m, compute r0 = b−Ax0

for i = 1, 2, ... do
si = Pm,i−1(A)ri−1 ,
vi = Asi ,
for j = 1, ..., i− 1 do

α = (vj , vi) ,
si := si − αsj , vi := vi − αvj ,

end for
si := si/‖vi‖2 , vi := vi/‖vi‖2
xi := xi−1 + (vi, ri−1)si ;
ri := ri−1 − (vi, ri−1)vi ;

end for

The notation si = Pm,i−1(A)ri−1 denotes that one applies one iteration of GMRES(m) to the system As = ri−1.
The result of this operation is si. For m = 0 we get GCR, whereas for m→∞ one outer iteration is sufficient
and we get GMRES. For the amount of work we refer to [49], where also optimal choices of m are given. In
many problems the rate of convergence of GMRESR is comparable to full GMRES, whereas the amount of work
and memory is much less. In the following picture we visualize the strong point of GMRESR in comparison
with GMRES(m) and truncated GCR. A search direction is indicated by the symbol vi. We see for GMRES(3)
that after 3 iterations all information is thrown away. For GCR(3) a window of the last 3 vectors moves from
left to right. For GMRESR the information after 3 inner iterations is condensed into one search direction so
”no” information gets lost.
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v1v2v3 restart v1v2v3 restart GMRES(3)

v1v2v3bv4v5v6c ... GCR truncated with 3 vectors
→

v̂1v̂2v̂3 v̂1v̂2v̂3 ...
↓ ↓ GMRESR with GMRES(3) as

condense condense innerloop.
v1 v2

Figure 9. The use of search directions for restarted GMRES, truncated GCR and full GMRESR.

Also for GMRESR restarts and truncation are possible [52]. In the inner loop other iterative methods can be
used. Several of these choices lead to a good iterative method. In theory we can call the same loop again, which
motivates the name GMRES Recursive. A comparable approach is the FGMRES method give in [37]. Herein
the outer loop consists of a slightly adapted GMRES algorithm. Since FGMRES and GMRESR are comparable
in work and memory, but FGMRES can not be truncated, we prefer the GMRESR method.

4.3.4. Choice of an iterative method

For non-symmetric matrices it is very difficult to decide which iterative method should be used. All the
methods treated here have their own type of problems for which they are winners. Furthermore, the choice
depends on the computer used and the availability of memory. In general CGS and Bi-CGSTAB are easy to
implement and reasonably fast for a large class of problems. If break down or bad convergence appear, GMRES
like methods are better. Finally, LSQR always converges but can take a large number of iterations.

In [52] we have tried to specify some easy to obtain parameters to facilitate a choice. First one should have a
crude idea of the total number of iterations (mg) using full GMRES, secondly one should measure the ratio f
which is defined as

f =
the CPU time used for one preconditioned matrix vector product

the CPU time used for a vector update
.

Note that f depends on the used computer. Under certain assumptions given in [52] we obtain Figure 10. This
figure gives only qualitative information. It illustrates the dependence of the choice on f and mg. If mg is
large and f is small, Bi-CGSTAB is the best method. For large values of f and small values of mg the GMRES
method is optimal and for intermediate values GMRESR is the best method. In [3] a flowchart is given with
suggestions for the selection of a suitable iterative method.

4.3.5. Iterative methods for complex matrices

There are in practice, important applications that lead to linear systems where the coefficient matrix has
complex valued entries. Examples are: complex Helmholtz equations, Schrödinger’s equation, under water
acoustics etc [12]. If the resulting system is Hermitian the methods of Chapter 2 can be used. In these
algorithms the inner product xT y should be replaced by the complex inner product x̄T y. For non Hermitian
matrices iterative methods as given in Sections 4.3.1 to 4.3.3 can be used. Again they should be adapted to use
the correct inner product.
In many applications the resulting complex linear systems have additional structure that can be exploited. For
instance matrices of the following form arise:

A = eiΘ(T + σI) where T = T̄T , Θ ∈ IR , σ ∈ CI .
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Figure 10. Regions of feasibility of Bi-CGSTAB, GMRES, and GMRESR.

Another special case that arises frequently in applications are complex symmetric matrices

A = AT .

For example, the complex Helmholtz equations leads to complex symmetric systems. For methods to solve these
systems we refer to [16]; section 2.2, 2.3, 6.

4.4. Exercises

(1) Show that the solution

(
y
x

)
of the augmented system

(
I A
AT 0

)(
y
x

)
=

(
b
0

)
is such that x satisfies ATAx = AT b.

(2) Take the following matrix (
2 −1
−1 2

)
.

(a) Suppose that GCR is applied to the system Ax = b. Show that GCR converges in 1 iteration if
x− x0 = cr0, where c 6= 0 is a scalar and r0 = b−Ax0.

(b) Apply GCR for the choices b =

(
1
1

)
and x0 =

(
0
0

)
.

(c) Do the same for x0 =

(
1
0

)
.

(3) In the GCR algorithm the vector ri is obtained from vectorupdates. Show that the relation ri = b−Axi
is valid.

(4) Prove the following properties for the GMRES method:



42 ESAIM: PROCEEDINGS AND SURVEYS

• AVk = Vk+1H̄k,

• xk = x0 + Vkyk, where yk is obtained from (52).
(5) Figure 10 can give an indication which solution method should be used. Give an advice in the following

situations:
• Without preconditioning Bi-CGSTAB is the best method. What happens if preconditioning is

added?
• We use GMRESR for a stationary problem. Switching to an instationary problem, what are good

methods?
• We use GMRES. After optimizing the matrix vector product, which method is optimal?

(6) A practical exercise
For the methods mentioned below we use as test matrices:

[a, f ] = poisson(5, 5, 100, 0,′ central′)

and

[a, f ] = poisson(5, 5, 100, 0,′ upwind′)

(a) Adapt the matlab cg algorithm such that it solves the normal equations. Apply the algorithm to
both matrices.

(b) Implement Bi-CGSTAB from the lecture notes. Take K = I (identity matrix). Apply the algorithm
to both matrices.

(c) Implement the GCR algorithm from the lecture notes. Apply the algorithm to both matrices.
(d) Compare the convergence behavior of the three methods.
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