STAMP

ASFRA

Voorhaven 33

1135 BL Edam

The Netherlands

SUPERCOMPUTER 55
volume X — number 3

ISSN 0168 - 7875

volume X — number 3
May 1993

SUPERCOMPUTER is the oldest journal devoted entirely

to supercomputing. The first issue appeared in May 1984,

The bimonthly journal primarily covers news and applications
in the supercomputing field. It not only focusses on the largest
machines, but also on other number crunching machines:
minisupers, integrated and attached processors,

Articles are kept short, in general not exceeding 5-10 printed
pages and contain material made readable for everyone interested
in the field of supercomputers. The editorial team strives to keep
the turn-around time for a contribution within a few months,

Instructions to Authors can be obtained from the editorial team.
Articles can be sent to one of the editors. Contributions are
refereed by at least two reviewers.

SUPERCOMPUTER is covered by
ISI's Current Contents/Engineering, Technology & Applied Sciences
and CompuMath Citation Index and Inspec.

Subscriptions: see backcover
© ASFRA, Voorhaven 33, 1135 BL Edam, The Netherlands.

Editorial Address:

SUPERCOMPUTER

P.O. Box 4613, 1009 AP Amsterdam, The Netherlands,
Telephone: +31 20 59 23 022; Fax: +31 20 66 83 167,
Electronic mail: SONDSCM@HASARAT11.BITNET.

Editors:

Bill Buzbee NCAR

P.O. Box 3000, Boulder, CO 80307 USA

Jack Dongarra University of Tennessee

Knoxville, TN 37996-1301 USA

Ad Emmen SARA

P.O. Box 4613, 1009 AP Amsterdam, The Netherlands
Jaap Hollenberg SARA

P.O. Box 4613, 1009 AP Amsterdam, The Netherlands
Yasumasa Kanada University of Tokyo

2-11-16 Yayoi Bunko-ku, Tokyo, Japan

Rossend LLurba TUD

P.O. Box 354, 2600 AJ Delft, The Netherlands

Raul Mendez ISR

8/F Recruit Kachidoki Bldg.,

2-11 Kachidoki, Chuo-ku, Tokyo 104, Japan

Aad van der Steen ACCU

P.O. Box 80011, 3508 TA Utrecht, The Netherlands

SUPERCOMPUTER 1993 #55

&
S
S

Contents CO nte ntS

CONTRIBUTIONS
4 Parallelization of a multigrid solver on the KSR1

Ulrich Schwardmann
13 Further experiences with GMRESR

C. Vuik
28 Parallel synchronous and asynchronous iterative methods to solve

Markov chain problems
Abderezak Touzene, Brigitte Plateau

ANNOUNCEMENTS

3

s
«

Contributions

Ulrich Schwardmann

Gesellschaft fiir
wissenschaftliche
Datenverarbeitung

Gottingen, Am Fafiberg,

D-37077 Géttingen,
Germany

©

Supercomputer 55, X-3
Received August 1993

SUPERCOMPUTER 1993 #55

Parallelization of a multigrid
solver on the KSR1

The multigrid algorithm is known as a fast method for the solution of dif-
ferential equations with boundary conditions. For the temporal simulation
of physical systems for instance, where an accurate solution is needed for
each time step, a fast code, handling big data arrays, is especially necessary.
The goal here is the parallelization and optimization of the multigrid Poisson
solver for a parallel computer with modern virtual shared memory concept.

The Multigrid Poisson Solver
The Poisson equation

L = —Au = f(2),z €Q
on a given domain 2 with Dirichlet conditions on the boundary 92

AL g9(z),z € 0Q

is a famous paradigm of the elliptic boundary value problem. The multi-
grid method is applied here to solve it as a model problem. To control
the convergence behavior of the algorithm, a boundary condition problem
with known solution is used with the unit square as the domain 2.

The problem is discretized by replacing €2 with a discrete uniform square
grid 5, of mesh size h. A five-point difference scheme approximates the
Laplace operator A. The resulting sparse linear equations Lpup = f3
can then be solved with the relaxation formula

h 1.2, ch h h h h
uij = R (fg i1 tuicg F g +uie)

by the multigrid iteration and the nested iteration based on approximations
on coarser grids, as explained in detail by [1] and [2]. The mesh sizes
for the coarser grids used here are hy = 2% on the sequence of
grids {Qp, }1<k<n, Where Qp, = Qp with (2" + 1)? grid points. The
grid Qp, will indicate the grid level » — k in the following. The code
used here is based on the algorithm published in [2], using red-black
relaxation.

Contributions

SUPERCOMPUTER 1993 #55

The architecture and the programing model

The cells (nodes) of the parallel computer KSR1 have a superscalar 64-
bit processor, a local cache of 32 Mbyte and fast local subcaches for data
and instructions, both with 256 Kbyte. The configuration used consists
of 32 such cells, connected by a fast unit-direction ring. The view of the
memory is an uniform adress space defined as a virtual shared memory
in a three-level hierarchy: the local subcache, the local cache and the
union of all caches in the ring. The 32 cells of the configuration used
are partioned into sets of cells (called Psets). All tests were made with a
maximum of 16 cells.

The programming model of the KSR1 is characterized by its virtual
shared memory. Parallelism can be defined on different code segments
as well as on different parts of the data structure. Tiling is the most con-
venient way to describe data parallelism, and was used here whereever
possible.

Global timing analysis of the multigrid Poisson solver

After implementing the multigrid algorithm in its serial form for a grid
of level 10 (i.e. (210 + 1)2 grid points) on the KSR1 we tested its timing
behavior using the Unix profiling tool gprof.

% Cumulative
time seconds
25.0 32.54
23.1 62.60
12.4 78.78
104 92.26

5.3 99.22
5.0 105.78
4.0 110.96
3.7 115.76
3.3 120.10
3.3 124.42
3.1 128.44

Granularity: each sample hit covers 8 byte(s) for 0.02% of 130.22 seconds

Self Self Total
seconds Calls ms/call ms/call Name
32.54 cos [5]
30.06 400 75.15 75,15 relaxs_ [6]
16.18 4 4045.00 5050.00 diEfs 171
13.48 36 374.44 378.89 int4_ [8]
6.96 4 1740.00 19089.98 mgpois. [3]
6.56 4100 1.60 1.60 £ Eni[08
5.18 4 1295.00 3045.00 i Ll 18
4.80 180 26.67 26.67 restre [11]
4.34 36 120.56 120.56 trans. [12]
4.32 180 24.00 24.00 int2a. [14]
4.02 4100 0.98 0.98 exsol_. [15]

Figure 1. Extract of
the global computing
time analysis for the
multigrid program by
gprof.

As can be seen in Figure 1, beside the functions cos and di f £, which
are used here only to verify the correctness of the program, most of the
time (without cos and diff more than a third) is spent in the relax-
ation. Roughly half of this time is spend in the 4™ order interpolation,
that brings the starting approximation to the finest grid of the cycle. The
restriction and bilinear interpolation follow after some driver and initial-
ization routines and take again about a third of the time.

In order to get an even more accurate analysis for these subroutines, it
was necessary to measure the time spent in each cycle and on each grid
level. This was done by using the KSR1 monitor function usertime.

5

6 Contributions

SUPERCOMPUTER 1993 #55

The timing behavior of these subroutines is approximately linear to the
number of grid points. The time spent in each cycle is dominated by the
time spent for relaxation on the finest grid, which is about a half of the
time of the whole cycle. Therefore the optimization and parallelization
has to be done first on the finer grids and especially for the relaxation on
these grids.

Parallelization of the Multigrid Poisson Solver

Automatic parallelization by KAP. The first step in our process of paral-
lelization was to use the automatic parallelization facility of the Fortran
preprocessor KAP and to run the code parallel on four cells.

10000

1000

TIME (msec)

0.1

serielt o—

parattgl by KAP: ==
parallel slice -&--
parallel modular. -4-

Ar‘*
-

.L/‘ 1 1 1 1 L 1
1 2

4 5 6 7
MULTIGRID CYCLE

Figure 2. Comparison
of the computing

time for whole
multigrid cycles
between the serial

case, the automatic
parallelization by KAP,
the parallelization along
columns on four cells
with four threads (slice)
and sixteen threads
(modular).

Because of data dependencies KAP decides to parallelize the relaxation
along the rows of the grid. But to compute the five-point scheme of the
relaxation, this means that the communication, that takes place on the
boundaries of the tiles, becomes very expensive. As shown in Figure 2
this leads to an increase of computing time of the whole program.
Because the unit of fequat communication on the KSR1 is a subpage
of 128 bytes, each entry-point on the boundary has to be sent with its
complete subpage. With a tiling along the rows this is a small column of
16 entry points in the grid, which lies rectangular to the tile boundary.
Parallelization of the relaxation. In order to avoid this communication over-
head, one has to divide the grid along the columns. Only with a large

Contributions

SUPERCOMPUTER 1993 #55

number of tiles (> 32) the number of boundary cells in a complete divi-
sion along columns increases in such a way, that a rectangular division
of the grid will become significantly more efficient.

To divide the grids along its columns, it is necessary to make some
changes in the original algorithm of the multigrid solver as published in
[2]-

The red-black relaxation used here steps in a chess board manner through
the grid. This means that it goes twice with stride two through the com-
plete data. The starting point of computation in the column is controlled
in the original algorithm by a global variable that depends only implicitly
on these parameters and is changed after each computation on a column.
For the parallelization of the code one has to make these dependencies
explicit and has to use private variables to control the starting points.
During relaxation on a point u; ; one computes the diagonal sums

ul . (1
(9 = wijo1 +uisyj and diag{] = wiyyj + i

which implies diag(}} ;,, = diag"} .
In the original algorithm these diagonal sums are computed once for
each grid column, stored into an array and used twice to avoid redundant
operations. This reduces the number of computations, but increases the
number of memory calls, which can be a disadventage when memory
bandwidth is a constraint. Moreover, this precomputation increases the
data dependences and is therefore not used here.

After implementing these changes the parallelization of the relaxation
was done by dividing the grids with sufficiently many grid points along
columns into tiles. Without tiling the data in the other routines this did
not lead to an essential decrease of computing time compared to the serial
code.

In the cycles in the medium range there is even an increase (see Figure
2). This can be explained by the overhead that results from the data dis-
tribution to the four cells, which has to be done between each relaxation
and interpolation or restriction. Therefore an efficient parallelization had
to be done coherently for all parts of the cycle.

Parallelization of the full multigrid method. The parallization of the multi-
grid method by tiling the data space is possible only if there are enough
columns of the grid to be distributed to the cells. The multigrid cycle
has therefore to be performed in a hybrid way, with serial code for the
coarser grids and parallel code for the finer grids.

The parallel relaxation was used here only for grid levels greater or
equal to six, the parallel interpolation and restriction between grid lev-
els five and six and higher. This proved to be a good compromise be-
tween the data distribution cost, when parallel restriction and interpolation
needs data from grids relaxed serially, and the parallelization overhead
on coarser grids.

In Figure 2 one sees the computing time for the parallelization of whole
multigrid cycles computed on four cells compared to the serial code. One

diag

7

& Contributions

SUPERCOMPUTER 1993 #55

curve shows the use of the tiling strategy slice, that means a one to one
correspondence between tiles and threads. Another shows the use of the
tiling strategy modular where sixteen tiles are mapped onto four threads
working on the four cells used.

In the first case one sees a significant reduction of computing time on
the finer grids.

As shown in Figure 2, in the medium range the computation time with
the modular tiling strategy is even significantly more than the serial code.
In this case there is no reuse of data stored in the subcache, because data
of completely different parts of the grid are used on one cell and, after
computing one tile, the data of the other tiles is lost. Furthermore, the
amount of boundary points, where the values has to be communicated
between threads, is increased. Because the threads are mapped onto the
cells in a modular way there is an increase of communication overhead
whereas the degree of parallelization is the same as before. This strategy
is therefore avoided in our further optimizations.

Speedup and efficiency of the parallelization. The parallelization of the
multigrid solver with slice strategy was then tested on a varying num-
ber of cells and the timing results of these tests for the most significant
parts of the algorithm were compared with the timings of the serial code.
The resulting speedup by parallelization, the quotient of the serial by the
parallel time, is shown in Figure 3. Remarkable here is the superlinear
speedup, that is most significant for the relaxation on the grid of level
10.

This speedup can be explained by the division of the data space into parts
distributed onto different cells, where these smaller parts can be hold by
memory elements in higher levels of the memory hierarchy of the system.
In this case the amount of data exceeds 20 Mbyte, and therefore does not
fit into the cache of one cell.

This leads to an efficiency of more than 5/4 for the relaxation on the

finest grid on more than two cells. But even the efficiency of the i
order interpolation exceeds 9/10 and the efficiency of the computation
over all cycles is about 3/4.

Optimization of the relaxation

In order to further increase the performance of the multigrid algorithm
we performed some experiments in optimizing the most time-consuming
part of the algorithm, the relaxation. Subpage alignment and manual loop
unrolling did not lead to any significant improvement, and, with the
change of the data structure of the grid array into a field, efficient for
most vector computers at least on the medium grid levels (see [3] and
[4]), the algorithm even took longer.

But the improvement of the locality of data turned out to be the key
to get better performance. As mentioned earlier, for each call the red-
black relaxation steps twice through the whole data area with stride two.
On finer grids this means that all data have to be moved twice into the
subcache.

Contributions

SUPERCOMPUTER 1993 #55 9

20 - e -
16 e
12| e
a
2
o
oosf 4
o v &
7] =
» Whole Cycles -o--
A 5 Finest Relax. -a--
5527 Interp. (4. Order) &
4L =

0 | i I i I
8
NUMBER OF PROCESSORS

Figure 3. Speedup of
the parallelization along
columns on a various
number of processors
for all cycles up to
level 10, and for the

4th order interpolation
and the relaxation on
level 10.

A better re-use of data in the subcache can be achieved by using a macro
pipeline on the columns of the grid. The relaxation of the red points of
a column, followed by a delay in order to compute all red points needed
for the last step in which the black points are relaxated (see Figure 4).
The data going through this macro pipeline must be loaded for the first
step only once with stride two into the subcache. For grids up to level
11 the column still fits into the subcache at the third step.

This macro pipeline code has to be parallelized manually because the
pipeline must be started and stopped accurately at the segment bound-
aries. This cannot be controlled with the tiling parameters.

A comparison of the two algorithms performed on 16 cells and on the
different grid levels up to level 11 is given in Figure 5. This figure shows
the advantage of the macro pipeline on all grid levels greater then 8, but
also in the area of serial execution for grid levels less then 6. At grid
level 6 one sees again the switching point between serial and parallel
code, where communication decreases the performance.

At the grid levels 7 and 8 the parallel performance of the macro pipeline
code is lower than the original parallel relaxation. This is due to the
starting time of the macro pipeline, which is high on these grid levels
compared to the number of computed columns in each tile.

The difference between the two methods is most significant at grid level
10. Here one sees already a clear decrease of performance for the original
parallel relaxation. The data, when distributed over 16 cells, still just fits

10 Contributions

SUPERCOMPUTER 1993 #55

L

e
|

)

®
®
ST A B B

°
|

® :Q—‘@‘-—.Q—éi——b—-@—i

°
®
|
®
)
°
)
°

gt g s
®
®
L J
@

® | o — 0 @ o @ o
® | e o— e © o o
® | @ —@ @ o o o
— ———
(] ® ® 1 @ ® o ®
b g
A _EE

Figure 4. The Macro
Pipeline stepping
through a grid of level
3.

into the subcache on grid level 9, and can therefore be reused in the
second relaxation step. But at grid level 10 the whole subcache must be
reloaded. The optimized relaxation with macro pipeline on the other hand
avoids this reloading and therefore the performance still increases at this
grid level. This leads for this algorithm on 16 cells to a speedup of more
than 34 compared to the original code.

At grid level 11 the size of one column already exceeds one page. There-
fore all computations next to the borderlines of the tiles invalidate large
areas of the concerned pages. This leads to an substantial increase of
page movement, measured by the KSR routines for parallel monitoring
(pmon_delta). The performance decreases here for both algorithms by
about 20 Mflop/s.

The macro pipeline algorithm was tested on a grid of level 12 as well.
Here the amount of data needed in the macro pipeline is more than a
half of the subcache. So the random replacement rule for the subcache
management destroys with high probability parts of the macro pipeline
in the subcache. Furthermore the complete data for the grids on level 12
exceed a quarter Gbyte. Parts of these data must be held on several nodes
at the same time, with the effect that the grids do not fit into the user area
of the used caches anymore. But this situation is still managed by the
operating system (Rel. 1.1.3), even if the performance decreases to 50
Mflop/s, and the amount of subcache-misses, subpage-misses on cache
and page-misses increases dramatically. A tiling into two times eight

Contributions

SUPERCOMPUTER 1993 #55

rectangles did not improve the performance. The communication along
the horizontal borderlines took too much time and, because of more data
duplicity, the number of subpage-misses increased. On a larger number of
cells (32) with a tiling into two times sixteen rectangles these problems
should vanish.

140

120

100

» [22] @
o o o

PERFORMANCE (Mflop/s)

n
o

11

74 Relax: by columns ——
I Relax. by macro pipeling -8--

7 8
MULTIGRID CYCLE

Figure 5. Performance
on 16 cells of the
parallel relaxation on
the various grid levels
(up to grid level 10),
unoptimized version
versus optimized
version by macro
pipelining.

Conclusion

Because of its complex memory hierarchy, the key to achieve high per-
formance on the parallel computer KSR1 is the optimization of data
locality.

Although the relaxation dominates the computing time, this means firstly,
that to minimize communication costs all participating subroutines must
be included into the parallelization process of the multigrid method. Pro-
ceeding in this way a speedup of 11.50 for the full multigrid method on
16 cells is obtained. This leads to an overall efficiency of about 0.72.
By improving data locality inside the relaxation algorithm a signifi-
cantly higher speedup of 13.27 for the whole multigrid algorithm can
be achieved.

Because of the linear increase of memory with the number of cells it is
possible to compute solutions on much finer grids. On a machine with
64 cells, for instance, the multigrid algorithm should work on a grid of

12 Contributions

SUPERCOMPUTER 1993 #55

(213 4+1)? grid points, tiled into four times sixteen rectangles, with good
performance within a reasonable time.

References

1

Brandt, A., Multi-level adaptive solutions to
boundary-value problems, Math. Comp. 31,
333-390, 1977.

3

Schwardmann, U and H. Weberpals, Vek-
torisierung eines Mehrgitter-Poisson-Lisers
fiir die IBM 3090/VF, GWDG Bericht 32,
Gottingen, 1991.

2

Stiiben, K. and U. Trottenberg, Multigrid
methods: Fundamental algorithms, model
problem analysis and applications, In: Hack-
busch, W. and U. Trottenberg (eds.) “Multi-
grid Methods”, Berlin, Springer, 1-176,
1982.

4
Lemke, M., Experiments with a vectorized
multigrid Poisson solver on the CDC Cy-
ber 205, Cray X-MP and Fujitsu VP 200,
Bochumer Schriften zur Parallelen Datenver-
arbeitung 12, 49-85, 1987.

g
S

Contributions

C. Vuik

Delft University of
Technology, Faculty of
Technical Mathematics
and Informatics, PO Box
5031, NL-2600 GA Delft,
The Netherlands

©

Supercomputer 55, X-3
Received July 1993

SUPERCOMPUTER 1993 #55

Further experiences with
GMRESR

The GMRES method proposed in [1] is a popular method for the iterative
solution of sparse linear systems with an unsymmetric nonsingular matrix.
We propose in [2] a variant of the GMRES algorithm, GMRESR, in which
one is allowed to use a different preconditioner in each iteration step. Some
properties of this approach are discussed hereand illustrated with numerical
experiments. We compare GMRESR with GMRES, Bi-CGSTAB [3], QMR [4]
and FGMRES [5]. The results of this paper are used to solve the linear systems
originating from the discretized incompressible Navier-Stokes equations [6].
In practical applications these systems are very large and can only be solved
on high-performance computers.

1 The GMRESR method

The new idea behind the GMRESR method is to use a preconditioning
which may be different for each iteration step. We obtain the precon-
ditioning by carrying out a number of GMRES steps in what may be
regarded as an innerloop. However, any other process, which approxi-
mates A1y for a given vector y, can be chosen (e.g. LSQR [7], Bi-
CGSTAB, QMR or GMRESR). Furthermore, the choice of the process
used in the innerloop may be different in each iteration. Note that one
can use GMRESR in a recursive way, which motivates the name of the
method GMRESR(ecursive).

We denote the approximate solution of ATl by Pm(A)r, where Pm,
represents the GMRES polynomial that is implicitly constructed in m iter-
ation steps of GMRES. Note that this polynomial depends on the residual
r, so that we have effectively different polynomials in different steps of
the outer iteration. We will make this dependence explicit by adding the
number of the current outer iteration as an index to P : P, (A)ry. The
resulting process, GMRESR, is represented by the following iteration
scheme for the solution of Axz = b:

13

14 Contributions

Figure 1. Amount of
work and memory
for GMRES and
GMRESR(m).

SUPERCOMPUTER 1993 #55

GMRESR algorithm
1. Start: Select zg, m, ¢;

rg =b— A'.L‘(), b = —1
2. Iterate: while ||rj41]|2 > € do

k=k+1, uch) = Pk (A7, c(kO) = AuScO);
for :=0,....k — 1 do
T (1) CE;H-l) 2 Cii)

ap =c¢icp”,

u&f'{'l-) = ugf) — QU

— 5,

endlor k) *) *) *)
e = SN o wr =« /le 123

<)
Tpyl = Ty + ugcpry;
Th41 =T — € CZT}\:;
endwhile :
In the remainder of this paper, the process to calculate ugc) is called the
innerloop of the GMRESR method. If GMRES in the innerloop stagnates

we obtain 'ug\:“-) = 0 and the method breaks down. In such a case we

avoid break down by using one step of LSQR [7] in the innerloop:

(“ = ATrA In Section 6 we give a motivation for this choice and
specxfy some examples where the LSQR switch gives a much better
convergence behavior.

A more practical scheme, in our opinion, arises when the outer iteration
is restarted after [, iterations, in order to limit memory requirements, or
to include only updates from the last {; outer iterations (a truncated GM-
RESR version). The resulting scheme is denoted by GMRESR (s, I¢, m).
In Section 3 we give other truncation strategies and compare restarting
and truncation for some testproblems. The GMRESR method without
restarting or truncation is denoted by GMRESR(m).

In [2] it is shown that GMRESR(im) is a robust method, and that it is a
minimal residual method. For other properties of GMRESR we refer to
[2].

The choice of . In order to compare the efficiency of GMRES and
GMRESR(112), estimates for the amount of work and the required memory
of both methods are listed in Figure 1.

Method sMRES GMRESR(mn)
steps Mg Mgy
matvec My Mgy - M
vector updates L,,, e Mgy - (£ + mygy)
inner products l,,, y: Mgy - (”' + lﬁ)
memory vectors My 2imgr +m

It appears from our numerical experiments that mg, - m is in many
cases approximately equal to m,. This observation is used to derive

Contributions

SUPERCOMPUTER 1993 #55

optimal choices for m with respect to work and required memory. In
the following, we assume that a vector update and inner product have
the same computational costs. Using mgr = my/m it appears that the
minimal amount of work is attained for m = ¥3my, and it is less

than 2.5 mj/B. Note that the amount of work of GMRES is equal to
mg. With respect to memory requirements the optimal value is equal to
m = /Zmy, so the amount of memory for GMRESR(m) is equal to
2/Zmg. This combined with Figure 1 implies that for large values of
mg, GMRESR(m) needs much less memory than GMRES. Both optimal
values of m are slowly varying with m . Thus a given m is near-optimal
for a wide range of values of m,. Note that the optimal m with respect
to work is in general less than the optimal m with respect to memory.
It depends on the problem and the available computer, which value is
preferred. In our experiments we observe that for both choices the amount
of work and required memory is much less than for GMRES.

2 Numerical experiments

In this section we illustrate the theoretical properties of GMRESR using
numerical experiments where we use a linear system obtained from a
discretization of the following PDE:

9% 9%u du du
_ - s ; = Q,
(E):l:-’ * dy* I+ ﬁ((?l 2 ()y) i &
ulpn =0,

where €2 is the unit square. The exact solution « is given by u(z,y) =
sen(ma) san(wy). In the discretization we use the standard five-point cen-
tral finite-difference approximation. The stepsizes in z- and y-direction
are equal. We use the following iterative methods: GMRES(m), Bi-
CGSTAB, and GMRESR(m). We use a more or less optimal choice
of m to obtain results using GMRES(m). We start with o = 0 and stop
if |rll2/[roll2 < 1071,

In Figure 2 we present results for GMRESR(m). CPU time is measured
in seconds using 1 processor of a Convex C-3820. Using full GMRES
we observe that 1, = 183, which means that one needs 183 vectors in
memory. Furthermore full GMRES costs 4.4 seconds CPU time. Note that
gy - is for small values of n approximately equal to mg. Suppose
my is unknown and we use m g, - m as an approximation of mg. Then
using the formulas given in Section 1, we obtain the following bounds
for the optimal values of m:

work: V3 188 = 8.3 < m < 9.4 = /3 % 280,

memory: v2# 188 =194 < m < 23.7=v/2 % 280.

Comparing this with Figure 2 we note that there is a good correspon-
dence between theory and experiments in this example. As expected, the
optimal value of 1 with respect to memory, is larger than with respect

15

16 Contributions

SUPERCOMPUTER 1993 #55

m 4

8 12 16 20
Mgy 47 25 19 16 14
me Mgy 188 200 228 256 280

CPU time (s) 082 057 068 0.83 1.01
memory vVectors 98 58 50 48 48

Figure 2. The results
for GMRESR(m) with
pf=1 and /7,:1/50.

to work. However, for both choices of 1 we observe a considerable gain
in computing time and memory requirements.
Results comparing the three iterative methods are shown in Figure 3.

Method Iterations matvec CPU time (s)
GMRES(32) 1355 1355 26
Bi-CGSTAB 287, 474 i)

GMRESR(10) 36 360 4.3

Figure 3. Results for
B=1 and h=1/100.

It appears that GMRESR(10) is better than GMRES(32). Although Bi-
CGSTAB uses less CPU time, it uses more matrix-vector products than
GMRESR(10).

In Figure 4 we take the stepsize /o = 1/100 and /# a function of = and
y. as follows:

Figure 4. Results, with
B given by (1) and
h=1/100.

1 for =,y € [%, 2)?
Bl y) = : &t e 1
A, y) { 1000 for =,y € [0,1]%\ [3, 3] (1)
Metho:ii o Iterations Matvec CPU time (s)
GMRES(32) 1536 1536 30
Bi-CGSTAB no convergence
GMRESR(10) 56 560 7.8

Note that in this problem GMRESR(10) is the best method.

The following example comes from a discretization of the incompressible
Navier-Stokes equations. This discretization leads to two different linear
systems, the momentum equations and the pressure equation (for a further
description we refer to [2, 6]). We consider a specific testproblem, which
describes the flow through a curved channel. The problem is discretized
with 32 x 128 finite volumes. The pressure equation is solved using an
average of an ILU and MILU preconditioner with o = 0.975 [6, 8]. We
start with ay = 0 and stop when ||r|[2/||ro]]2 < 107%. The results are
shown in Figure 5. Note that for this problem GMRESR(4) is the fastest
method with respect to CPU time.

Contributions

SUPERCOMPUTER 1993 #55 17

Method Iterations Matvec CPU time (s)

full GMRES 47 47 0:77
CGS 38 76 0.49
Bi-CGSTAB 34 68 0.44
GMRESR(4) 12 48 0.43

Figure 5. Iterative
methods applied to the
pressure equation.

3 Restarting and truncation strategies

We present some truncation strategies and compare the results with restarted
and full GMRESR.

There are many different ways to truncate GMRESR. The first one, which
is already given above, is to use the [; last search direction (denoted by
trunclast). To obtain another truncation strategy we note that in many
cases GMRESR has a superlinear convergence behavior. This means that
after some iterations GMRESR converges as if some eigenvalues of the
matrix are absent (compare [9]). Restarting or truncation can destroy
this behavior ([10]; pp. 1334-1335). If superlinear convergence occurs,
it appears a good idea to use the [; — 1 first search directions and 1 last
search directions (denoted by rruncfirst). Both strategies are used in the
following experiments. Figure 6 shows that truncation with {; —1 first and
1 last search directions is the best strategy for this example. If there are
only 18 memory vectors available, the gain in CPU time for {s = 50,{; =
5 with respect to s = {; = 5 is equal to 40%. Furthermore, comparing full
GMRESR(8) with GMRESR(50,10,8) (truncfirst variant) we see that the
amounts of CPU time are approximately the same, whereas the amount
of memory is halved.

=l Restart (s = 50 trunclast truncfirst Memory
Iterations CPU " Iterations CPU Iterations CPU Vectors
5 57 1.15 5 41 0.87 37 0.79 18
10 45 0.97 10 32 0.73 29 0.68 28
15 33 0.74 15 29 0.69 26 0.62 38
20 29 0.67 20 25 0.60 25 0.60 48
25 25 0.60 25 25 0.60 25 0.60 58

Figure 6. Results with
GMRESR(,,1,,8),8=1
and h=1/50, CPU
time in seconds.

We conclude this section with some other truncation strategies. First we
note that it seems an awkward choice to use one last search direction
in the truncfirst variant. This choice is motivated by the fact that if one
applies GCR to a symmetric problem then it is necessary and sufficient
to use one last search direction in order to obtain the same convergence
behavior as full GCR. We have done experiments without this final di-
rection (truncfirstl). These results are given in Figure 7. Note that the
truncfirst] variant is the worst truncation strategy, so it is indeed a good
idea to include one last search direction, which is done in the original
truncfirst variant.

Finally in ([10]; p. 1335) another truncation strategy is proposed for a
GCR-like method. For the GMRESR algorithm this strategy leads to the

18 Contributions

SUPERCOMPUTER 1993 #55

e S8 100-15 20 25

truncfirstl 55 49 34 26 25
minalfa 36 2825 25 25

Figure 7. Number
of iterations for
GMRESR(50,14,3),

#=1 and h=1/50.

following variant (minalfa): if k > l; then the search direction with the
smallest absolute value of «; in the for-loop is thrown away. The motiva-
tion is that the search direction with the smallest |o;| has only a limited
influence on the GMRESR convergence. From Figure 7 it appears that
this leads to the best truncation strategy for this example. Another impor-
tant advantage of the minalfa variant is that it is a black box strategy. For
instance if the bad eigenvector components (with respect to the conver-
gence behavior) appear after some iterations, then the truncfirst variant
is much worse than the minalfa variant.

4 Some ideas for choosing an iterative solution method.

There are a large number of known iterative solution methods for non-
symmetric problems. In this section we present some ideas to motivate
a choice of a feasible iterative method. These ideas are based on our
experiments. Probably they should be adapted for other classes of prob-
lems. The insights in this section can be used to guess a priori if it has
sense to change from one iterative method to another. Furthermore it is
shown that two parameters: the ratio of the CPU time for a matrix-vector
product and a vector update, and the expected number of full GMRES
iterations, are important to choose an iterative method. Finally, the ideas
given in this section show a good agreement with our experiments given
above.

In the remainder of this section we assume that the amount of required
memory is available. Otherwise restarted or truncated versions of GM-
RES (GMRESR) can be used, however, it is not clear if the results in
this section holds in such a case.

The CPU time of many iterative methods consists of two main parts:

— the total CPU time used for matrix-vector products, which is denoted
by t,, (if a preconditioner is used, ¢,, includes the time for precon-
ditioning);

— the total CPU time used for vector updates and inner products, which
is denoted by £,

The total time ¢,, for GMRES (GMRESR) is always less than the time
L, for other iterative methods. On the other hand, the time ¢, for GMRES
(GMRESR) can become very large if the number of iterations increases.
We prefer GMRES (GMRESR) if the ratio v = ¢, /¢, is not too large
(< 0.5 in this paper). Note that for every other Krylov subspace method
the gain in CPU time is always less than T_?_?-IUO%. In our experiments it
appears that for the choice v = 0.5, (1 ++)t» of GMRES (GMRESR) is
approximately equal to ¢, + &, of Bi-CGSTAB. So in our example at the
end of this section we take v = 0.5 (for this choice IJ-H -100% = 33%).

Contributions

SUPERCOMPUTER 1993 #55

The CPU time used for one matrix (+ preconditioner) vector product is
denoted by ¢,,1, and the CPU time of one vectorupdate (or inner product)
is denoted by {,1. The factor f is defined by f = t;m1/ty1. Using the
assumption that mg, - m = my, we obtain the following expressions:

GMRES: tm =my -tm1, = mztvl;

GMRESR: t;m =my - tm1, tv = 2.5m;/3tvl.
As said before we prefer GMRES (GMRESR) if ¢, < ¥¢m. For GM-
RES this means m, < «vf, whereas for GMRESR this means my <

(vf/2.5)%. For GMRESR the ratio &, /tm = 2.5(mg)/3ty1/tm1 is a
slowly varying function of m. '

Figure 8 illustrates the given bounds for the choice ¥ = 0.5. We em-
phasize that this figure only gives qualitative information. It illustrates
the dependence of the choice on f and m,. Below we specify some
applications using this information.

— For a given system and computer, f can be measured. This together
with an estimate of m, and Figure 8 gives an impression of which
iterative method is feasible.

— Suppose Bi-CGSTAB is the best method for a certain problem, with-
out preconditioning. Including preconditioning, Figure 8 suggests that
GMRESR can be better for this preconditioned system, because my
is (much) lower and f is (much) higher (in general a preconditioner
is harder to vectorize than a matrix-vector product).

Note that the applicability of GMRESR for large values of f is much
wider than GMRES.

For the first example given in Section 3, f = 10, so Figure 8 agrees with

our observation that Bi-CGSTAB costs more matrix-vector products but
less CPU time than GMRESR. In the practical examples given in Section

3 and [2], /' = 20 and my; < 50. In these examples the CPU time of

GMRESR is less than the CPU time of Bi-CGSTAB, which is also in
accordance with Figure 8.

Finally we compare GMRESR with QMR. It is easily seen from [4],
equations (2.7), (2.8) and (3.1) that the QMR method uses k£ multipli-
cations with A and AT to construct a solution, which is an element of

a Krylov subspace with dimension k. So we choose ¥ = 1 in order to

compare GMRESR and QMR (Figure 9). From Figure 9 we note that
GMRESR has a large region of feasibility with respect to QMR.

5 Comparison of GMRESR with FGMRES

Another GMRES-like iteration scheme with a variable preconditioner is
proposed in [5]. In Saad’s scheme (FGMRES) a Krylov subspace is gen-
erated that is different from ours (GMRESR). We specify an example
for which FGMRES breaks down. Comparison shows that in our exam-
ples the convergence behavior of GMRESR and FGMRES are approxi-
mately the same. An advantage of GMRESR is that it can be truncated
and/or restarted, whereas FGMRES can only be restarted. Above we
have seen that in some problems, truncated GMRESR converges faster

19

20 Contributions

SUPERCOMPUTER 1993 #55

1000

mg

900

800

700

600

500

400

300

200

100

Bi-CGSTAB

GMRESR

GMRES

Figure 8. Regions

of feasibility of Bi-
CGSTAB, GMRES, and
GMRESR for v=0.5.

than restarted GMRESR. Using such an example we show that restarted
FGMRES costs more CPU time than truncated GMRESR.

A well-known property of GMRES is, that it has no serious breakdown.
From the following example we conclude that it is possible that FGM-
RES breaks down. For the algorithm we refer to ([S]; p.4) and note that
FGMRES is equal to GMRES if M; = M for all j. So breakdown of
FGMRES is only possible if one chooses different A7;.

Example.

(iR 0 0

Take A=[1 0 0] ,2=/[0] and zyg = [0 |. In Algorithm
[F il 28} 1 0

2.2 of [S] we choose My = [and My = A”. These choices lead to
| 1 0

zg=z:=(0] ,vu=[0] ,wv=|[1],and k3> =0, which

0 0 0
implies that ¢; does not exist. Since x4y = 2 + azq + [z9, it follows
that @y # x, so this is a serious breakdown.
In the innerloop of GMRESR, we calculate an approximate solution of
A ug\‘“) = rp. In FGMRES an approximation of Az, = vy, is calculated. If
the preconditioner is the same for every &, then w; and z;, 1 =0,...,k
span the same Krylov subspace. However, if the preconditioner varies,

Contributions

SUPERCOMPUTER 1993 #55

1

mg

000

900

800

700

600

500

400

300

200

GMRESR

GMRES

30 35 40 45 50

Figure 9. Regions of
feasibility of QMR,
GMRES, and GMRESR
for y=1.

the Krylov subspaces can be different. To illustrate this we calculate the
solution of the problem given in section 3, with # = 1 and k = 1/50.
As innerloop we take one step of GMRES(10) in both methods. The
results are given in Figure 10. As expected ||ro||o and ||r1||2 are the
same for both methods. In this example the differences of the norms of
the residuals are small. We have also done experiments with the same
search directions in both methods. In these experiments the results of
GMRESR and FGMRES are the same to machine precision.

It follows from Algorithm 2.2 [S] that only the vectors v, are updated in
the orthogonalization process. Assuming that GMRESR and FGMRES
use both i, iterations for convergence, GMRESR needs %mg,. vector
updates more than FGMRES. Note that GMRESR and FGMRES are
feasible for relatively large values of / (see section 4 for the definition of
J)- In this case the CPU time of m, extra vectorupdates is negligible.
Finally we compare restarted FGMRES and truncated GMRESR. As we
already note, it is impossible to truncate FGMRES. In Figure 11 we give
results for both methods, for # = 1 and & = 1/100. As innerloop we use
one step of GMRES(10) for both methods. For this example FGMRES
is more expensive than GMRESR. If there is only a small number of
memory vectors available (< 20), then FGMRES uses two times as
many iterations and two times as much CPU-time.

22 Contributions

SUPERCOMPUTER 1993 #55

10log(res(i))

i - FGMRES
5l -- GMRESR
14 L
0 2 4 6 8 10 12 14 16 18 20
Figure 10. The norm :
of the residuals for
B=1 and h=1/50.
FGMRES GMRESR (truncfirsty ~ Memory
[Iterations CPU {y Iterations CPU vectors
5 128 123 5 64 6.5 20
10 83 8.2 10 46 4.9 30
15 68 6.9 15 41 4.7 40
20 59 6.1 20 41 4.8 50
25 50 5.3 25 39 4.7 60

Figure 11. Results with
FGMRES(/s,10) and
GMRESR(50,14,10),
B=1 and h=1/100.

6 Recent results

In this section we give some recent results, which are subject to further
study. First, we give some experiences with the LSQR switch for an
indefinite system of equations. Then we report some experiments with
GMRESR, in which we use a single-precision innerloop.

The LSQR switch. First we give a motivation of the LSQR switch. There-
after we give a problem where the convergence of GMRESR is much
faster using the LSQR switch.

We use the LSQR switch in the innerloop in the case that GMRES
(nearly) stagnates. Due to the optimality property of GMRES it is easily
seen that every other Krylov subspace method based on Ky (A,rg) =
span{ry, Arg, ..., .4’“"171,} stagnates or breaks down. However, it is

possible that LSQR, which is based on 1(;\,(ATA, ATT()), converges rea-

Contributions

SUPERCOMPUTER 1993 #55

sonably fast. Examples of such problems are given in [11] and [12]. The
idea is that GMRESR with LSQR switch not only works if GMRES has
a good convergence behavior but also if GMRES stagnates and LSQR
converges reasonably fast. Furthermore if GMRES stagnates after some
iterations, it is not necessary to restart with another iterative method; it
is sufficient to change the iterative method in the innerloop (for instance
LSQR).

In [2] we propose to relax the LSQR switch condition, instead of switch-

)

ing when ||A"E:(,)1)n —r1|l2 = |7k |2, we switch when |[Au§£m —rkll2 >
s||rk]|2, s <1 for some suitable s close to 1. Below we describe some

other GMRESR variants using a relaxed switch condition. We compare
them for a discretization of the following partial differential equation:

0% 9%, Ju 0
i “)+ﬂ(fl+5;f)-mou=fon9

ax? = 9y? ox

—(
ulpgn =0

where €2 is the unit square. The discretization is the same as the one used
for the similar test problem given in Section 2. The linear system can be
indefinite due to the final term on the left hand side of the PDE. We take
B =10, h = 1/10 and use the trunclast variant with l; = 10.

We consider the following GMRESR variants:

GMRESR(5): innerloop consists of GMRES(S), combined with
the strict LSQR switch (s = 1),

GMRESRI(5): innerloop consists of GMRES(5) followed by
one LSQR iteration,

GMRESR2(5): innerloop consists of one LSQR iteration fol-
lowed by GMRES(S),

GMRESR3(5): innerloop consists of GMRES(5), combined with
a relaxed LSQR switch (s = 0.99),

GMRESR4(5): innerloop consists of GMRES(5),

if [|AUL") =74]| > 0.99]|ry |2 then GMRES(S)

is followed by one LSQR iteration.
GMRESR(S) with s = | does not converge within 1000 iterations. The
results using the other variants are given in Figure 12. Note that GM-
RESR1 and GMRESR3 have a reasonable good convergence behavior.
This motivates us to combine the ideas between both, which leads to
the GMRESR4 variant. The advantages of GMRESR4 are: it only uses
an LSQR iteration if it is necessary, and the GMRES(5) results are not
thrown away, as is done in the GMRESR3 variant. Furthermore it appears
from Figure 12 that GMRESR4 has the best convergence behavior. All
variants use approximately the same CPU-time per iteration.
The single-precision innerloop. In the GMRESR method, the innerloop cal-

. x 0 . o e
culates an approximate solution of Au(, bk r. This approximation is
p k,m k P

used as search direction, so its accuracy only influences the convergence

23

24 Contributions

SUPERCOMPUTER 1993 #55

GMRESR2

GMRESR3

GMRESR1

GMRESR4

0
-2
4
fm:'
St
o
g
8t
-10+
-12
0

100 200 300 400 500 600 700 800 900 1000

iterations

Figure 12. The
convergence behavior
of GMRESR variants.

Figure 13. Results for
B=1,h=1/100 on the
Convex C3820.

but not the accuracy of the final solution vector. Since some computers
calculate faster in single precision than in double precision, we have done

experiments with a single-precision innerloop. The vector cio) = Augco)
should be calculated in double-precision. In such a case mp: with respect
to work can be chosen sligthly larger because the innerloop is cheaper.
A comparable approach is given in [13] and [14]. In [14] they use as
innerloop GMRES(m) in single precision (32-bits) and as outerloop an
iterative refinement algorithm in double precision (64-bits).

The results for the testproblem of Section 2 are given in Figure 13. The
CPU time of GMRESR(15) with single-precision innerloop is indeed less
than the CPU time of GMRESR(10), whereas the final solution vectors
have the same accuracy. With respect to memory one needs an extra
single-precision copy of the matrix, however this increase is in general
less than the decrease in memory caused by the fact that m can be chosen
larger (and thus closer to m.p: with respect to memory) and the auxiliary
vectors used in the innerloop are single precision.

Method Iterations CPU time (s)
GMRESR(10) 36 4.4
GMRESR(15) single precision 27 2.9

Contributions SUPERCOMPUTER 1993 #55

We have also done experiments on one processor of a Cray Y-MP4/464.
On this machine single-precision arithmetic (64 bits) is much faster than
double-precision arithmetic (128 bits) which cannot be vectorized. Note
that there are practical problems, where the system of equations is very
ill conditioned. These problems can only be solved using a high accuracy
iterative method. In these experiments we choose as termination criterion:
ll7kll2/ll7oll2 < 1072, Note firstly that this test problem is only meant
as an illustration for the use of a single-precision innerloop, secondly that
it is not easy to obtain this high precision on a 64-bits computer. It follows
from Figure 14 that GMRESR with a single-precision innerloop is much
faster than with a double-precision innerloop. The solution vectors have
the same accuracy.

In order to compare the machines we also did the same experiment as
on the Convex. GMRESR(10) on the Convex is equal to GMRESR(10)
with single-precision inner and outer loop on the Cray. It follows from
Figure 14 that the Cray (1 processor) is 5.5 times faster for this problem.

Method Innerloop Outerloop Iterations CPU time (s) Accuracy
GMRESR(20) double precision double precision 30 108 1
GMRESR(20) single precision double precision 30 10.8 120
GMRESR(10) single precision single precision 36 0.81 10712

On the Convex C3820 we have also applied GMRESR with single-
precision innerloop on the discretized Navier-Stokes equations (see Sec-
tion 2 and [6]). In these experiments GMRESR with single-precision
innerloop is 25% taster than GMRESR, and the Bi-CGSTAB method.

Figure 14. Results for
#=1,h=1/100 on the
Cray Y-MP4/464.

7 Conclusions

We consider the GMRESR (/) method [2], which can be used for the
iterative solution of a linear system Az = b with an unsymmetric and
nonsingular matrix A.

Optimal choices for the parameter m are easily obtained and do not
change very much for different problems. In most experiments we ob-
serve for GMRESR(m) a considerable improvement, in computing and
memory requirements, in comparison with more familiar GMRES vari-
ants. Furthermore, it appears that in many experiments GMRESR (i) is
a robust method even without activating the relaxed LSQR switch.
With respect to CPU time full GMRESR(m) seems to be the best variant.
However, memory requirements can be so large that restarted and/or
truncated GMRESR(rn) should be used. From our experiments it appears
that the minalfa truncation variant is the best strategy, which leads to a
large decrease of memory requirements and only a small increase of CPU
time.

We compare GMRESR(m) with GMRES, Bi-CGSTAB, and QMR. It
appears that two easy to measure parameters: f and mg, which depend
on the used computer and on the properties of the system of equations

25

26 Contributions

SUPERCOMPUTER 1993 #55

(dimension of the matrix, convergence behavior, sparseness, etc.), can be
used to facilitate the choice of an iterative method.

In [5] a new GMRES-like method is proposed: FGMRES. It appears that
full GMRESR is compatible with full FGMRES, however FGMRES can
break down, and can only be restarted. From examples it follows that
truncated GMRESR can be much better than restarted FGMRES.

We give some new results with respect to the relaxed LSQR switch. The
best innerloop strategy seems to be: always apply GMRES(m), and if
necessary do one LSQR iteration.

Finally, if one uses a computer on which single-precision arithmetic is
faster than double precision arithmetic, and the condition number of A
is not too large, then a single-precision innerloop saves CPU time.

Acknowledgement

I would like to thank H.A. van der Vorst for stimulating discussions
and the suggestions for the GMRESR1 and GMRESR2 variants given in
Section 6. This work was sponsored by the Stichting Nationale Computer-
faciliteiten (National Computing Facilities Foundation, NCF) for the use
of supercomputer facilities, with financial support from the Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization

for Scientific Research, NWO).

References

1

Saad, Y. and M.H. Schultz, GMRES: a gener-
alized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci.
Statist. Comput. 7, 856-869, 1986.

3

Vorst, H.A. van der, Bi-CGSTAB: a fast and
smoothly converging variant of Bi-CG for
the solution of non symmetric linear systems,
SIAM 1J. Sci. Statist. Comput. 13, 631-644,
1992.

5

Saad, Y., A flexible Inner-Outer precon-
ditioned GMRES algorithm, SIAM J. Sci.
Statist. Comput. 14, 461469, 1993.

7
Paige, C.C. and M.A. Saunders, LSQR: an
algorithm for sparse linear equations and
sparse least squares, ACM Trans. Math. Soft.
8, 43-71 1982.

2

Vorst, H.A. van der and C. Vuik, GMRESR:
a family of nested GMRES methods, Report
91-80, Faculty of Technical Mathematics and
Informatics, Delft University of Technology,
1991, J. Num. Lin. Alg. Appl., to appear.

4
Freund, R.W. and N.M. Nachtigal, QMR:
a quasi-minimal residual method for non-
Hermitian linear systems, Num. Math. 60,
315-339, 1991.

6

Vuik, C., Solution of the discretized incom-
pressible Navier-Stokes equations with the
GMRES method, Int. J. Num. Meth. Fluids
16, 507-523, 1993.

8

Axelsson, O. and G. Lindskog, On the eigen-
value distribution of a class of precondi-
tioning methods, Numer. Math. 48, 479-498,
1986.

Contributions

9

Vorst, H.A. van der and C. Vuik, The rate of
convergence of the GMRES method, Preprint
654, University of Utrecht, Department of
Mathematics, 1991, J. Comp. Appl. Math.,
to appear.

11

Brown, P.N. A theoretical comparison of the
Arnoldi and GMRES algorithms, SIAM 1J.
Sci. Statist. Comput. 13, 58-78, 1991.

13

Zubair, M., SN. Gupta and C.E. Grosch,
A variable precision approach to speedup
iterative schemes on fine grained parallel
machines, Parallel Comp. 18, 1223-1232,
1992.

SUPERCOMPUTER 1993 #55

10

Jackson, C.P. and P.C. Robinson, A numerical
study of various algorithms related to the
preconditioned conjugate gradient method,
Int. J. Num. Meth. Engng. 21, 1315-1338,
1985.

12

Nachtigal, N.M., S.C. Reddy and L.N. Tre-
fethen, How fast are non symmetric matrix
iterations, SIAM. J. Sci. Statist. Comput. 13,
778-795, 1992.

14

Turner, K. and H.F. Walker, Efficient high
accuracy solutions with GMRES(m), SIAM
J. Sci. Statist. Comput. 13, 815-825, 1992.

27

28

&
S
S

Contributions

Abderezak Touzene,
Brigitte Plateau

LGI-IMAG-Groupe Calcul
parallele, 46 avenue Félix
Viallet, F-38031 Grenoble,
France

©

Supercomputer 55, X-3
Received July 1993

SUPERCOMPUTER 1993 #55

Parallel synchronous and
asynchronous iterative
methods to solve Markov
chain problems

The aim of this work is to present well-suited parallel iterative methods for
solving Markov chain problems on distributed memory machines. The main
feature of such methods is reduced synchronization constraints between pro-
cessors. We call these methods, asynchronous methods. Some experiments are
given for comparisons with their synchronous counterparts.

1 Introduction

Systems to be studied are becoming more and more complex and hence
their models are very large. To solve these models on a computer, we
are faced with two constraints: speed and memory requirements. Parallel
computation offers a good opportunity to overcome such constraints.
The speed of computation depends on the number of processors working
together on the problem, as well as the way the work is shared among
the processors; reducing communication and synchronization between
them. This last aspect is referred to as data and computation mapping.
The memory requirement is solved by the use of distributed memory
machines. If p denotes the number of processors of the machine, as
each processor has its own local memory, the total memory available is
multiplied by a factor p.

Let us now take a look at the problem that we want to solve. Typi-
cally, we are interested in finding the stationary probability vector = of
a Markov chain with T states such as = = = P, where P is a probability
transition matrix associated with the Markov chain. When 7' is large,
iterative methods are more attractive than direct methods regarding the
computational cost.

We consider a standard iterative method, illustrated by:

TI'U+1') — 7‘_(1‘)}) (1)

where ") is the vector computed at iteration number . In this paper we
use Jacobi and Gauss-Seidel-like iterative schemes defined as follow:

— Jacobi-like iterative scheme

T = 0 A ey v e 1.7

2

— Gauss-Seidel like iterative scheme

Contributions

SUPERCOMPUTER 1993 #55

W}t-H) _ j'i(?r(lt+1),~- £t w(t),.--,ﬂ'gf)),\?'i iRy

%=1 %2

where f;,Vi € [1..T] can be any linear operators.

The parallel implementation of (1) is in fact based on the parallel vector-

matrix multiplication. We use the block column decomposition method

[1] because it supports all the iterative schemes to be presented. At any

iteration, two steps are performed:

1. first, each processor updates a set of vector components of = according
to the mapping of columns of the matrix;

2. a second step consists of synchronization and data exchange among
processors to ensure the progression of the iterative process (1).
Because of the strong synchronization at the second step (each processor
cannot begin the computation of iteration (¢ + 1) until it receives all the
data of the iteration (1), this iterative process is called a synchronous

method.
Chaotic relaxation, an asynchronous iteration principle, has been intro-
duced by Chazan and Miranker [2], to solve linear systems. In the asyn-

chronous implementation of the iteration rlt+1) = f(vr(t)), the pro-
cessors do not need to wait for the updates generated at the previous
iteration; each processor modifies its vector component regardless of the
others. If the current value of a component, updated by another proces-
sor, is unavailable, then an outdated value of this component is used.
Furthermore, the processors are not obliged to communicate their results
after each iteration, but only when desired.

The asynchronous computation offers the following advantages:

— reduction of the communication time and the synchronization delay;
— the improvement of convergence due to the Gauss-Seidel effect.

A theorical convergence study of asynchronous iteration is given in [1,
3-5], but only a few parallel implementations have been studied [5, 6]
and these experiments have been performed on shared memory machines.
The aim of this paper is to present the parallel implementation of asyn-
chronous iterative schemes on distributed memory machines.

In section 2, we present a Jacobi-like basic synchronous iterative method.
This method is described in order to compare the different asynchronous
schemes that we develop in this paper. One aspect of asynchronous com-
putation is the integration of the last updates of each vector component.
This idea exists also in Gauss-Seidel iteration schemes. Applying a strict
Gauss-Seidel-like iteration scheme leads to a total ordering among tasks
updating each vector component. We propose to apply this partially and
eliminate some costly precedence constraints. This idea is developed in
section 3.

Another aspect of asynchronous computation is the reduction of commu-
nication among processors. We study the delay introduced in the meth-
ods in sections 4 and 5. This delay notion stems from the fact that, in
the updates at any iteration number (¢), we use some values of vector
components generated at iteration (¢ — k), where % is a positive inte-

29

30 Contributions

SUPERCOMPUTER 1993 #55

ger measuring the “delay”. In asynchronous computation, which favors
a Gauss-Seidel effect, we use parallelism between communication and
computation on each processor if it is possible; as in transputer-based
machines. In this case, we propose an implementation very close to the
asynchronous definition presented in [1]: each processor executes two
kinds of processes. One process computes the new values of vector com-
ponents using the more recent updates where the second is devoted to
broadcast continuously the new values generated at each processor. This
method is presented in section 6. Section 7 consists of an experiment with
the different iterative schemes. A comparison between these schemes and
the basic synchronous iterative method is given. Finally, we give some
conclusions in section 8.

2 The basic synchronous iterative scheme

We are interested in finding the stationary probability vector = of a
Markov chain with a transition probability matrix P using the iteration
r(t+1) — (1) P This iterative method is known as the power method (a
Jacobi-like method) [7, 8]. First we choose any starting vector (%) and
then proceed by successive iterations until a given convergence criterium
is satisfied. From the parallel point of view, we assume that 7', the size
of the matrix P, is divisible by p, the number of processors. To ensure
a balanced computation cost among processors, each processor must up-
date TT consecutive components of vector w. To do this, each processor
numbered p;, { = 0,...,p — 1, responsible for updatin%the consecutive
vector components numbered from lT7 + 1t L + I must have in
its local memory an appropriate column block of P. This column block
consists of consecutive columns of the matrix P. Typically, at any itera-
tion (¢), each processor processes a vector-matrix product of size L (the
Product() process). This method is called column block decomposition
[1, 9]. Notice that the entire vector = is copied on each processor. After

the updates by each processor, and in order to form the vector (1) on
each processor, a communication step is performed. This communication
step is the AllToAll() procedure which is characterized by: each processor
sends its updated components to all other processors.

The cost of this communication step depends on the network topology
and on the communication procedure. In [10, 11] optimal algorithms are
given respectively for hypercube and mesh networks.

The implementation of the synchronous basic iterative scheme is given
by the following algorithm:

Contributions SUPERCOMPUTER 1993 #55

Algorithm 0.
Begin
t=1
While NotConvergence
Product();
AllToAll();
ConvergenceTest();
r=t+l;
Endwhile
End
This basic synchronous method, allows us to compare with the asyn-
chronous methods to be presented in the remainder of this paper.

3 The iterative scheme using local Gauss-Seidel effect
It has been shown [8] that the use of the more recent updates of the
vector components seems to improve the convergence speed of any iter-
ative scheme; this is the case in the Gauss-Seidel-like iterative schemes.
The problem of the Gauss-Seidel scheme lies in the precedence con-
straints when updating the vector components (first update the compo-
nent m; and then 7; 1 and so on). However, Jacobi-like iterative schemes
have no precedence constraint when updating the vector components and
are therefore well adapted to parallel computation. We propose a mixed
method, that uses the parallelism of Jacobi-like methods and a local up-
dating scheme according to Gauss-Seidel. In other words:
— Do the same distribution of data on processors as in the Jacobi-like
scheme (see section 2).
— Apply a Gauss-Seidel updating scheme on the local components at
each processor. If we consider the updating on the processor p; and
J the set of vector components to be updated by this processor, we
give the following scheme:

o Ty +2<i<i
™

(
(t+1) g
T (t)

,+ € J is computed from { (2)

> elsewhere

The algorithm of this method is:
Begin
b=
While NotConvergence
ProductGaussEffect() {+ Product using the formula (2) #}
AllToAll();
ConvergenceTest();
t=1t+l;
Endwhile
End
This algorithm is motivated by a possible improvement in convergence.

32 Contributions

SUPERCOMPUTER 1993 #55

4 The iterative scheme using the delay &
In this scheme, we want to exploit a delay to reduce the communication
between processors (the AllToAll() process). The delay expresses the fact
that in the updates at iteration number ¢, we use outdated values of vector
components, generated at iteration (¢ — k), where k is a positive integer.
The idea is to perform k iterations without communicating the results
to the other processors. After this & isolated iterations, each processor
broadcasts its most recent updates to all processors:
Algorithm 1.
Begin
t=1
While NotConvergence
It t Mod k+1 = 0
{# do the communication step after each k iterations *}
Then AllToAll();

ConvergenceTest();
Else Product(); {+ or ProductGaussEffet() +}
U=l
Endwhile
End

We have seen previously that the convergence speed seems to be related
to the use of the more recent updates (Gauss-Seidel effect). The delay
method goes in the opposite direction of this principle. Thus we expect
that the convergence of this method is worse than in the case of the basic
iterative scheme. A compromise should be possible between the speed
of convergence and the reduction of communication.

It is clear that this scheme reduces the communication because of the
isolation of each process during k iterations.

The question is: can we also reduce the computation time? This is studied
in the next section.

5 Computational cost amelioration in the delay k& scheme

When each processor iterates on its local vector components without
sending or receiving new values of components updated by other pro-
cessors, we see an invariant quantity in the updating expression of these
components during the % iterations in isolation. We propose an optimized
method when computing the vector matrix product on each processor.
The idea is to compute these constant quantities only once during the k&
iterations.

Let J be the set of index vector components of = to be updated by any
processor. The cardinality of this set is given by:

Card(J) = E
P

Knowing the vector ='*), we want to perform k local iterations. We
compute the vector rlt+1) using the Product() process:

Contributions

SUPERCOMPUTER 1993 #55

141 t
éJEJ)) = Z’rl()P,] + Z ”(t)PIJ (3)
1¢7 leJ

And then the vector r(t+2):

é]“g;)) = Z 7,.()PI] o Z 7r(H—l)pl (4)
1¢J leJ

Notice that the quantity Z, 5 7r,()PIJ is invariant for all iteration num-
bers m < t + k; we shall show how to evaluate it. From expression (3)
and (4) we yield

(t+2) _ _(t41) (t) p . (t+1) p .
Tied) = T(jed) =Y M P+ m TR,
1eJ leJ

For all iteration numbers m < t + k, the vector (™) s computed by
the following formula:

(m) (m—]) (m=2) p . (m=1) p .
Tien = Then) — 2 m P+ m" VPR (5)
leJ leJ
The computational cost using formula (3) is O() operations (additions

and multiplications). By using formula (5), the cost is O(%z—) operations,

a considerable gain when the number of processors p is large.
Algorithm 1 optimized.

Begin
Product();
AllToAll;
Product(),;
f=
While NotConvergence
If t Mod £k = 0
Then AlToAll();
Product();
ConvergenceTest();
Else ProductOptimized(); {+ see the formula (5) *}
=1+1;
Endwhile
End

In the following section, we examine the asynchronous iterative scheme
which favors the Gauss-Seidel effect.

6 Asynchronous free scheme
In the asynchronous scheme, the processors use, in their updates, incom-
ing new values as soon as they are received from the other processors.

33

34 Contributions

SUPERCOMPUTER 1993 #55

When the target parallel machine allows parallelism between communi-
cation and computation, the idea is to execute in parallel the computation
process (updates on the vector components) and the communication pro-
cess (to send the new component values). More precisely, the commu-
nication process is a loop of the AllToAll procedure. The motivation of
this scheme is to favors the Gauss-Seidel effect. In practice, this will be
the case if the computation cost is larger than the time taken to achieve
one total exchange of data.
Algorithm 2.
Begin

ProcRun(ProductLooped|())

{* Concurrent execution of the product process *}

While NotConvergence

AllToAll();
ConvergenceTest(),

Endwhile
End
The ProductLooped() process is in fact a loop on Product(). This loop
is controlled by the convergence criteria. When the execution time of
the process Product() exceeds the time to achieve the Al[ToAll() process,
many calls of A/[ToAll() happen during one call to Product(). This results
in increased communication cost compared to the synchronous version.
Theoretically, the cost of added communication is small because of the
assumption of parallelism between communication and computation. But,
in practice this cost depends strongly upon the overlapping ratio between
communication and computation in parallel machines.
In the following section, we carry out experiments of all the presented
iterative schemes on the distributed memory machine MEGANODE [12]
configured as a wrap-around mesh of (11 x 11) transputers.

7 Experimental results

To test different iterative schemes, we first use the matrix type frequently
arising in Markovian modelling. Generally these matrices are sparse.
Next, we test with another frequently used matrix type. These matrices are
associated with Nearly Completely Decomposable models (NCD). This
type of matrices are block structured. We continue our experimentation
with tridiagonal block matrices (Quasi Birth and Death models). Finally,
we test a real model. This model represents a random walk on a 2-D
grid.

All these matrices are all irreducible, in order to fulfil the conditions
of convergence theorems for asynchronous computation [1, 3-5]. They
have a loop on all states of their associated Markov chain to ensure their
aperiodicity and satisfy a Mitra condition [5] for stochastic matrices: there
exists at least an index 7 such £%; > 0.

For all matrix types, we observe the mean number of iterations and their
corresponding computation time of randomized matrices.

Contributions

SUPERCOMPUTER 1993 #55

Iteration number

300
M synch-basic
locai-gaus-eff
asfree
Pl ask2
Fl ask3

200 1 [0 ask4

100 4

0 i

The sparsity factor of the matrix (%)

Figure 1. Number of
iterations for matrices
of size 3267 (sparse
matrix type).

Sparse matrices

We now study the number of iterations and their corresponding compu-
tation time while varying the matrix sparsity.

Figure 1 shows that experiments confirm that the number of iterations of
delay k schemes increases with k. We also see the superiority of local
Gauss-Seidel scheme over the basic iterative method (power method).
We notice the small gain of iteration brought by the free asynchronous
scheme. This is the case for all matrix types. Probably this is due to the
ratio of computation and communication speed of our target machine.
What is surprising is the significant saving in execution time when using
the £ delay schemes with the optimized version. Figures 2, 3 and 4 show
that this schemes may save about half of the execution time.

Nearly decomposable (NCD) type matrices

The same experiment is performed with diagonal block matrices, when
the off-block diagonal elements of the matrices are less then € = 1075,
Figure 2 shows the gain using & delay scheme (about %) when the size
of the diagonal block coincides with the cardinal number of the set of
indices to be updated by the processors. In this case, this all happens as
if each processor is dedicated to solve an independent subsystem because
of the weak interactions between subsystems (the decomposability factor,
is small).

35

36 Contributions SUPERCOMPUTER 1993 #55 Contributions SUPERCOMPUTER 1993 #55 37
100 400
local-gaus-aif
local-gaus-eff asiree
asiree B ask2
E ask2 300 G as«2
[G ask3 = O aska
) O aska 2 |
E Q
= Qo
o Q
2 £ 200 -
2
Q
£
E
100
Q-
Figure 2. Convergence 2420
time of matrices of size Figure 4. Convergence Matrix si
= . atri
3267 (sparse matrix Sparsity factor of the matrix (%) time for the random R sieel)
type). walk on 2-D grid.
10000
20000 -
M synch-basic . 1 sync‘n-basicﬁ
B local-gaus-aff i 8000 Ioc.al-gaus»e
ey asiree
150004 |E ask2 - - @ ask2
= 1 ask3 2 O ask3
32 F O aske
O askd 6000
E 2
3
c s -
S 10000 - 2
=] @ i
- § 4000 |
5 =
5000 2000 4
04 m—WmF-I]
0 - 121 297
27
. T T
3 s = = X sqrt
Block size : %’ P, Block size : 7, P 3 qrt(p)
Figure 5. Number Consider ¢ 54 sized erid. Each erid d iven state
Figure 3. Convergence A o onsider a (== x p) sized grid. Each grid node represents a give
time for the NCD case Tridiagonal block matrix type matrices of size 3267 of Markov c{min (probability to find the walker at any grid node). The
matmnx with block size For tridiagonal block matrices, the same phenomenon as in the section (tridiagonal matrix transition probability from any node to another is given as follows.
EN above occurs; this is shown by Figures S and 6. type). — Inner nodes: the probability that the walker stays at the same node

Random walk on 2-D grid is 0.2 and the probability to go to one of the four neighbor nodes is

38 Contributions SUPERCOMPUTER 1993 #55 Contributions SUPERCOMPUTER 1993 #55 39

schemes depends on delay k. This delay must be kept bounded to ensure
convergence (speed). The experiments show that when k increases, the
cost of synchronization and communication decreases. But unfortunately,
1000 the number of iterations required increases. This affects the convergence
speed. A compromise is then necessary when the control of the delay &

Time (seconds)

Matrix size (T)

Figure 6. Convergence
time for tridiagonal
block matrix case_with
the blocs size is 7

0.2.
— Boundary nodes (exept corners: the probability to stay is at the same
node is 0.1, the probability to go to a neighbor node is 0.3.
— Corners: for the 4 nodes located at corners, the probability to stay is
0.2, to go to a neighbor node is 0.4.
The same experiment is performed on such a transition probability matrix
considering different sizes of the matrix. Figure 4 also shows the supe-
riority of the % delay schemes. Their execution times are about halved
compared to the synchronous scheme.

8 Conclusion

Some of the iterative schemes presented exploit the delay for reducing
communication and other use the Gauss-Seidel effect. We can imagine
other hybrid iterative schemes combining the above-mentioned schemes.
Some simulation, on shared memory machines [5] have been done and
have shown that asynchronous iterative methods to solve Markov chains
are superior to synchronous methods.

Parallel computing gives an important speedup and permits one to treat
larger problems compared to sequential machines. This paper consid-
ered parallel methods to solve eigenvector problems applied to Markov
chain modelling. We have proposed some iterative asynchronous schemes
and we have compared them to the power method, a basic synchronous
scheme. The results show that the free asynchronous scheme leads to a
weak improvement by the Gauss-Seidel effect, and the control of this
scheme depends principally on the computing/communication ratio. On
the other hand, the & delay schemes give good results. The gain of these

References

1

Tsitsiklis, J.N. and D.P. Bertsekas, Parallel
and Distributed Computation, Prentice-Hall,
International Edition, 1989.

3

Baudet, G.M., Asynchronous iterative meth-
ods for multiprocessors, Journal of the ACM
25(2), April 1978.

5

Lubachevsky, B. and D. Mitra, A chaotic
asynchrounous algorithm for computing the
fixed point of nonnegative matrix of unit
spectral radius, Journal of the ACM 33(1),
Jan 1986.

7

Stewart, W., E. Gelenbe, J. Labetoulle,
M. Metivier and G. Pujolle, Réseaux de
Files d'Autente, Modélisation et Traitement
Numérique, Ed. des hommes et techniques,
Monographics informatiques de 1I'AFCET,
1981.

9

Touzene, A., Resolution des modeéles Marko-
viens sur machines a mémoires ditribuées,
PhD Thesis, INP Grenoble, France, Scpt
1992.

11

Touzene, A. and B. Platcau, Optimal multin-
ode broadcast on a mesh connected graph
with reduced bufferization, in: “Distributed
Memory Computing”, 2nd European Confer-
ence, EDMCC2, Munich, FRG, 1991.

local-gaus-ff is possible. In our experience, the choice of k = 3 gives always a good
g result.
71 ask3

2
Miranker, W. and D. Chazan, Chaotic relax-
ation, Linear Algebra and Appl. 2, 1969.

4
Robert, E., lterations discretes asynchrones,
Technical Report 671M, IMAG, Universite
de Grenoble, France, 1987.

6

LeGall, F. and J. Bernussou, About some iter-
ative synchronous and asynchronous methods
for Markov chain distribution computation,
IFAC - Munich, 1987.

8
Varga, R.S., Matrix Iterative Analysis,
Prentice-hall, Englewood Cliffs NJ, 1963.

10

Bertsekas, D.P., C. Ozveren, G.D. Stamoulis,
P. Tseng and J.N. Tsitsiklis, Optimal com-
munication algorithms for hypercubes, Jour-
nal of Parallel and Distributed Computing 11,
263-275, 1991.

12

Touzene, A. and B. Plateau, Mesures de per-
formance des communications du meganode
a 128 transputers, La lettre du transputer et
des calculateur distribués 7, September 1990.

40 SUPERCOMPUTER 1993 #55 Announcements SUPERCOMPUTER 1993 #55 41

computing.
For further information contact
David W. Walker
i‘l Oak Ridge National Laboratory
S Bldg. 6012/MS-6367
L P. O. Box 2008,
Oak Ridge, TN 37831-6367, USA
fax: +1 615 5740680
e-mail: walker@msr.epm.ornl.gov.

Announcements

The 1994 Scalable High Performance
Computing Conference-SHPCC94

The 1994 Scalable High Performance Computing Conference (SHPCC94)
is a continuation of the highly successful Hypercube Concurrent Com-
puters and Applications (HCCA), and Distributed Memory Concurrent
Computing (DMCC) conference series. SHPCC takes place biennially,
alternating with the SIAM Conference on Parallel Processing for Scien-
tific Computing.
The invited speakers include:

Guy Blelloch (Carnegie Mellon University);

Phil Colella (University of California, Berkeley);

David Culler (University of California, Berkeley);

Monica Lam (Stanford University);

Marc Snir (IBM T.J. Watson Research Center).
SHPCC94 will provide a forum in which researchers in the field of high-
performance computing from government, academia, and industry can
presents results and exchange ideas and information. SHPCC94 will cover
a broad range of topics relevant to the field of high-performance com-
puting. These topics will include, but are not limited to, the following:
Architectures, Load Balancing, Artificial Intelligence, Linear Algebra,
Compilers, Neural Networks, Concurrent Languages, Non-numerical Al-
gorithms, Fault Tolerance, Operating Systems, Image Processing, Pro-
grirrming Environments, Large-scale Applications, Scalable Libraries,
CHr.
The SHPCC94 program will include invited talks, contributed talks,
posters, and tutorials. SHPCC94 will take place at the Holiday Inn Con-
vention Center in Knoxville, Tennessee, USA.
Poster presentations are intended to provide a more informal forum in
which to present work-in-progress, updates to previously published work,
and contributions not suited for oral presentation. Poster presentations
will not appear in the Conference Proceedings.
Half-day and full-day tutorials provide opportunity for a researchers and
students to expand their knowledge in specific areas of high-performance

SUBSCRIPTION FORM

I want to subscribe for SUPERCOMPUTER for 1993
for 255 Dfl or $155.

date signature

Send SUPERCOMPUTER to the following address:

firstname surname

Send the invoice to O the address above O the following
address:

firstname surname

address

ASFRA, Voorhaven 33, 1135 BL Edam, The Netherlands

