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In this paper we consider an underdetermined system of
equations Lx 5 b so m , n. However, the methods givenWe present an iterative method of preconditioned Krylov type for

the solution of large least squares problems. We prove that the in Section 3 can also be used for overdetermined systems.
method is robust and investigate its rate of convergence. For an It is easy to show that x is a solution of (1) if and only if
important application, originating from seismic inverse scattering,
we derive a suitable preconditioner using asymptotic theory. Nu-
merical experiments are used to compare the method with other L*Lx 5 L*b. (2)
iterative methods. It appears that the preconditioned Krylov method
can be much more efficient than CG applied to the normal equa-

The equations given in (2) are called the normal equations.tions. Q 1996 Academic Press, Inc.

The l 2-norm condition number k2(L) is the ratio of the
largest and the smallest singular value (see [11, p. 223]):

1. INTRODUCTION k2(L) 5 smax/smin .

In this paper we consider the solution of underdeter-
3. ITERATIVE METHODS FOR LEASTmined least squares problems by iterative methods. Section

SQUARES PROBLEMS2 contains the description of the problem. In Section 3 we
give a short survey of existing iterative methods for least Before we start to describe our iterative solution method
squares problems, such as SIRT, ART, and CG. After this we give a short survey of existing methods. For the theory
survey we present two different variants of a precondi- of least squares problems we refer to [11, Chap. 5]. Direct
tioned Krylov subspace method. The first one is robust, methods to solve underdetermined linear equations are
whereas the second one can be considerably faster for given in [5].
underdetermined systems. In Section 4 we present results
concerning the convergence of the Krylov methods. Since

3.1. Survey of Well-Known Iterative Methodsthe eigenvalues of the preconditioned matrix play an im-
portant role we also give an algorithm to approximate these The following iterative methods are known:
eigenvalues. Section 5 contains an application originating

SIRT. The SIRT (simultaneous iterative reconstruc-from seismic inverse scattering. For this application we
tion technique) method is described in [10]. It can be showngive a suitable preconditioner. The convergence results
that SIRT is equivalent to Richardson iteration applied togiven in Section 4 are compared with the convergence
the system (see [19])observed in the numerical examples. Finally, we note that

for this application the preconditioned Krylov method may
be three times faster than the CG method applied to the C 1/2L*RLC 1/2y 5 C 1/2L*Rb x 5 C 21/2y.
normal equations.

In these equations R is a row-scaling matrix and C is a2. STATEMENT OF THE PROBLEM
column-scaling matrix.

We consider the least squares problem: given the matrix ART. The ART (algebraic reconstruction technique)
L [ Cm3n and right-hand side b [ Cm, find a solution method is described in [12]. ART is equivalent to SOR
vector x [ Cn such that (successive over relaxation) applied to the system [3]

iLx 2 bi2 5 min
y[Cn

iLy 2 bi2 . (1)
LL*y 5 b, where x 5 L*y.

330
0021-9991/96 $18.00
Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



PRECONDITIONED KRYLOV SUBSPACE METHOD 331

CG. A common approach to solve least squares prob- Cn3m the product matrix TL is in Cn3n. So the Krylov
subspace Kk(TL, Tr0) is defined and equal to spanhTr0 ,lems is to apply CG (conjugate gradients) to the normal

equations (TL)Tr0 , ..., (TL)k21Tr0j. This space is equivalent to the
Krylov subspace associated with the left-preconditioned
system: TLx 5 Tb. We look for a solution xk [ x0 1L*Lx 5 L*b.
Kk(TL, Tr0) such that the residual rk 5 b 2 Lxk satisfies
a certain optimality property.This method is called CGNR and is already proposed

In our method we choose xk [ x0 1 Kk(TL, Tr0) suchin [13]. Drawbacks of this method are: it can suffer from
thatrounding errors and a slow rate of convergence. Both phe-

nomena depend on k2(L)2 which is in general very large.
ib 2 Lxki2 5 min

j[x01Kk(TL,Tr0)
ib 2 Lj i2 . (3)More stable variants, with respect to rounding errors, are

given in [3, 16]. In [3], also, preconditioned variants of
CGNR are considered. A comparable method CGNE is

The algorithm to obtain xk is given by (compare GCRproposed by [6], which applies CG to the equations
given in [9]) the following.

LL*y 5 b, where x 5 L*y. ALGORITHM 1.

select x0 , eps;Comparisons of SIRT, ART, and CG-like methods are
r0 5 b 2 Lx0 , k 5 0;given in [19, 20, 8]. For the tomographic problems consid-
while irki2 . eps doered in [19, 20] the CG method has a better rate of conver-

k :5 k 1 1, u(1)
k 5 Trk21 , c(1)

k 5 Lu(1)
k ;gence than the SIRT method. The comparison given in [8]

hck is orthogonalized with the modified Gram–leads to the conclusion that ART is only more efficient
Schmidt methodjthan CG for overdetermined systems, where m @ n.
for i 5 1, ..., k 2 1 do

ai 5 c*i c(i)
k ;3.2. Preconditioned Krylov Subspace Methods

c(i11)
k 5 c(i)

k 2 aici , u(i11)
k 5 u(i)

k 2 aiui ;
For square linear systems with a nonsymmetric coeffi- endfor

cient matrix A [ Rn3n, it is well known that Krylov sub- hThe norm of ck is made equal to one. Note that
space methods based on the matrix A have in general a ck 5 Lukj
much better convergence behaviour than the CGNR and ck 5 c(k)

k /ic(k)
k i2 , uk 5 u(k)

k /ic(k)
k i2 ;

CGNE methods. One reason for this is the fact that CGNR hThe residual is made orthogonal to span hc1 , ..., ckj
and CGNE are based on the Krylov subspace and xk is changed accordinglyj

xk 5 xk21 1 ukc*k rk21;
Kk(ATA, ATr0) rk 5 rk21 2 ckc*k rk21;

endwhile5 spanhATr0 , (ATA)ATr0 , ..., (ATA)k21ATr0j,
Remarks. 1. When GCR or GMRES [17] is applied

whereas the nonsymmetric Krylov methods are based on to TLx 5 Tb then iTb 2 TLxki2 instead of ib 2 Lxki2 is
minimized. This may lead to wrong results.

Kk(A, r0) 5 spanhr0 , Ar0 , ..., (A)k21r0j. 2. The vectors u(i)
k and c(i)

k are only used to describe the
algorithm. In a computer implementation they can be re-

This motivates us to look for Krylov methods based on placed by uk and ck .
Kk(L, r0) for the solution of the least squares problems

3. The vectors uk are called search directions. The com-given by (1). However, it is impossible to form Kk(L, r0)
panion vectors c1 , ..., ck form an orthonormal basis forif n ? m. The vector L(Lr0) is not defined because L [
the Krylov subspace Kk(LT, LTr0). Both vector sequencesCm3n and Lr0 [ Cm. Our idea to circumvent this is to
should be stored in memory. If many iterations are needed,construct a preconditioner T [ Cn3m such that T is an
then the memory requirements can be bounded by restart-approximation of the generalized inverse of L. Note that
ing or truncating the algorithm. In our application thethere are two reasons to use a preconditioner T: first to
number of iterations is small, so all vectors could be keptobtain a square matrix TL and second to have fast conver-
in memory.gence.

As usual, as for square matrices, the difficulty is to find 4. The residual rk is perpendicular to Kk(LT, LTr0).
Note that the residual rk is obtained by updating rk21 . Duea ‘‘good’’ approximation T. An important application,

where it is possible to find such a T, is presented in [18] to rounding errors it is possible that rk and b 2 Lxk become
different. For this reason it is a good idea to compare theand summarized in Section 5. Note that for a given T [
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updated residual rk and b 2 Lxk after every 10 or 20 DEFINITION 1. If (LTrk21)*rk21 ? 0 take u(1)
k 5 Trk21;

else take u(1)
k 5 L*rk21 .iterations. If the difference is too large one can use the

following strategies:
THEOREM 3.2. When we use u(1)

k as defined in Definition(a) restart the algorithm,
1, the proposed method has no breakdown.(b) calculate rk 5 b 2 Lxk , and change xk and rk

as follows: Proof. Using u(1)
k 5 Trk21 there are two possibilities:

c(1)*
k rk21 ? 0 and c(1)*

k rk21 5 0. If c(1)*
k rk21 ? 0 it followsfor i 5 1, ..., k do

that c(1)
k is not an element of spanhc1 , ..., ck21j, sincexk 5 xk 1 uic*i rk ; rk 5 rk 2 cic*i rk ;

rk21 ' spanhc1 , ..., ck21j. So c(k)
k ? 0 and thus uk and ckendfor

exist. If c(1)*
k rk21 5 0 the original search direction u(1)

k 5
and continue the algorithm. Trk21 is replaced by u(1)

k 5 L*rk21 . Again two different
cases occur:In the following theorem we show that the calculated

xk satisfies (3). iL*rk21i2 ? 0. In this case c(1)*
k rk21 5 (LL*rk21)*rk21 5

iL*rk21i2
2 ? 0, which implies that uk and ck exist (compareTHEOREM 3.1. If ic(i)

i i2 ? 0 for every i # k, then the
the first part of the proof).approximation xk obtained from Algorithm 1 satisfies

iL*rk21i2 5 0. In this case L*rk21 5 L*(b 2 Lxk21) 5ib 2 Lxki2 5 min
j[x01spanhu1 ,...,ukj

ib 2 Lj i2 . (4)
0. This implies that xk21 is a solution of the normal equa-
tions (2). Thus xk21 is a solution of the least squares prob-
lem (1). This is called a lucky breakdown.Proof. It is clear from xk 5 xk21 1 ukc*k rk21 that xk [

x0 1 spanhu1 , ..., ukj. Using the equations rk 5 b 2 Lxk Remark. Theorem 3.1 has been proved for every choice
and ci 5 Lui , (4) is rewritten of u(1)

k , so it also holds for the choice of u(1)
k given in

Definition 1. Since for this choice ic(k)
k i2 ? 0 (unless

irki2 5 min
h[spanhc1 ,...,ckj

ir0 2 hi2 . (5) irk21i2 5 0), the proposed method is convergent.

In our application it never happened that the choice
u(1)

k 5 Trk21 leads to c(1)*
k rk21 5 0. So the preconditionerIt is well known that (5) holds if and only if

T is the same in every iteration. In such a case it is better
to use Algorithm 2 given below.rk ' spanhc1 , ..., ckj (6)

ALGORITHM 2. Apply Algorithm 1 to the right precon-
We prove this relation by induction. Since r1 5 r0 2 ditioned system
c1c*1 r0 , relation (6) holds for k 5 1. Suppose that (6) holds
for i # k 2 1. The new residual is formed by rk 5 rk21 2

LTy 5 b. (7)ckc*k rk21 . Note that rk21 and ck are perpendicular to
spanhc1 , ..., ck21j, the first by the induction hypothesis and
the second by construction. This together with c*k rk 5 If the norm of the residual ib 2 LTyki2 is small enough,
c*k rk21 2 c*k ckc*k rk21 5 0 implies that rk is perpendicular form xk 5 Tyk , which is an approximation of the solution
to spanhc1 , ..., ckj, which proves the theorem. of the least squares problem (1).

Remarks. 1. Note that this theorem is valid for every Remarks. 1. Algorithm 2 gives the same results as
choice of u(1)

k . If u(1)
k 5 Trk21 is used (as in Algorithm 1) it GCR (or GMRES) applied to (7). In principle all Krylov

follows that xk satisfies (3). subspace methods for square complex nonsymmetric ma-
trices can be used (for a recent survey see [2]).2. As long as ic(k)

k i2 ? 0 Algorithm 1 converges and
the quantity irki2 decreases monotonically. Furthermore, 2. The iterate yk used in Algorithm 2 is an element of
relation (6), together with the fact that rk [ Cm, imply that the Krylov subspace Kk(LT, r0).
irmi2 5 0.

3. The main difference between both algorithms is that
u(1)

k 5 Trk21 and c(1)
k 5 Lu(1)

k in Algorithm 1 are replacedThe case c (1)*
k rk21 5 0 will lead to a stagnation of r at

the kth iteration and a break down at the (k 1 1)th itera- by u(1)
k 5 rk21 and c(1)

k 5 LTu(1)
k in Algorithm 2. Note that

in Algorithm 1 ck [ Cm and uk [ Cn, whereas in Algorithmtion, because LTrk [ spanhc1 , ..., ckj, so c(k11)
k11 5 0, and

ck11 5 c(k11)
k11 /ic(k11)

k11 i2 is not defined. In order to circumvent 2 uk , ck [ Cm. So when m ! n, Algorithm 2 needs much
less memory and work than Algorithm 1 to obtain thebreakdown we define the search direction u(1)

k as
follows. same iterate xk .
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4. THE CONVERGENCE BEHAVIOUR OF THE Below we give some results concerning the rate of con-
vergence of Algorithm 1. Since Algorithm 1 and 2 leadPRECONDITIONED KRYLOV METHOD
to the same iterates xk the convergence results are also

It is well known that the convergence behaviour of Kry- applicable to Algorithm 2. The convergence behaviour is
lov subspace methods for square linear systems depends investigated using the fact that the iterate xk obtained from
on the eigenvalues of the (preconditioned) matrix. In this Algorithm 1 satisfies the equation:
section we generalize some of these results for square linear
matrices to the Krylov method proposed in Section 3. To ib 2 Lxki2 5 min

j[Kk(TL,Tr0)
ir0 2 Lj i2 . (8)

approximate the eigenvalues of LT we describe the Ar-
noldi method [1] applied to the square matrix LT, where

Note that rk 5 b 2 Lxk can also be written as rk 5we assume that the matrix T is the same in every iteration.
p̂k(LT)r0 , where p̂k is a polynomial of degree k such thatThis method provides so-called Ritz values, which are ap-
p̂k(0) 5 1. The class of polynomial of degree at most kproximations of the eigenvalues of LT.
and constant term 1 is denoted by P1

k . Furthermore, Eq.The Arnoldi method [1] applied to LT [ Cm3m can be
(8) implies thatdescribed as follows.

ALGORITHM 3. irki2 # ipk(LT)r0i2 ,

r0 5 b, v1 5 r0/ir0i2 ;
for every polynomial pk [ P1

k . In the remainder of thisfor j 5 1, ..., k do
paper we assume that the matrix LT is diagonalizable [11,vj11 5 LTvj ;
p. 338].for i 5 1, ..., j do

hij 5 v*
j11vi ; DEFINITION 2. For the diagonalizable matrix LT there

vj11 5 vj11 2 hijvi ; is an S [ Cm3m such that S21(LT)S 5 D, where
endfor
hj11, j 5 ivj11i2 ;
vj11 5 vj11/hj11, j ;

D 5 1
l1 B

. . .

B lm
2endfor.

After the algorithm is completed the upper Hessenberg
matrix Hk [ Ck3k can be formed:

and li [ C. We have ordered li and si , the ith column of
S, such that r0 can be written as r0 5 ot

i51 aisi , whereh11 h12 h13 . . . . . . h1k

ai ? 0 for i 5 1, ..., t.
h21 h22 h23 . . . . . . h2k

THEOREM 4.1. If «(k) is defined as
0 h32 h33 . . . . . . h3k

Hk 5 .
0 0 h43

. . . . . . h4k «(k) 5 min
pk[P1

k

max
1#i#t

upk(li)u,
. . . .

.
. .

.
.

. . .
. . .. . .

then the residual rk satisfies the inequality0 0 . . . 0 hk21,k hkk

1 2
irki2 # «(k)iS i2iS 21i2ir0i2 .

For the choice T 5 L* the matrix Hk is tridiagonal and the
Arnoldi method leads to the same results as the Lanczos

For the proof we refer to Theorem 3.3 of [9].method [15]. In general, k is much smaller than m, or n,
The condition number k2(S) 5 iS i2iS 21i2 can be large.so Hk is a relatively small matrix. The eigenvalues of H k can

However, for a square linear system we see that the quan-be calculated using MATLAB or LAPACK subroutines.
tity «(k) gives a good indication of the rate of convergenceThese eigenvalues are called Ritz values and are approxi-
of Algorithm 1 (which is equal to GCR [9] for squaremations of the eigenvalues of LT. The Ritz values have
systems). For the choice T 5 L*, the CG method, thethe following properties:
condition number k2(S) is equal to 1.

Many bounds for «(k) are given in the literature. We— they converge fast to the extreme eigenvalues,
only give two of them:

— they only converge to the eigenvalues for which the
corresponding eigenvectors have a nonzero component in — if all eigenvalues li are on the real axis and the

effective condition number keff of LT is defined as keff 5the right-hand side b.
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max1#i#tuliu/min1#i#tuliu then the following inequality for
«(k) holds (see Theorem 10.2.5 in [11]):

«(k) # 2 SÏkeff 2 1

Ïkeff 1 1
Dk

,

— if all eigenvalues are enclosed in a circle centered
at C [ R with C . 0 and having radius R with C . R then
«(k) # (R/C)k (compare Theorem 5 given in [17]).

Finally, for square linear systems originating from dis-
cretized PDE problems one frequently observes superlin-
ear convergence behaviour. This means that the reduction
factor irk11i2/irki2 decreases after some iterations. In [21] FIG. 1. Configuration of the seismic inverse problem.
an explanation of superlinear convergence is given, based
on the convergence of the Ritz values to the extreme eigen-
values. It is straightforward to generalize this explanation

labeled by the two indices k (frequency gk) and j (midpointto the convergence behaviour of Algorithm 1.
xj), respectively.

In order to obtain an integral equation relating the (un-
5. EXAMPLE: SEISMIC INVERSE SCATTERING known) contrast Dk to the measured field, we decompose

the total pressure wavefield into the incident field pinc (theWe now consider a least-squares inverse problem from
field in the absence of contrast Dk) and the scattered wave-exploration seismology. The aim of exploration seismology
field psc. We can then derive an integral representation foris to determine structures in the earth’s subsurface from
the scattered field in terms of the contrast Dk. For smallseismic measurements at the surface. This type of inverse
values of the contrast, this representation can be linearizedproblem is underdetermined and can therefore serve as an
around k(0) and we obtain the linear integral equation ofexample for the preconditioned Krylov subspace method
the first kind [7],discussed in Section 3. With the aid of asymptotic methods

we compute a preconditioner T and subsequently analyse
the performance of the resulting method by studying the psc(xj , gk) 5 E

V
Dk(x9, z9)L(x9, z9, xj , gk) dx9 dz9. (10)

rate of convergence as compared to other methods and by
applying the Arnoldi method discussed in Section 4.

In this equation, xj 5 j Dx are the midpoints for subsequent
experiments, gk 5 k Dg are discrete frequencies, whereas5.1. Formulation of the Problem
L(x9, z9, xj , gk) is given by

We consider the scattering of acoustic waves by a
bounded two-dimensional object V embedded in a homo-

L(x9, z9, xj , gk) 5 2
g2

ks(gk)
16(c(0))2 H (2)

0 (gktup(x9, z9, xj))

(11)

geneous, ideal fluid material and differing from its sur-
roundings in its modulus of compression k, i.e.,

?H (2)
0 (gkt down(x9, z9, xj )).

k(x, z) 5 k(0)(1 1 Dk(x, z)). (9)
In Eq. (11), c(0) denotes the velocity of the background
medium, s(g) is the amplitude spectrum of the source, andIn Eq. (9), k(0) is the modulus of compression of the sur-
H (2)

0 is the Hankel function of order zero and the secondrounding material and Dk is a small contrast. We have
kind. Writing x9 5 (x9, z9), xj 5 (xj , 0) and o 5 (o, 0),chosen Cartesian coordinates x and z, denoting horizontal
we can express the traveltime of waves from the sourcecoordinate and depth, respectively. In order to estimate
downwards to any subsurface point x9, t down , in the formDk, a number of experiments have been performed at the

surface (Fig. 1). In each experiment, the configuration is
probed with the field generated by a monochromatic line- t down(x9, z9, xj ) 5

ix9 2 xj 1 Asoi2

c(0) . (12)
source with angular frequency gk , located at x 5 xs and
z 5 0. This field is recorded by a receiver at x 5 xs 1 o
and z 5 0. In all experiments, the source-receiver offset o (In Eq. (12), i?i2 denotes physical length of the vector.) In

a similar way, we can express tup , the traveltime of wavesis kept constant. The midpoint between source and receiver
is denoted by xj . This implies that each measurement is from the subsurface point upwards to the receiver as
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dimension m of the data space is determined by the number
tup(x9, z9, xj ) 5

ix9 2 xj 2 Asoi2

c(0) . (13) of measurements and is equal to the number of (discrete)
frequencies gk times the number of midpoints xj . The
dimension n of the model space can be chosen and isSince both gt down and gtup are large for the cases of interest
equal to the number of cells, into which the subsurface isin exploration seismology, we replace the Hankel functions
discretized. The dimension n of the model space can beby their asymptotic approximations, i.e.,
much larger than the dimension m of the data space
(m ! n).H (2)

0 (l) p Ï2/fl exph2i(l 2 Aff)j (l R y). (14)

5.2. Choice of the Preconditioning Operator TAfter inserting the asymptotic approximation (14) into
(11), we obtain In order to accelerate the convergence, the precondi-

tioning operator T should be chosen as close as possible
to L21, the generalized inverse of L. In [7], a Born inversionL(x9, z9, xj , gk) 5 2

is(gk)gk

8fc(0) ?
exph2igkt(x9, z9, xj )j

R(x9, z9, xj )
,

method is discussed, where this inverse is determined ap-
(15) proximately (with the aid of high-frequency asymptotics)

and where Dk is expressed in terms of the data d by the re-
where t (5(t down 1 tup)) can be interpreted as the total lation
travel time and

Dk(x9, z9) 5 Ey

2y
Ey

2y
A(x9, z9, x, g)d(x, g) dx dg. (21)R 5 (ix9 2 xj 2 Asoi2ix9 2 xj 1 Asoi2)1/2 (16)

is related to the geometrical spreading of waves, propagat-
The weight function A(x9, z9, x, g) is derived in the Appen-ing through the background medium.
dix. Equation (21) requires the knowledge of d for 2y ,Writing (10) in operator notation finally results in
x , y and 2y , g , y. If we take the preconditioning
operator T equal to T B, given byL Dk 5 psc, (17)

T B(x9, z9, xj , gk) 5 A(x9, z9, xj , gk) Dx Dg, (22)with

L Dk 5 E
V

Dk(x9, z9)L(x9, z9, xj , gk) dx9 dz9, (18) we observe that this choice of T approximates the general-
ized inverse of L if the sampling is ‘‘good enough,’’ in the
sense that hxj : j 5 1, ..., J j and hgk : k 5 1, ..., Kj representwhere the function L is given by Eq. (15). The quantity
adequate discretizations of the infinite intervals occurringL Dk of Eq. (18) represents a matrix–vector product, since
in Eq. (21). For sparsely sampled data, this is not the case,we have to discretize the integral over V. The discretization
but T B can still be a fair approximation of L21 and caninterval DV has to be chosen small enough in order to
therefore be used as preconditioner. The use of high fre-sample the oscillatory integrand accurately.
quency asymptotic methods for computing preconditioningThe inverse problem given in Eq. (17) can be formulated
operators for square systems has been suggested by [14].as a least-squares problem (Section 2), relating the calcu-

lated data psc for a model x to the measured data d: given
5.3. Comparison of the Various Methodsthe matrix L [ Cm3n and right-hand side d [ Cm, find a

solution vector x [ Rn such that We consider the estimation of two different subsurface
models that only differ in the size of V (dimension n),

iLx 2 d i2 5 min
y[R

n
iLy 2 d i2 , (19) referred to as the small and the large models. For both

problems we use data gathered for nine midpoints (nine
source-receiver pairs), spaced 45 m apart, with an offsetwith the l 2-norm now given by
of 150 m for all midpoints. The discretization-interval DV

is chosen equal to 15 m. This is small enough for these
problems, since we need about five samples per dominantiLx 2 d i2 5 SO

j ,k
uLx(xj , gk) 2 d(xj , gk)u2D1/2

. (20)
wavelength (equal to 80 m here) for a reasonable sampling.
The data d have been calculated from Eq. (17) for a model
consisting of two pointscatterers (V consists of two one-The elements of the matrix L are given by Eq. (15) and

the data d are given by measurements at the surface. The cell scatterers).
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First, we have considered the estimation of the small
subsurface model, discretized into 2500 cells. For this prob-
lem m 5 738 and n 5 2500. The pointscatterers were
situated at a depth of 450 and 900 m. Second, we have
also considered the estimation of the larger subsurface
model, discretized into 10,000 cells. Here m 5 738 again,
but now n 5 10,000. The pointscatterers were situated at
a depth of 600 and 1350 m.

At the end of Subsection 3.1 we note that comparisons
given in the literature suggest that CG is more efficient
than ART and SIRT for underdetermined systems. This
motivates us to compare the preconditioned Krylov sub-
space methods only with the CG method.

In Fig. 2, log10(irki2/ir0i2) of the small model problem
is displayed as a function of the iteration index for four
different schemes:

FIG. 3. Rate of convergence for the large problem (10,000 unknowns)G. The gradient scheme.
for the following iterative schemes: conjugate gradient scheme (CG) and

CG. The conjugate gradient scheme (Algorithm 2 with preconditioned Krylov scheme (PK). The error norm has been normalized
T 5 L*). with respect to the error of the initial model u0 (50).

PKNO. The nonorthogonalized preconditioned Kry-
lov subspace scheme (Algorithm 2 with T 5 T B of Eq.

tions is comparable, but the work per iteration is less for(22) and no orthogonalisation). In [18] this method has
PKNO (see Table IV and V).been referred to as PSOR (preconditioned successive over-

The starting model x0 is taken equal to zero for allrelaxation scheme).
subsurface points. The scaling is carried out with respectPK. The preconditioned Krylov subspace scheme (Al-
to the l 2-norm of the data (which is equal to the residualgorithm 2 with choice T 5 T B of Eq. (22)).
of the start iteration). Apparently, the choice T B given by
Eq. (22) is closer to the generalized inverse L21 than theThe G and PKNO methods are included, because in our
choice L*, used in the gradient (G) and conjugate gradientapplication a low accuracy is required. In such a case
(CG) methods, and gives rise to a much faster convergence,PKNO can be faster than PK, because the number of itera-
especially in the first iterations. The amount of work per
iteration is more or less the same for all methods. Only for
the PK method the amount of work per iteration increases
noticeably for large numbers of iterations. Note that the
rate of convergence deteriorates for all methods. Further-
more, PK uses much fewer iterations than CG and G to
obtain the same accuracy. Initially the convergence of PK
and PKNO is comparable; however, after 10 iterations the
convergence of PKNO stagnates at certain intervals.

In Fig. 3, log10(irki2/ir0i2) of the large model-problem is
displayed as a function of the iteration index for two differ-
ent schemes: the CG and the PK schemes. The scaling is
again with respect to the l 2-norm of the data. From a
comparison of Figs. 2 and 3 we conclude that the precondi-
tioning operator T B seems to be even more effective in
accelerating the rate of convergence for large-scale inverse
problems containing 10,000 unknowns.

Having compared the rate of convergence of the differ-
ent schemes for different sizes of n, we now want to con-

FIG. 2. Rate of convergence for the small problem (2500 unknowns) sider more quantitatively the two different choices of T,
for the following iterative schemes: gradient scheme (G), conjugate gradi-

i.e., L* and T B. We do this by considering the small prob-ent scheme (CG), preconditioned Krylov scheme without orthogonaliza-
lem (n 5 2500) and calculating the Ritz-values for thetion (PKNO) and preconditioned Krylov scheme (PK). The error norm

has been normalized with respect to the error of the initial model u0 (50). different T, using the scheme given in Algorithm 3. In



PRECONDITIONED KRYLOV SUBSPACE METHOD 337

TABLE I

The Ritzvalues for the Small Problem (CG)

k u1 u2 u3 uk23 uk22 uk21 uk

5 0.00217 0.00717 0.01378 0.00717 0.01378 0.02255 0.03010
10 0.00052 0.00230 0.00484 0.01996 0.02390 0.02622 0.03014
15 0.00023 0.00105 0.00242 0.02413 0.02576 0.02691 0.03014
20 0.00012 0.00056 0.00130 0.02445 0.02631 0.02706 0.03014
25 0.00007 0.00035 0.00087 0.02555 0.02633 0.02706 0.03014
30 0.00005 0.00026 0.00060 0.02568 0.02633 0.02706 0.03014

Table I some Ritz-values are shown for the CG method increases which explains the deterioration of the rate of
convergence.for different numbers of iterations k. In Table II the same

is shown for the preconditioned Krylov subspace method In Table III we summarize the theoretical rates of con-
vergence of CG and PK. From this table we see that the(PK). For both methods the largest Ritz values converge

fast to the corresponding eigenvalues, whereas the smallest theory predicts (correctly) that PK converges faster than
CG. This implies that the Ritz values may be used toRitz value becomes closer and closer to zero. This observa-

tion is comparable to observations made in [19]. The largest measure the quality of a given preconditioner.
In practice we only require low accuracy, since seismicRitz values of LT B are better clustered around 1 than

those of LL* which illustrates (also quantitatively) that data contain a relatively large noise component. Therefore
we also present in Tables IV and V the CPU time andT B is a better approximation of the generalized inverse

of L. number of iterations that are required for reducing the
residual to 5% of its initial value (i.e., by choosing eps 5We compare the theoretical convergence results with

the experimental results. The effective condition number 0.05 ir0i2 in Algorithm 2). The CPU time is measured on
an HP 720 workstation. We see that for this accuracy theis approximated by uk/u1 using Tables I and II. The ob-

served rate of convergence iri11i2/irii2 and the (approx- methods PK and PKNO are comparable. Note that for the
large model-problem PK and PKNO are approximatelyimated) theoretical rate of convergence (Ïuk/u1 2 1)/

(Ïuk/u1 1 1) are presented in Fig. 4 for CG and in Fig. 5 three times faster than CG. Note that there are only 10
extra memory vectors needed for the PK method. Thisfor PK. Note that there is a qualitatively close correspon-

dence between theory and experiments (generalizing the amount of memory is negligible to the amount of memory
to store the full matrix L.analysis of CG given in [20] to PK may even lead to better

theoretical results). Note that instead of a faster rate of
convergence observed in PDE problems the rate of conver- 6. CONCLUSIONS
gence of CG and PK deteriorates when the number of
iterations increase. To understand this behaviour we note Two related preconditioned Krylov subspace methods

have been presented to solve underdetermined leastthat the initial residual has large components in eigenvec-
tors corresponding to the large eigenvalues. After a num- squares problems. We show that the first variant has no

breakdownand that the secondvariant ismore efficient thanber of iterations these components decrease considerably
and become comparable with the components correspond- the first one. To analyse the convergence behaviour a rela-

tion between the residual and the eigenvalues of the precon-ing to small eigenvalues. So the effective condition number

TABLE II

The Ritzvalues for the Small Problem (PK)

k u1 u2 u3 uk23 uk22 uk21 uk

5 0.42149 1.03663 1.97072 1.03663 1.97072 2.95177 3.63582
10 0.08392 0.36642 0.72695 2.64811 3.15636 3.42586 3.65609
15 0.02992 0.15581 0.34739 3.16691 3.33419 3.48742 3.65584
20 0.02007 0.08263 0.20526 3.23081 3.41193 3.49093 3.65589
25 0.01332 0.03896 0.11507 3.38580 3.43911 3.49392 3.65586
30 0.00698 0.02819 0.07936 3.41293 3.44489 3.49280 3.65586
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TABLE III

The Theoretical Rate of Convergence of CG and PK
(Small Problem)

k 5 10 15 20 25 30

CG 0.576 0.767 0.839 0.881 0.908 0.921
PK 0.492 0.736 0.834 0.862 0.886 0.916

APPENDIX A: COMPUTATION OF THE
PRECONDITIONING OPERATOR T

In order to derive a relation between the contrast Dk
and the wavefield d of the form (21), we first insert L,
given by Eq. (15), into Eq. (10). We then obtain

FIG. 4. Comparison between the observed rate of convergence
irk11i2/irki2 (solid line), and the one estimated from Table I (dashed line)
for the CG scheme (small problem). psc(x, g) 5 2 E

V
Dk(x9)

exph2igt(x9, x)j
R(x9, x)

W(g) dx9 dz9,

(A1)

with x9 5 (x9, z9) and where we have introduced the vari-ditioned matrix has been given. Furthermore, the Arnoldi
method is described to approximate the eigenvalues. able W(g) 5 igs(g)/8fc(0).

In our derivation, we assume that s(g) is not equal toThe CG method and the preconditioned Krylov method
have been applied to a seismic inverse scattering problem. zero and the data d are equal to psc given by Eq. (A1).

We now write Eq. (21) in the formFor this problem a suitable preconditioner is obtained by
using asymptotic theory. From the experiments it follows
that the preconditioned Krylov methods are three times

Dk(x9) 5 Ey

2y
Ey

2y
exphigt(x9, x)jQ(x9, x, g)psc(x, g) dx dg,

as fast as the CG method for large problems. Finally, we
(A2)note a good qualitative correspondence between the theo-

retical and experimental rate of convergence.
where Q is a weight function to be determined and the
integral is taken on the midpoints between sources and
receivers (x) and frequencies g. We now want to determine
Q such, that Eq. (A2) gives the correct estimate of Dk(x9)
if it consists of a point scatterer at (arbitrary) location x09 .
This implies that the contrast function can be written as

Dk(x9) 5 Dk(x90)d(x9 2 x90), (A3)

where d denotes the two-dimensional Dirac delta function.
Substituting this relation into Eq. (A1) and the resulting

TABLE IV

Number of Iterations and CPU Time (in Seconds) for the
Small Problem

50 3 50 CG PK G PKNO

FIG. 5. Comparison between the observed rate of convergence 10k 5 26 5
irk11i2/irki2 (solid line), and the one estimated from Table II (dashed CPU 68.45 40.5 177.37 40.4
line) for the PK scheme (small problem).
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TABLE V where tx9 denotes differentiation of t with respect to x9
(and similar notations for tx9x , tz9 , and tz9x).Number of Iterations and CPU Time (in Seconds) for the

If we now choose Q(x09 , x, g) to be given byLarge Problem

100 3 100 CG PK G PKNO

Q(x09 , x, g) 5 2
R(x90 , x)

(2f)2W(g)
? u J u21

(A11)
12k 4 42 4

CPU 331 132 1146 127

5 2
uguR(x90 , x)
(2f)2W(g)

? utz9xtx9 2 tx9xtz9u,

Equation (A7) can be writtenexpression for psc into Eq. (A2), we obtain

d(x9 2 x90) 5
1

(2f)2 Ey

2y
Ey

2y
exph2ik ? (x9 2 x90)j dk1 dk2 ,

d(x9 2 x90) 5 2 Ey

2y
Ey

2y

exp[ight(x9, x) 2 t(x90, x)j]

R(x90 , x) (A4) (A12)

Q(x9, x, g)W(g) dx dg.
which is an identity.

From Eqs. (21) and (A2), we now conclude that theSince the left-hand side of Eq. (A4) involves a Dirac delta
weight function A is given byfunction acting at x9 5 x09, it seems intuitively reasonable

to approximate the traveltime t(x9, x) by the first two terms
A(x9, x, g) 5 exphigt(x9, x)jQ(x9, x, g), (A13)of its Taylor expansion around x9 5 x09

with Q given by Eq. (A11). This concludes the determina-
t(x9, x) P t(x09 , x) 1 =x9t(x9, x)ux09

? (x9 2 x09), (A5)
tion of A. For inhomogeneous background media, with
material properties that are sufficiently smooth functionsto use the approximation
of the spatial coordinates, the functions t and Q can be
determined using ray-tracing methods [4]. For the case

Q(x9, x, g) P Q(x09, x, g) (A6) of a homogeneous background medium, t and its spatial
derivatives can be computed explicitly from Eqs. (12)–(13)

and neglect higher order terms [7]. Then, Eq. (A4) can be using the relation t 5 t down 1 tup after which Q follows
rewritten as from Eq. (A11). (The determination of R for a homoge-

neous background is discussed below Eq. (15).

d(x9 2 x09) 5 2 Ey

2y
Ey

2y

exp[ig =x9t(x9, x)ux09
? (x9 2 x09)]

R(x90 , x)
(A7)
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