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Abstract

A parallel implementation of the preconditioned GMRES method is described. The method
is used to solve the discretized incompressible Navier-Stokes equations. A parallel imple-
mentation of the inner product is given, which appears to be scalable on a massively parallel
computer. The most difficult part to parallelize is the ILU-preconditioner. We parallelize the
preconditioner using ideas proposed by Bastian and Horton (P. Bastian, G. Horton, SIAM. J.
Stat. Comput. 12 (1991) 1457-1470). Contrary to some other parallel methods, the required
number of iterations is independent of the number of processors used. A model is presented to
predict the efficiency of the method. Experiments are done on the Cray T3D, computing the
solution of a two-dimensional incompressible flow. Predictions of computing time show good
correspondence with measurements. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Parallel ILU preconditioner; Distributed memory computer; Parallel performance model;
Computational fluid dynamics

1. Introduction

To compute incompressible turbulent flows in complicated two- and three-di-
mensional domains we use a numerical method with the following properties.
Boundary fitted coordinates and domain-decomposition are used to handle geo-
metrically complicated domains. The finite volume method and a staggered grid are
used for discretization in space. A combination of the Euler backward scheme and
the pressure correction method is used to advance the solution in time. Some aspects
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of the discretization are presented in [29,30]. The treatment of turbulence with our
discretization is analysed in [44]. Research into (coarse grain) parallelism for our
code through domain decomposition techniques is described in [8]. In this paper
another (fine grain) parallelization is used for a problem without domain decom-
position. It seems a good idea to combine both techniques when a non-uniform
memory access (NUMA) computer is used ([20}]).

Our solver uses the pressure correction method, which means that an intermediate
velocity field is determined using an estimate for the pressure. Thereafter a correction
is calculated to obtain a velocity field with zero divergence. The intermediate velocity
field is obtained by applying an iterative solver to the Newton linearization of the
discretized momentum equations. The pressure correction is obtained from a discrete
pressure equation.

A preliminary analysis showed that matrix construction is embarrassingly parallel
[35], so we concentrate on the linear solvers for the momentum and pressure
equations. From many experiments it appears that GMRES combined with MIL-
UD-preconditioning for the momentum equations and MILU-preconditioning, with
the same sparsity pattern as the original matrix, for the pressure equation are robust
and fast solvers [37-39,43,7]. Therefore we concentrate on parallelizable variants of
these methods. The convergence behaviour of the parallel algorithm is the same as
that of the serial algorithm.

For later reference we include a short description of the GMRES(m) method as
given in [26], with a left-preconditioner M, and a right-preconditioner M.

1. Start: Choose an initial estimate x;, compute the initial preconditioned residual

Fg = M] (f - AX()) and determine v = 7‘0/”}"0”.

2. Iterate: For j = 1,2,...,m do:

hf:/': (M]AMZU,‘,U,‘)? = 1,2,...,./',
J

l}j+1 = A/[]AMQU/ - Zh,‘_jl’,‘,
i=1

hicry = |65l
Vi = 1:’,.+|/h/-+|'/-

3. Form the approximate solution: x,, = xo+ M, ;" y,v; where the y, minimize
1M1 (ro — AM 3257 vievi) |-
4. Restart: Compute r,, = M,(f — Ax, ), if the termination criterion is satisfied then
stop, else compute x; = x,,, v1 = #,,/||#»]| and go to 2.
Note that in step 2 the new search direction is made perpendicular to all previous
search directions with the Classical Gram-Schmidt (CGS) orthogonalization
method.
Preconditioned Krylov subspace methods are very popular to solve large alge-
braic systems of linear equations. Many practical preconditioners are based on In-
complete LU decompositions. Such a preconditioner is first described in [22]. Later
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on various alternatives have been formulated, such as MILU [18], RILU [2], and
ILUM [25]. Recently, a number of preconditioners have been proposed for the
discretized Poisson equation, where the rate of convergence does not depend on the
grid size. Examples are: NGILU [31] and DRIC [23]. A comparison of these and
related preconditioners is given in [7].

Parallel implementations of Krylov subspace methods are given in [28,27,11,9],
and [20]. The large number of inner products used in the GMRES method can be a
drawback on distributed memory computers, because an inner product needs global
communication. In general the preconditioner is the most difficult part to parallelize.
In many references a slightly adapted ILU decomposition is considered, which has
better parallel properties. To illustrate such an approach we consider a domain
decomposed into a number of blocks. Fach block is distributed to a different pro-
cessor. To parallelize the ILU preconditioner the couplings between the blocks are
deleted. Such an approach is considered in: [27,28,24,40,10,4,9], and [20]. For most
of these preconditioners the rate of convergence deteriorates when the number of
blocks (processors) increases. When overlapping blocks are used the convergence
behaviour depends only slightly on the number of blocks. However, overlapping
costs extra work. Other parallel preconditioners are based on a renumbering of the
unknowns such as: the nested twisted approach [33] and red black orderings
[14,12,15], and [9]. Recently, Sparse Approximate Inverses [16] and multigrid [41]
have also been used as parallel preconditioners.

In our ILU preconditioner the matrices L and U satisfy the following rules:

o ding (L)=1,
e the nonzero structure of the matrix L + U is identical to the nonzero structure of
A.

e if 4; # 0 then (LU), = 4,,.

For more details see Section 3 and [39]. Our choice to parallelize this preconditioner

is based on the following considerations:

¢ From [37] and [43] it appears that for our problems the ILU based preconditioners
are competitive with SPAI and multigrid,

¢ The nested twisted approach is only useful for a small number of processors,

¢ In general the red black orderings and the block ILU preconditioners without
overlap lead to a worse convergence behaviour,

o It is hard to adapt our code to solve the Navier-Stokes equations such that over-
lapping block ILU preconditioners can be used.

To understand the parallel properties of the various methods, models are used to

analyse the measured CPU or wall-clock times. Various models are given in [19,20],

and [13]. In [11,3,20], and [13] these models are used to understand the properties of

parallel Krylov methods.

In Section 2 we consider the building blocks of the preconditioned GMRES
method. A parallelization of the inner product is presented. The ILU-preconditioner
part appears to be the most difficult to parallelize; details are given in Section 3.
Section 4 contains various models to predict Megaflop rates, communication costs
etc. Timing experiments for a test problem on a Cray T3D are reported and analysed
m Section 5.
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2. Parallelization of preconditioned GMRES

We consider a flow problem on a two-dimensional rectangular domain. We as-
sume that the target machine behaves as a distributed memory machine (e.g. Cray
T3D). The preconditioned GMRES method consists of the following building
blocks: vector update, inner product, matrix vector product, preconditioner con-
struction, and preconditioner times vector. In Section 2.1 we give the data distri-
bution of our problem. We skip the description of a parallel vector update and the
matrix vector product, because they are easily parallelizable. The parallelization of
the inner products is described in Section 2.2, together with a discussion of various
Gram-Schmidt orthogonalization methods. Finally, in Section 2.3 we discuss the
difficulties associated with a parallel implementation of ILU-type preconditioners.
The details of the parallel preconditioner are given in Section 3.

2.1. Data distribution

On distributed memory machines it is important to keep information in local
storage as much as possible. For this reason we assign storage space and update
tasks as follows. The domain is subdivided into a regular grid of rectangular blocks.
The subdivision follows the cell edges of the space discretization grid. Each pro-
cessor is responsible for all updates of variables associated with the grid cells in its
block.

We use the following convention to assign the fluxes, which are given on cell edges
for a staggered discretization, to cells: the flux on the lower and the left-hand cell
edge belongs to the given cell (Fig. 1). Furthermore, a block contains all fluxes on the
lower and the left-hand boundary and all fluxes on the intersections of an outer
boundary with a block boundary. Fluxes on an interior upper or right-hand block
boundary are assigned to the processor that is responsible for the block adjacent to
that boundary (Fig. 2). Two extra rows of cells are added on the lower and left
boundary of a block and three extra rows of cells are added to the upper and right
boundary of a block to provide storage space for variables used in matrix-vector
products and preconditioner construction (Fig. 3). Note that for small blocks the
addition of the extra rows can result in a considerable increase in problem size.
However, for large blocks the increase is negligible.

—u, velocity

* | uy velocity
X  pressure

Fig. 1. Assignment of unknowns to a cell using a staggered grid.
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Fig. 2. Decomposition in blocks.

Fig. 3. Block 1 with auxihary cells.

2.2. Inner products and Gram—Schmidt orthogonalization

The work to compute an inner product is distributed as follows. First the inner
product of the vector elements that reside on a processor is calculated for each
processor. Thereafter these partial inner products are summed to form the full inner
product. To obtain the full inner product global communication is required. We
describe two possible communication strategies.

Inner product I. We assume each processor to be a leaf of a binary tree (Fig. 4).
Each non-leaf node represents a summation of two partial inner products carried out
by for instance the processor found by recursively ascending the left sub-tree. The
node at the top of the binary tree obtains the full inner product at the last step of this
process. Then the same tree is used in reverse order to distribute the full inner
product from its top to all its leaves. When 2" processors are used, there are 2n
subsequent communication steps necessary.
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—> communication partial inner products
~--> communication full inner product

Fig. 4. Communication pattern for inner product I.

Inner product II: To explain the second communication strategy we consider a
small 1D torus (Fig. 5). In the first step each processor sends its partial inner product
to its left neighbour. After summation every processor sends this result to its left
neighbour with a distance of two links away. At the kth step the distance between the
processors is 2471 For 2" processors it appears that after » subsequent communi-
cation steps every processor contains the full inner product. This implies that if
sufficient bandwidth is available, the communication strategy of variant II is twice as
fast as that of variant I.

Due to overhead the use of PVM communication subroutines for the inner
product leads to unacceptable performance loss. Therefore we use Cray T3D specific
shared arrays to implement the communication for the inner product. It appears that
the speed of inner product II is comparable to the fastest Cray native inner product.
Therefore, and also because it is easier to analyse, we will use inner product I1. Note
that inner product Il can also be used on machines without a native inner product.

Communication time is the sum of start-up time (latency) and send time. On
many parallel computers the send time is an order of magnitude less than the latency.
For this reason it is attractive to combine communications as much as possible.

—> first communication step
- > second communication step

Fig. 5. Communication pattern for inner product II.
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Using the CGS method in the GMRES algorithm (see Section 1), all inner products
can be computed independently. So the communication steps can be clustered, which
saves much start-up time. A drawback of CGS is that the resulting vectors may be
not orthogonal due to rounding errors [6]. Therefore, the Modified Gram-Schmidt
(MGS) method is preferred, which is stable with respect to rounding errors [6].
However, the inner products are calculated sequentially when MGS is used in the
original GMRES method (see Section 1). So clustering of the inner product com-
munications is impossible. Since for the Cray T3D, the latency is relatively small, we
use in our T3D specific code the MGS method for stability reasons. On a computer
with a relative large latency, it is better to use an adapted GMRES method ([11,3])
where a parallel (clustered) variant of the MGS method can be used.

2.3. Preconditioners

We use ILU-type preconditioners for the solution of the momentum and pressure
equations. Suppose 4x = b should be solved. A sparse lower triangular matrix L and
a sparse upper triangular matrix U are constructed such that L-U >~ 4. In the
preconditioned GMRES algorithm it is necessary to calculate x = U 'L~'b. This is
done by solving the triangular systems: Ly = b and Ux = y. The construction of L
and U and the solution of the triangular systems are not easy to parallelize, due to
inherent recursiveness of the obvious algorithms. For discretized partial differential
equations it is possible to obtain parallel algorithms to construct L, U, and solve
triangular systems. Our approach, as given in the next section, is based on the ideas
presented in [5].

3. Parallel ILU-preconditioning

We present the properties of the discretized pressure and momentum equations in
2D. These properties determine the form and contents of the triangular matrices L
and U, which are used in the ILU-preconditioner. Thereafter the details of the
parallelization of the operations with the preconditioners are given.

3.1. Properties of the linear systems

Pressure equation: After discretizing the pressure equation, one obtains a linear
system Px = b, with a matrix P that is nonsymmetric if the underlying boundary-
fitted coordinate system is non-orthogonal. For details see [29] and [38]. The dis-
cretization stencil of the pressure equation consists of 9 points. Due to the structured
grid approach the matrix P has only nine non-zero diagonals [38]. We use the same
preconditioner (RILU(0.975)) as in [39]. Our parallelization only depends on the
non-zero structure of L + U, so it can also be combined with other preconditioners
(as mentioned in the introduction), provided that the non-zero structure is the same.
Note that for the RILU-preconditioner the non-zero structure of L + U is identical
to the non-zero structure of P. Fig. 6 displays the stencils of P, L, and U.
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Fig. 6. The stencils of P, L, and U.

Momentum equations: The discretized momentum equations are denoted by

() ()= () "

The discretization stencil of M consists of 13 points. The diagonal blocks M, and
M>; contain nine non-zero diagonals and their non-zero structure is the same as that
of P. Both M, and M), contain four non-zero diagonals. As preconditioner we use
RILUD_2(x) with « = 0.95 [39]. Here the off-diagonal parts of M are the same as
those of L and U, only the main diagonal elements of L, U, and M are different. With
respect to parallelization we consider the solution of Lu = b. First

L| U = }7] (2)
1s solved. Thereafter u> is solved from

Lyus = by — Layuy. (3)

To compute the right-hand side of Eq. (3) a matrix vector multiplication (L, u;) is
needed. This can be parallelized in the same way as the original matrix vector
product. Finally, the identical structure of M;,, M,», and P leads to the same parallel
algorithms to solve the lower triangular systems (2) and (3), and that encountered in
the solution algorithm of the pressure equation. For this reason, we restrict ourselves
in the next section to the parallelization of the pressure preconditioner.

3.2. Staircase parallelization of the pressure preconditioner

Parallelization of the construction of L, U, and the solution of the triangular
systems is comparable. So we only consider the parallel implementation of the so-
lution of Lx = b. The algorithm is first explained for a matrix originating from a
5-point stencil. Then it is adapted for matrices based on a 9-point stencil.

The ideas for the staircase parallelization come from [5]. In [27] a comparable
parallelization is given, where the solution of a lower triangular system is done with a
block wave-front forward sweep. To avoid too many communication start ups
square blocks are used. A related approach is to calculate the unknowns on a di-
agonal of the grid. For a 5-point stencil it is easy to see that these unknowns only
depend on the unknowns corresponding to the previous diagonal. Therefore all
components of x corresponding to the same diagonal can be computed indepen-
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dently. This technique is used for vectorization ([1] and [39]) and parallelization ([32]
and [13]). A drawback of these alternatives is that on average only one half of the
processors are active simultaneously.

We decompose our rectangular computational domain in p strips parallel to
the x,-axis. We assume that the number of strips is equal to the number of proces-
sors. The number of grid points in x,-direction is denoted by n,. For ease of
notation we assume that »; can be divided by p and set n, = n,/p and n, = n,.
The index i refers to the index in x,-direction and j to the index in x,-direction.
The kth strip is described by the following set S, = {(i,j) |ie [(k—1)-n +1,k n],
Jjelnl}.

A 5-point stencil: The vector of unknowns is denoted by x(i, j). For a 5-point
stencil it appears that in the solution of Lx = b, unknown x(i, j) only depends on
x(i —1,7) and x(¢,j — 1). The paralle]l algorithm now runs as follows: first all ele-
ments x(Z, 1) for (i,1) € §, are calculated on processor 1. Thereafter communication
takes place between processor 1 and 2. Now x(i,2) for (i,2) € S, and x(i, 1) for
(i,1) € 8, can be calculated in parallel etc. After some start-up time all processors are
busy (Fig. 7).

A 9-point stencil: When a 9-point stencil is used the value of x(i, /) depends on
x(i—=1,j—1), x(i,j— 1), x(i + 1, — 1) and x(i — 1, ). Now the algorithm runs as
follows: processor 1 calculates x(i, 1) for (i, 1) € S;. The value of x(n,, 1) is sent to
processor 2. Then processor 2 calculates x(n, + 1,1) and sends it to processor 1.
Then x(i,2) for (i,2) € 8 and x(i, 1) for (i, 1) € S, are calculated in parallel etc. Note
that one extra communication is necessary for a 9-point stencil.

The torus communication network of the Cray T3D is well adapted for this kind
of communication, because only nearest neighbour communication takes place. Per
message one real is sent, so this approach is only useful on computers with a low
latency. For this reason we use Cray specific shared arrays (as in the inner product)
instead of PVM subroutines. The auxiliary cells are used to store information from
neighbouring processors (Fig. 3).

cPUt cPu2z crUa cPU cPu 2 cPU3 oPU1 cPu2 cPU3
achve ide ide acve active ide sctive active active

------------------------------------------- ' Rk o T T ey
’ 1 1 ' 1 1 l 1
o ® s s, A I [ I T
i 1 ' 1 ' 1 1 1 '
i ‘ i ! I ' ' . ' ' t
» * . * o * . . » * . - .. L LI .
1 | | : 1 | | ! 1 t 1
) | | ! | I ' X I I !
L] l:‘ * 1 » * . . ‘:‘ * ' » * . L B « | » -
1 1 1 i T 1 1
L ¥ 1 l 1 i : i 1 +

1 + 1 t 1
I A I I S T O 0O x w e o«
) I | ! : i \ ) |
: . i | ! | | ' ! : . |
. ! o» LI * 0 o ! = . L P+ + .0 [CR . !
! X | i ! i . i ; : . |
X ) 1 | ' 1 | I ' ' | )
I I S P+ 410 0w P+ + 1+ 4+ 10 o
i i 1 1 t

Fig. 7. The first stages of the staircase parallel solution of the lower triangular system Lx = b. The symbols
denote the following: * nodes to be calculated, o nodes being calculated, and + nodes that have been
calculated.
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4. A performance model for the linear solver

A model is presented to analyse the speedup of the components involved in the
preconditioned GMRES algorithm on an abstract machine. This enables us to get an
idea of the behaviour of various versions of the algorithm for different architectures.
The models are based on the theory given in [19,20], and [13].

4.1. Preliminaries

Many different aspects of parallel computer architecture play a role in deter-
mining the execution speed of a parallel algorithm. We only take into account the
number of floating point operations that the processor can realistically be expected
to perform per second, the communication latency, and the bandwidth.

We assume that the latency and bandwidth of the machine do not depend on the
distance between the sender and receiver. We define the following quantities: f is an
estimate of the number of flops per second per processor,

R, = latency in seconds x f and

/

Ry = - : .
"™ floating point numbers transported per second

These quantities model efficiency loss due to latency and bandwidth restrictions. R; is
the number of flops that can be done in the time necessary to send a zero length
message and R, is the number of flops that can be done in the time that one floating
point number is sent from a sending to a receiving processor.

In an algorithm there will be a number of floating point operations to be per-
formed, split into a serial and a parallel fraction, and a number of messages of
different lengths to be sent. We assume that the serial fraction of the algorithm is
executed on all processors. When p processors are used, W (p) ( =serial fraction+
parallel fraction/p) 1s the number of flops done on one processor. Let M(p) be the
number of messages sent and received by one processor and the total length of those
messages is denoted by L(p).

We give three speedup definitions, namely the theoretical speedup for a machine
with instantaneous communication:

w)
Su(p) = 0y @

the true speedup found when running a program incorporating the algorithm:

wall clock time for a run on one processor

S(p) = ,
») wall clock time for a run on p processors ’ )
and an estimate of the true speedup derived from the ratios introduced earlier:
w(l)
5.(p) = ( ©)

" W(p)+M(p)R + L(P)R,
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Suppose that W,,(p) is the amount of work that is done simultaneously with com-
munication. Then the estimated speedup with overlap of communication and cal-
culation is
1
S.(p) =S X ; -,
) = 5olp) 1 + max{0, Ri\Ry(p) + R:R.(p) — Wor(p)/W(p)}

where Ry (p) = M(p)/W(p) and R,(p) = L(p)/W(p) are, respectively, the start-up
and transmission costs as fractions of the calculation costs.

(7

4.2. Speedup prediction

From now on we assume that the total number of grid points increases linearly
with the number of processors. So we consider scaled speedup. Suppose #; and n; are
given and the total number of grid points is equal to n{"' (p) x ny(p) = n( /P X n2/P,
where we assume that p (the number of processors) is a square. Since the domain is
split into p strips parallel to the x,-axis, the number of grid points per processor:
n, X n, = n//p X na/p = mny is constant. This means we base our analysis on the
Gustafsson model [17].

4.2.1. Matrix-vector multiplication

This section contains a prediction of the optimal speedup obtainable for the
matrix-vector product. Since the pressure matrix has 9 non-zero diagonals the
number of flops per grid point is equal to 17. This leads to W(p) = 17n,n,. Per
processor two communications are necessary, one to the left and one to the right
neighbouring processor, so M(p) = 2 and

2 2

R e — .
u(p) 1700, 1700,

The length of each communication is », which implies L(p) = 2n, and

2, 2 2P
Rilp) = 17n,n, 17n,  UIn’ ®)

(8)

The calculation of the matrix vector product in the n, — 2 interior nodes can be done
independently of the communication, so W,,(p) is given by

Wy (p) = 17(n, — 2)n,. (10)

After substituting Egs. (8)—(10) into Eq. (7) and measuring the values of R; and R,
one can predict the speedup of the matrix vector product.

4.2.2. Inner product

The Cray T3D computer is composed of pipelined RISC processors. On such a
processor the total time of a vector operation consists of a start-up time and the time
to get one result multiplied by the length of the vector [19]. The start-up time is
denoted by #; and f,, is the maximum flop rate once the routine runs. Using this
notation the flop rate of the inner product for a vector of length # is
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2n

fitm = =

(11)
Tim
We give this formula only for the inner product. However also for the other oper-
ations the flop rate depends on a start-up time and a maximum flop rate (see Sec-
tion 5.2.2).
There are 2pn;n, flops done if one processor is used and W(p) = 2nn, + log, p
flops on each processor when p processors are used, so the theoretical speedup is

2pnin;

Solp) = 2mn, +log, p

The communication strategy of inner product II is used (see Section 2). To pass the
global inner product to all processors log, p communication steps are necessary,
where in each step p simultaneous messages are sent. Since only one floating point is
sent in each message the values of Ry, (p) and R, (p) are the same

log, p

Ru(p) = Ru(p) = 2nny + log, p

Because no overlap is possible W,,(p) = 0.

4.2.3. The parallel ILU-preconditioner

We also analyse the speedup of the solution of the lower triangular system Lx = b,
where a 9-point discretization stencil is used. The parallel algorithm to solve this
system is given in Section 3.2. The amount of work is nine flops per grid point. For
the theoretical speedup a delay is caused by the imbalance in the lower left and upper
right corner. It takes some time before the pth processor becomes active. This pro-
cessor has to wait until 9(p — 1)n, = 9pn, operations are done, before it starts to
perform the 9n.n,. flops for its own sub-domain. Combination leads to
W(p) = 9(pn. + n,n,). On one processor 9pn.n, flops are done, so

Spu.n, n,
Solp) = ', _pn p p

~9(pn‘.+nrn})_p+n}_—£+1 'f;if?+]'

For n, = 1 the speedup is Sy(p) = % —~ ~ /p and for n, large S;(p) = p. For other
values of n. the theoretical speedup So(p) lies between these bounds.

To account for communication delays we note that two messages (one to the left
and one to the right) per horizontal line are communicated on each processor. This
leads to a total of 2n, messages per processor. Again initial messages are necessary
before the pth processor becomes active. The number of these messages is
2(p — 1) = 2p. Since all these messages contain one floating point number, we have

R _ R = e T e T |
w(P) 1(p) Ypn, +nmn) 9n.  9n

Only the communication to the left neighbouring processor can be overlapped by
calculations.
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S. Timing experiments and analysis

In Section 5.1 time measurements of our CFD code running on a Cray T3D are
given. These results are compared with our predictions in Section 5.2. For other
measurements on the Cray T3D we refer to [21,42], and [34].

5.1. Experiments with the parallel code

Our test problem is the curved channel problem as described in [39]. The solution
process was artificially interrupted after 19 iterations of full GMRES for the mo-
mentum equations and 26 iterations for the pressure equation to allow for direct
comparison of timings on different sized grids. The measurements were done at the
Cray T3D computer at the Edinburgh Parallel Computing Center. A restricted
number of results are given to illustrate the parallel properties of our ILU-precon-
ditioned GMRES method and to compare our model for wall clock time prediction
with experiments. Other measurements are given in [36].

[n Table 1 we present the wall clock time to solve the momentum equations. The
results are only presented in a certain band. To explain this, consider the 32 x 8 grid.
For the parallelization the computational domain is split into strips parallel to the x,-
axis. This means that if eight processors are used the grid on one processor consists
of 4 x 8 grid points. It is impossible to reduce this further, so no measurements are
done for the 32 x 8 grid using a larger number of processors. On the other hand
using one processor one cannot solve grid sizes larger than 256 x 64 due to memory
limitations. With respect to the solution of the system we see that the wall clock time
for two processors is approximately the same as for one processor. We cannot ex-
plain this phenomenon.

To investigate scalability of our approach we show the total time used per variable
for the momentum equations in Fig. 8 (matrix construction) and Fig. 9 (system
solution). This is calculated by dividing the wall clock time by the number of vari-
ables per processor. The number of variables per grid point is 2 for the momentum
equations and 1 for the pressure equation. In these figures the grid size is given by
4n, - V/pTz X ny - \/;—7/_2 where p is the number of processors. A constant amount of
time per variable means that the considered algorithm is scalable, with isoefficiency
function equal to Kp ([20], Section 4.4.3). It appears that both algorithms are scalable

Table 1

Measured momentum solution times in msec

p 1 2 4 8 16 32 64 128 256
32x8 123 147 115 108

64 x 16 432 453 291 204 180

128 x 32 1609 1643 906 536 373 337

256 x 64 6200 6354 3404 1812 1064 835 651

512 x 128 24526 12312 6706 3656 2224 1503 1303

1024 x 256 25475 13311 7297 4435 3023 2592

2048 x 512 26755 14756 8822 6199
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Fig. 8. Measured total time per variable in ps for the matrix construction.
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Fig. 9. Measured total time per variable in ps for the solution of the system.

when n, is large enough. For smaller values of n, the efficiency deteriorates. One
reason for this is the overhead of computation due to the auxiliary grid cells. An-
other reason is a small vector length, which leads to low Megaflop rates on the RISC
computers of the Cray T3D. The efficiency loss for the solution algorithm is more
severe than that for the matrix construction. This is probably caused by the fact that
matrix construction is embarrassingly parallel (without communication), whereas
the solution algorithm is parallelized using communication. It appears from Sec-
tion 4.2 that the relative start-up Ry (p) and transmission costs R;(p) increase for
increasing p. Finally for small values of »; only a small amount of communication
can be overlapped by computation,

Table 2 contains the Megaflop rates for the inner product. In theory the maxi-
mum Megaflop rate of 1 processor is 150 Mflop/s. The observed flop rates are much
lower: 33.5 for the inner product (Table 2), and 12.5 for the solution of the systems.
It appears that memory access is the most time consuming part. For the inner
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Table 2
Inner product performance in Megaflops per second
4 Measured Predicted
1 16 128 1 16 128
#elem per proc
32 10 34 194 5 33 187

1024 28 331 2346 28 365 2572

8192 33 496 3875 33 505 3949
65536 33 529 4212 33 531 4231

product this leads to an expected rate of 4288 Mflop/s on 128 processors. For long
vectors the observed rate (see Table 2) is very close to this value. In [21] it is observed
that the complex inner product has a performance of 60 Megaflops per second. This
is in accordance with our measurements, when we note that in a complex inner
product the number of computations per memory access is two times as high than
for the real inner product. In [21] a Megaflop rate of 2500 is measured when 128
processors are used. Note that this is much less than the expected value
60 x 128 = 7680.

5.2. Analysis of the timing experiments

The measurements given in Section 5.1 are analysed using the models specified in
Section 4. First some parameters are estimated: start-up time, transmission time and
latency. Thereafter the Megaflop rates of the inner product are predicted and
compared with the rates observed. Finally we predict the total times per grid point
for the solution of the pressure equation and compare them with the observed values.

5.2.1. Parameters of the Cray T3D

Before we give quantitative results it is helpful to consider the T3D machine on a
qualitative level. Important characteristics of the T3D machine are the high band-
width of the inter-processor communication channels, the low latency and the
presence of latency hiding hardware. The high processor speed (150 MHz clock) and
the small cache of 8 Kbyte imply severe penalties for code that is not specifically
optimised for the T3D. Estimates of communication costs are complicated by the
fact that two processors share a node in the communication network. This means
that the step from one to two processors may show atypical behaviour for com-
munication intensive algorithms. Automatic rerouting, latency hiding and spare
nodes make precise estimates of communication costs difficult.

The start-up time, transmission time and latency are obtained from the mea-
surements of the inner product. Applying model Eq. (11) to the data we find a
maximum flop rate of f,, = 33.4 Megaflops per second and a start-up time of
t;; = 12 us. We estimate the communication latency ¢, from the time measurements of
the inner product with and without communication. The time #(p) needed to perform
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the global summation on p processors consists of the following parts: a fixed over-
head, log, p message start-ups, and log, p reals are sent. It appears that the trans-
mission time 7, is equal to 16/300 ps per real (300 MB/sec per link per two
processors). To eliminate the fixed overhead we consider #(p) — ¢(2). When we fit the
model #(p) — ¢(2) = t,log, p + 1, log, p — t; — 1, to the measurements we find a la-
tency of 4 ps. This value compares well with the values given in [31] p. 725. The
Megaflop rates for the inner product predicted with these parameters are given in
Table 2. There is a good correspondence with the observed rates.

5.2.2. Prediction of the solution time for the pressure equation

In our experiments we take 26 iterations of the preconditioned GMRES method
to solve the pressure equation. The amount of work of & iterations of full GMRES
(applied to a problem with grid size n,./p x n./p) is: k matrix vector products with
17pnin, flops, 3k back substitutions with 9pnn, flops, k?/2 inner products with
2pnn, flops and &?/2 vector updates with 2pn;n, flops. Let f; be the inner product
flop rate, f,, the matrix vector flop rate, f, the back substitution flop rate, and f, the
vector update flop rate. The time per grid point is then approximately

17 27 kK k
k(fm otnTt f) (12)

When £ is very large it appears from Eq. (12) that the inner products and vector
updates dominate the run time of the preconditioned GMRES method. In such a
case it is important that the inner product is parallelized very well.

The Megaflop rates which are used in Eq. (12) are based on Eq. (11). From the
experiments we observe that the Megaflop rates on two processors are approximately
50% of the megaflop rates on one processor. Therefore we use the following for-
mulae:

17(nA1/(n l. 7= 9(n .M2)2'7 [ ZnJ;\'_ L fi= 2n, r~1; |
14 4+ —— 14 + === 12+ 12+ =5
Note that the maximum flop rate for the vector update is 2/3 of that for the inner
product, due to one extra memory access per element. The maximum flop rates for
the matrix vector and back substitution are obtained from [36]. The Megaflop rates
are multiplied by the respective efficiencies (E.(p) = S.(p)/p, [20] p. 120) and sub-
stituted into Eq. (12) to predict the total time per grid cell (Table 3). There is a good
correspondence between the predictions and the measurements (Table 4). So the
described model can be used to predict the efficiency of the proposed parallel method
also for larger grid sizes and/or a larger number of processors. From Fig. 9 we
conclude that the time per unknown is constant if #, is large enough. We see that the
time per unknown is constant (or decreases for increasing number of processors) on
the diagonals of Table 4 (except column 1). This implies that for all choices of n,, the
isoefficiency function is Kp®.

In Figs. 10 and 11 we present the percentage of the total time for the various parts
of GMRES. Fig. 10 contains the results for p = 8 and an increasing grid size. It
appears that the preconditioner vector product is the most time consuming part, it

S =
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Table 3
Predicted total time per cell in ps for the solution of the pressure equation
p ] 2 4 8 16 32 64 128 256
32x8 435 568 919 2151
64 x 16 382 432 549 861 2011
128 x 32 363 384 429 537 826 1931
256 x 64 355 364 384 427 529 806 1886
512 x 128 356 365 384 426 524 795 1860
1024 x 256 365 384 425 522 789 1846
2048 x 512 384 425 520 785
Table 4
Measured total time per cell in us for the solution of the pressure equation
P I 2 4 8 16 32 64 128 256
32x8 259 645 1204 2510
64 < 16 185 402 597 965 1969
128 x 32 179 340 395 518 830 1694
256 x 64 163 319 331 380 487 833 1521
512 x 128 306 31 338 373 478 740 1443
1024 x 256 317 335 375 469 731 1444
2048 x 512 354 374 492 722

takes 65% of the time for a small grid size and 45% for a large grid size. In Fig. 11 the
results are shown for the Gustafsson model, the grid size increases linearly with the
number of processors. There is only a small increase in the percentage used for the
preconditioner vector product. This model suggests, as expected, that the precon-
ditioner can be a bottle-neck especially if the number of grid cells in x,-direction per

processor is small.

100 100
inner procuct
90 | - 90
e
80 b 80
vector update
g 70 70
4 60 60
s matvec
S 50 50
-3
]
§ 40 40
g %0 30
prevec
20 420
10} 10
0

@
s
@®

256:64 2048x512
gridsize ~>

Fig. 10. The percentage of time used by the various parts (eight processors).
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Fig. 11. The percentage of time used by the various parts (grid size 256 - \,fp72— x 64 \/p/2).

6. Conclusions

A scalable parallel implementation of the ILU-preconditioned GMRES method is
given. The proposed model describes the required time per grid point adequately and
can be used to analyse the method or to predict the efficiency on larger number of
grid points or processors.

When the number of iterations increases and full GMRES is used, the percentage
of time spent in inner products and vector updates increases. Since these parts have a
scalable parallel behaviour we see no parallelization problems, also when a large
number of processors is used.

The ILU-preconditioner is parallelized using the ideas proposed in [5]. Advantage
of this method is: the serial and parallel version of this method have the same be-
haviour with respect to convergence, size of the residual and effects of rounding
errors. A drawback is that the efficiency deteriorates when the domain is divided into
thin slices. The reasons for this are: communication time is large with respect to
computation time, many isolated floating point operations occur, an increase of
overlap between the domains and a low flop rate for short vectors. Finally, we ob-
serve a loss of efficiency (50%) when we run the program on two or more processors.
We are unable to explain this loss.
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