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In this article we demonstrate how network components can be modeled using the kine-
matic wave model in the Lagrangian formulation. This includes modeling nodes (or discon-
tinuities) such as inflow and outflow boundaries, merges and bifurcations (e.g. ramps) and
nonhomogeneous roads. Nodes are usually fixed in space. This makes their implementation
in Lagrangian coordinates where the coordinates move with the vehicle more complex
than in Eulerian coordinates where the coordinates are fixed in space. To this end we derive
an analytical node model. The article then discusses how to implement such sink and
source terms in a discretized version of the kinematic wave model in Lagrangian coordi-
nates. In this implementation several choices have to be made. Test results show that even
with the most simple choices (discretization based on full vehicle groups and discrete time
steps) accurate and plausible results are obtained. We conclude that the Lagrangian formu-
lation can successfully be applied for simulation of networks of nonhomogeneous roads.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Traffic flow models and simulation tools are often used for traffic state estimation and prediction. State estimations are
based on data from sensors fixed in space (loop detectors, camera’s) and/or on floating car data (gps, mobile phone), which
become more popular with the current state of technology. Short term state predictions are used in online applications, for
which a low computing time is essential.

In many applications, both for state estimation and prediction, the kinematic wave model by Lighthill and Whitham
(1955) and Richards (1956) is used. Recently an alternative formulation of this macroscopic model based on Lagrangian coor-
dinates was introduced by Leclercq et al. (2007). The Lagrangian formulation leads to more efficient simulations than the
traditional Eulerian formulation, both in accuracy and computation time (Van Wageningen-Kessels et al., 2010). Further-
more, the Lagrangian formulation results in more efficient traffic state estimation based on floating car data when compared
to the Eulerian formulation (Yuan et al., submitted for publication). An other method that can be used to achieve more accu-
rate simulation results is based on variational theory, as introduced for traffic flow by Newell (1993). Daganzo (2005) dis-
cusses how this approach can be extended to inhomogeneous roads. However, the variational approach is rather complex
to apply on real road networks with many links and when applied to a model with, for example, a non-triangular fundamen-
tal diagram, it looses the advantages of higher accuracy. Therefore, in this contribution, we will apply more standard numer-
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ical methods for discretization of the kinematic wave model in Lagrangian formulation. Moreover, the methods we propose
here will be better suitable to extend to multi-class models where heterogeneity of drivers and vehicles is taken into account.

For practical (online) applications on real road networks the model has to be completed with boundary conditions. Helbing
and Treiber (1999) discuss how to implement boundary conditions in traffic flow models in the Eulerian formulation. Further-
more, models describing flows over nodes, including on- and off-ramps, other merges and bifurcations and inhomogeneities
related to (maximum) vehicle speed and number of lanes, have to be included. Such models and their discretization, based on
the Eulerian formulation, have been introduced in (Daganzo, 1995; Jin and Zhang, 2003 and Lebacque, 1996). In Jin and Zhang
(2003) it is emphasized that at certain inhomogeneities the system of equations is not strictly hyperbolic and numerical dif-
fusion will occur when not properly treated. Laval and Leclercq (2010) discuss a framework to model and analyze congestion
at on-ramp bottlenecks. In the Lagrangian formulation, however, implementing boundary conditions and node models is not
always straightforward. This is because the coordinates are moving with the vehicles in this formulation, while the bound-
aries and nodes are fixed in space. It is interesting to note that from a mathematical point of view this problem is very similar
to the moving bottleneck problem in Eulerian coordinates, see for example (Leclercq et al., 2004; Newell, 1998). In this article
we discuss and demonstrate how to implement in the Lagrangian framework node models and their discretization.

On-ramps and other merges exhibit another difficulty at the onset and presence of congestion and have received much
research attention recently. Drivers give each other priority following some fixed merge ratio (Bar-Gera and Ahn, 2010; Cas-
sidy and Ahn, 2005). The merge ratio might be time dependent (e.g. lower in afternoon peak than in morning peak), but it is
independent of the actual flows. Many articles have been written on how to implement this merge ratio in a kinematic wave
model and its discretization. Laval and Leclercq (2010) develop a method, based on their model in Laval and Leclercq (2008),
to analytically find the resulting traffic state at a merge. Since they do not use any numerical approximation, the result is
very accurate. However it can only be applied to very simple problems in reasonable computing time. In Eulerian coordinates
a merge can be modeled and discretized using, for example the approach described by Ni and Leonard (2005) and Ni et al.
(2006). In the latter, modeling and discretization of other network components such as off-ramps is also described. It is based
on the simplified theory of kinematic waves (variational theory) by Newell (1993). (Lebacque, 2005) describes several meth-
ods for modeling and discretization of merges. One of them was already described by Daganzo (1995) and Lebacque (1996).
The discretization approaches are based on the Godunov scheme and therefore, heavily lean on the Eulerian formulation of
the kinematic wave model. However, their continuous models turn out to be very useful in describing a merge with priority
sharing in the Lagrangian framework. Laval and Leclercq (2008) and Chevallier and Leclercq (2009) describe an approach for
merges to be applied in microscopic models. The merge rules formulated in these articles are still rather complex and may
contain a stochastic term. Therefore, they are not suitable for a macroscopic model where we do not want to model the
behavior of individual vehicles. Instead, we want to model the ‘average’ vehicle behavior and the discretization should reflect
the model as closely as possible. Finally, there are some similarities between modeling nodes in the Lagrangian framework
and the treatment of the microscopic to macroscopic boundary and vice versa in hybrid models (Bourrel and Lesort, 2007;
Burghout et al., 2005; Laval and Leclercq, 2008; Leclercq, 2007). The methods developed for these models, such as the min-
imum demand supply scheme in (Leclercq, 2007), can be adapted for our application.

This article presents a complete description of a node model in the Lagrangian formulation of the kinematic wave model
(Section 2). The main contribution is a discussion on the discretization of the proposed model. Several methods are discussed
in Section 3. Finally we present and discuss simulation results based on the model and its discretization in Section 4.

2. Model

2.1. The basic kinematic wave model

The kinematic wave model for homogeneous roads in Eulerian coordinates consists of the conservation of vehicle
equation:
@q
@t
þ @q
@x
¼ 0; ð1Þ

with q ¼ qðqÞ ¼ qvðqÞ; ð2Þ
the equilibrium relation between the flow q (in vehicle/s) and the density q (in vehicle/m). This equilibrium relation is often
called the fundamental diagram, which might also refer to the equilibrium relation between vehicle speed v (in m/s) and
density. Furthermore, x (in m) and t (in s) are the space and time coordinate, respectively.

The kinematic wave model in Eulerian (t,x) coordinates can be transformed in (t,n) Lagrangian coordinates. Consequently,
if n is fixed, x changes over time. The transformation yields the Lagrangian formulation of the kinematic wave model
(Leclercq et al., 2007):
Ds
Dt
þ @v
@n
¼ 0; ð3Þ

with
D
Dt
¼ @

@t
þ v�ðsÞ @

@x
; the Lagrangian time derivative ð4Þ

ands ¼ 1=q; ð5Þ
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the spacing: the average distance between the tails of two consecutive vehicles in m/vehicle and n the vehicle number. The
vehicles are numbered in opposite driving direction: the first vehicle entering the road has the lowest vehicle number. D/Dt
is the partial derivative to time in Lagrangian coordinates, that is: the derivative with respect to time t with the other coor-
dinate (vehicle number n) fixed. As n-coordinates move with vehicle velocity, Dr/Dt is the rate of change of some variable r as
it is observed by a driver moving with velocity v(n, t) = v(x(n), t) = @x/@t. This implies that D/Dt is a directional derivative in
Eulerian coordinates: it is the derivative in the direction of the moving observer (the driver). Both independent variables t
and x change in this direction. The model is completed with the fundamental diagram describing the relation between spac-
ing and vehicle speed:
v ¼ vðqÞ ¼ v�ðsÞ: ð6Þ
See Fig. 5a for an example of such a fundamental relation.
It turns out that the Lagrangian formulation yields considerable benefits, for instance for numerical simulation (Van

Wageningen-Kessels et al., 2010). For practical application of the model, however, complete networks need to be simulated.
Therefore, we need to include sources (on-ramps, inflows at entry), sinks (off-ramps, outflow at exit) and other network
components such as changes in the number of lanes in the Lagrangian formulation. We use an approach with links and
nodes. Links are homogeneous road parts. All links are connected to each other using nodes. Simple nodes have only one
ingoing and one outgoing link, and usually represent changes in fundamental diagram parameters (i.e. average drive behav-
ior) due to changes in geometry such as lane-drops (yielding a reduction in capacity) or changes in traffic regulations such as
the maximum speed. More complex nodes can have multiple ingoing or outgoing links. In that case the model has to describe
how the vehicle flows merge or how the vehicle flows are distributed over the outgoing links.

2.2. Spatio temporal changes in the fundamental diagram

As discussed above a node can represent a change in the fundamental diagram parameters. However, the model described
by the conservation Eq. (1) and the fundamental diagram (2), or, equivalently, in Lagrangian coordinates (3) and (6), assumes
that the fundamental diagram is constant over space and time. That is, the roads forming the network are homogenous.
However, in realistic cases there are many inhomogeneities, for example caused by differences in the number of lanes, speed
limits, curves and gradients. This can be incorporated in the model by making the fundamental diagram time and space
dependent:
q ¼ qðq; x; tÞ; ð7Þ
or equivalently in Lagrangian formulation:
v ¼ v�ðs; xðnÞ; tÞ: ð8Þ
2.3. Sink and source terms

To include sinks and sources, we will rewrite the conservation of vehicles equation to include a sink/source term. In Eule-
rian coordinates we have:
@q
@t
þ @q
@x
¼ f ðx; tÞ: ð9Þ
The term f(x, t) = r(x, t) � s(x, t) denotes the time and space dependent source r(x, t) and sink s(x, t) term, usually related to on-
ramps or off-ramps. It is important to note that, even though f is expressed as the number of vehicles per meter and per sec-
ond, the source (or sink) is usually located at a point in space. That is, the length of the ramp or the merge region is not taken
into account but this length is set to zero. Assuming an infinite long road with a merge at x = 0, the source f(x, t) can now be
written as:
f ðx; tÞ ¼ qinð0; tÞgðxÞ; ð10Þ
with qin(0, t) the inflow from the on-ramp per second. g can be any function with
R1

x¼�1 gðxÞdx ¼ 1. For example, in the fol-
lowing we will use the delta-Dirac function which can loosely be thought of as:
gðxÞ ¼ dðxÞ ¼
0 for x – 0;
1 for x ¼ 0;

�
with

Z þ1

x¼�1
dðxÞ dx ¼ 1: ð11Þ
(For a rigorous definition of the delta-Dirac function we refer to any calculus or analysis textbook.) Alternatively if one wants
to take into account the physical length of the on-ramp g(x) can for example be defined as a block function. We note that the
unit of the left-hand side and right-hand side of (10) should be equal and therefore the unit of g is chosen to be m�1.

We now first discuss how to reformulate the model with sink or source term in Lagrangian coordinates. Thereafter we
will discuss some extra conditions related to priority at merges.
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2.3.1. Sink and source terms in the Lagrangian formulation
For the Lagrangian formulation of the node model we use the definitions of spacing (5) and vehicle velocity (6). Combined

with the definition of the flow (2) they give:
1 For
q ¼ vðqÞq ¼ v�ðsÞ
s

: ð12Þ
Furthermore, the density can be expressed as the partial derivative of vehicle number n to x:
q ¼ � @n
@x
; ð13Þ
where the minus sign results from the fact that vehicles are numbered in opposite driving direction. From (13) and (5) we
find that the partial derivative to x can be rewritten:
@

@x
¼ @

@n
@n
@x
¼ �q

@

@n
¼ �1

s
@

@n
: ð14Þ
Furthermore, we also need to apply the Lagrangian time derivative (4). Rearrangement and substitution of the partial deriv-
ative to x (14) gives:
@

@t
¼ D

Dt
� v�ðsÞ @

@x
¼ D

Dt
þ v�ðsÞ

s
@

@n
: ð15Þ
With the definition of spacing (5) and flow (12) and the Lagrangian derivatives (14) and (15) in hand we can now rewrite the
conservation equation including sink and source terms (9) in the Lagrangian framework. To this end we first substitute (5)
and (12) into (9), which gives:
@ð1=sÞ
@t

þ @ðv
�ðsÞ=sÞ
@x

¼ f ðxðnÞ; tÞ: ð16Þ
Applying the quotient rule for differentiation and substituting the partial derivatives (14) and (15) gives:
� 1
s2

Ds
Dt
þ v�ðsÞ

s
@s
@n

� �
þ 1

s2 � @v
�ðsÞ
@n

þ v�ðsÞ
s

@s
@n

� �
¼ f ðxðnÞ; tÞ: ð17Þ
Rearranging and multiplying by �s2 gives our main result:
Ds
Dt
þ @v

�ðsÞ
@n

¼ �s2f ðxðnÞ; tÞ: ð18Þ
2.3.2. Interpretation of conservation equation with source term
In this section we provide an intuitive interpretation of Eq. (18), especially for the source term on the right-hand side. We

will do so on the basis of an alternative graphical way to derive the same equation. This graphical explanation is partly based
on the derivation of the conservation equation in Lagrangian coordinates without source term in (Van Wageningen-Kessels
et al., 2010).

In Fig. 1 a t, x plane with some vehicle trajectories is shown. 1 The box is a platoon of vehicles followed over some time Dt.
Initially the platoon contains Dninitial vehicles. During the time interval Dt some vehicles (bold arrows) enter the road, e.g. via an
on-ramp, and at the end the platoon contains Dnend vehicles. We define the number of vehicles that has entered the
platoon:
Dnsource ¼ Dnend � Dninitial; Dnend ¼ Dninitial þ Dnsource: ð19Þ
The number of vehicles that has entered the platoon is determined by the inflow rate per meter f(x, t), the length of the pla-
toon sDn � sinitialDninitial and the duration Dt:
Dnsource ¼ f ðxðnÞ; tÞsinitialDn initialDt: ð20Þ
We note that the source term f has the dimension (m�s)�1. Therefore, the source is not located at one point in space, but it has
a certain length, just as in Eulerian coordinates.

For easy notation from here on we omit the superscript ⁄ when denoting the velocity function v⁄(s). The length of the
platoon at the end sendDnend is determined by its initial length sinitialDninitial, the respective distances travelled by the first
and the last vehicle in the platoon vfirstDt and vlastDt:
sendDnend ¼ sinitialDninitial þ v firstDt � v lastDt: ð21Þ
Substituting the number of vehicles from the source (19) and the source term itself (20) gives:
ðsend � sinitialÞDninitial þ ðv last � v firstÞDt ¼ �sendf ðxðnÞ; tÞsinitialDninitialDt: ð22Þ
interpretation of color in Figs. 1–4, 6–8, the reader is referred to the web version of this article.



Fig. 1. Graphical interpretation of inhomogeneous kinematic wave model in Lagrangian coordinates. The box is a platoon of vehicles followed over some
time Dt. Initially the platoon contains Dninitial vehicles. During the time interval some vehicles (bold arrows) enter the road, e.g. via an on-ramp, and at the
end the platoon contains Dnend vehicles.
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Rearrangement and dividing both sides by DninitialDt gives:
send � sinitial

Dt
þ v last � v first

Dninitial
¼ �sendsinitialf ðxðnÞ; tÞ: ð23Þ
We assume the platoon is very small (Dninitial ? 0), is followed over a short period of time (Dt ? 0) and sendsinitial ? s2. Now
we can rewrite this as:
Ds
Dt
þ @v
@n
¼ �s2f ðxðnÞ; tÞ: ð24Þ
The source term on the right-hand side �s2f(x(n), t) can thus be interpreted as the decrease in platoon length (hence the
minus sign) per vehicle and per second due to new platoons of vehicles entering the flow. Of course, in case the source
term represents a sink, the net result is an increase in platoon length (spacing) due to platoons of vehicles leaving the
flow.

2.4. Bifurcations

Bifurcations are nodes with one incoming and multiple outgoing links. Here we will restrict ourselves to two outgoing
links, although the results can easily be generalized. Bifurcations also include off-ramps. At a bifurcation usually a turn
fraction is defined. For example, the turn fraction to outgoing link a is the fraction of all vehicles arriving at the node that
will go to link a. These turn fractions can be derived from origin destination matrices, they can be measured directly, or
they are for example based on the capacity of the outgoing roads. In this study we assume turn fractions are given. Turn
fractions can be used directly in the discretization of the model in Lagrangian coordinates, as we will discuss in the next
section.
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2.5. Merges

Merges are nodes with multiple incoming and one outgoing links. Here we will restrict ourselves to two incoming links,
though the results can easily be generalized. Merges also include on-ramps. In the case of a merge some extra modeling deci-
sions need to be made. They are related to which of the incoming roads gets priority. For example, in reality, vehicles from an
on-ramp usually manage to enter the main road relatively easy. When congestion sets in, it spills back onto the main road
upstream of the ramp and not (or much less) onto the on-ramp. On the other hand, sometimes a fixed ratio between vehicles
from one incoming and vehicles from the other incoming road is observed. These may be the result of specific traffic regu-
lations imposed (priority rules), which are sometimes enforced by geometrical measures (e.g. lane markings). Unless such
local priority rules are explicitly known, there are different methods for estimating priority ratios. They are for example
based on the capacity of the incoming links or directly on flow measurements. Since we focus on an appropriate macroscopic
representation and not on the underlying microscopic drive behavior, in this study we assume the merge priority ratios to be
given and we describe how they can be used in modeling a merge in the Lagrangian framework. In Section 3.5 we describe its
discretization. The model that we present here is very similar to that proposed by several authors such as Daganzo (1995)
and Lebacque (1996, 2005). Let us number the incoming and outgoing links like this:
1
2
� 3:
Furthermore, we assume that the merge is located at x = 0. The conservation of vehicles tells us that all vehicles that leave
either link 1 or 2 will enter link 3. We add a sink/source term to the conservation equations of each incoming or outgoing link
l:
@ql

@t
ð0; tÞ þ @ql

@x
ð0; tÞ ¼ flð0; tÞ: ð25Þ
f1(0, t) and f2(0, t) are negative and relate to sink terms. Furthermore, f3(0, t) is positive and relates to a source term:
f3ð0; tÞ ¼ �ðf1ð0; tÞ þ f2ð0; tÞÞ: ð26Þ
Eq. (26) ensures that vehicles are conserved over the merge. We now define the demand Dl as the number of vehicles per
second from incoming link l that want to cross the merge:
Dlð0�; tÞ ¼
qlð0

�; tÞ if qlð0
�; tÞ 6 qcrit;

Cl otherwise;

�
ð27Þ
with Cl representing the maximum flow (i.e. capacity) in vehicles per second of link l and 0� = lime"0 e the location just
upstream of the merge. Similarly the supply Sl is the number of vehicles per second for which there is still space in outgoing
link 3:
S3ð0þ; tÞ ¼
C3 ifq3ð0

þ; tÞ 6 qcrit;

q3ð0
þ; tÞ otherwise;

(
ð28Þ
with 0+ = lime;0e the location just downstream of the merge.
Usually, there is no full priority of one incoming link over the other, but a fixed ratio between flows from link 1 and link 2

is observed. Therefore, we define the sink/source at the merge in number of vehicles per second:
Flð0; tÞ ¼
Z 0þ

x¼0�
flðx; tÞdx: ð29Þ
Assuming that the priority ratio is constant over time we find:
c1 ¼
F1ð0Þ

F1ð0Þ þ F2ð0Þ
¼ � F1ð0Þ

F3ð0Þ
; and c2 ¼

F2ð0Þ
F1ð0Þ þ F2ð0Þ

¼ � F2ð0Þ
F3ð0Þ

; ð30Þ
The available supply has to be distributed over the incoming links. However, this might lead to under usage of the node. As
described before by Daganzo (1995) and Lebacque (1996, 2005) it is most sensible to first distribute the available supply over
the links satisfying the ratios. Secondly, if there is still demand from either of the links, this inflow is allowed as long as the
total flow over the link does not exceed the downstream supply.
2.6. Boundary conditions

The boundary conditions need to respect inflow restrictions at x = 0, and need to enable outflow restrictions at x = L.
Implementing these in the Lagrangian formulation is straightforward. For the inflow, we have:



Fig. 2.
right to
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qð0; tÞ ¼ min DðtÞ;Cð Þ; ifqð0þ; tÞ 6 qcrit;

qð0þ; tÞ; otherwise;

(
ð31Þ
where D(t) denote the traffic demand at time instant t, C denotes the capacity, and qcrit denotes the critical density (density
at capacity). The inflow boundary condition shows that in case of congestion on the road, the inflow is restricted by the flow
inside the jam. When conditions are free flow, the inflow is limited by the capacity.

For the outflow, we have:
qðL; tÞ ¼
min lime#0qðL� e; tÞ; SðtÞð Þ; if lime#0qðL� e; tÞ 6 qcr;

min C; SðtÞð Þ; otherwise;

�
ð32Þ
where S(t) denotes the outflow restriction at x = L and C is the capacity just upstream of the outflow boundary. The equation
allows for restriction of the maximum outflow of a link, e.g. caused by downstream congestion.

3. Discretization

For any simulation or other computer implementation of the model, the model needs to be discretized. Therefore, the
vehicles are clustered into groups of Dn vehicles. The vehicle group size D n is usually between 1 and 10, but is not neces-
sarily integer. Each vehicle group gets a number i, where the first group that enters the computational domain, has the low-
est number. The vehicle discretization is illustrated in Fig. 2. Furthermore, time is discretized into time steps of size Dt,
usually between 1 and 8 s. The conservation Eq. (3) is discretized and solved for each time step k. We note that the highest
accuracy can be achieved by choosing a small number of vehicles in one group Dn and a small time step size Dt. However,
they should always satisfy the CFL-condition (37) to guarantee stable numerical solutions. For a more detailed discussion of
the accuracy and convergence of the upwind method with explicit time stepping we refer to (Leclercq et al., 2007).

3.1. Discretization of the basic model

As proposed by Leclercq et al. (2007) the first order upwind method and an explicit time stepping method are used to
discretize the conservation equation. For a homogeneous road the conservation Eq. (3) is discretized:
skþ1
i ¼ sk

i þ
Dt
Dn

vk
i�1 � vk

i

� �
; ð33Þ
with sk
i ¼ sðni; tkÞ ¼ sðn0 þ iDn; t0 þ kDtÞ the spacing associated with the ith vehicle group after k time steps. Furthermore,

vk
i ¼ v�ðsk

i Þ is the speed of the ith vehicle group after k time steps, which can be calculated from its spacing using the fun-
damental diagram.

3.2. Discretization of nodes

In the preceding section, we have shown how inhomogeneities at nodes can be introduced in the Lagrangian formulation
of the model. The discretization approach is described in the rest this section.

Therefore, we first discuss the discretization of the model equation with source term (18) in general:
skþ1
i ¼ sk

i þ
Dt
Dn

vk
i�1 � vk

i

� �
þ Dt sk

i

� �2
f ðxðnÞ; tÞ: ð34Þ
(34) can be rewritten as:
skþ1
i ¼ ð1þ aÞsk

i þ
Dt
Dn

vk
i�1 � vk

i

� �
; ð35Þ

with a ¼ Dtsk
i f ðxðnÞ; tÞ ¼ Dnk

source

Dnk
initial

; ð36Þ
With Dninitial the total number of vehicles that arrive at the node during the kth time step. In case of a sink, �Dnk
source is the

number of vehicles that take the off-ramp during this time step. Now, a relates to the turn fraction, e.g. if a = �0.2 this means
that 20% of the vehicles just before the ramp take the off-ramp. Similarly, in case of a source, Dnk

source is the number of
Vehicle (spatial) discretization of the conservation equation. Driving direction is from left to right. Vehicles and vehicle groups are numbered from
left.
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vehicles that arrive at the node from the on-ramp during this time step and a denotes the number of vehicles added to the
flow as a fraction of the flow just before the on-ramp.

Now two issues occur: (1) the number of vehicles in the ith vehicle group changes; (2) if the fundamental diagram v⁄(s)
changes during the k + 1th time step, this is not accounted for in the discretization. The first problem is related to the first
term on the right-hand side of (35). If a is nonzero the number of vehicles between the i � 1th and the ith vehicle will
change. It can be solved by a proper approach for the vehicle discretization, which will be discussed in Section 3.2.1. The
solution to the second issue will be discussed in Section 3.2.2.

3.2.1. Vehicle discretization
The change of the number of vehicles in a vehicle group can give rise to numerical instabilities, particularly if the number

of vehicles within one group will become very large. There are two possible approaches to this problem, the first consists of
renumbering the vehicles and forming new groups, in the second approach vehicle groups are continued, added to or re-
moved from the flow. The two discretization approaches for a source term describing vehicles merging onto the main road
are:

1. All vehicle groups are collected at the source location x where vehicles enter (so both vehicles already on the road and
vehicles entering via the source), and new groups are formed. These new groups consist of vehicles from both the main
road and the on-ramp or merging road. This approach is illustrated in Fig. 3a.

2. Full vehicle groups are either continued on the main road, and added to the flow at the source location. In other words,
the inflow at the source location is added once the total inflow is equal to Dn. This approach is illustrated in Fig. 3b.

The first approach (discontinuing all groups and forming new ones) will lead to more accurate results on a small scale.
However, inaccuracies in the latter approach are expected to be small and will, at least partly smooth out due to numerical
diffusion. Moreover, the latter approach is easier to program and the calculations can be done faster. In the remaining of this
article we will use the simpler approach and discuss its accuracy. For a sink term describing vehicles leaving the main road at
a certain location x, similar approaches can be taken, having the same (dis)advantages.

3.2.2. Time discretization
After a vehicle group has reached a boundary or a node some new conditions hold, e.g. the fundamental diagram has

changed or vehicles are added to or removed from the vehicle flow. This change usually does not take place at the beginning
(or end) of a time step, but during a time step. Therefore, it would be most accurate to let these new conditions apply, also in
the discretization, from the moment the node is reached. However, this involves the addition of an extra, intermediate time
step, see Fig. 3c. An alternative approach is to let these new conditions apply from the beginning of the next time step, see
Fig. 3d. The first approach will lead to more accurate results on a small scale. However, inaccuracies in the latter approach are
expected to be small and will, at least partly, decrease over time and space due to numerical diffusion, as described above for
vehicle discretization. Moreover, the latter approach is easier to program and the calculations can be done faster. In the
remaining of this article we will use the second (less accurate, but simpler) approach.

In the following we will describe the implementation of the above described methods to boundaries and nodes. Therefore,
we use the methods where only full vehicle groups are continued, removed from or added to the flow. Furthermore, new
conditions after a boundary or node only hold from the beginning of the next time step.

We note that this approach will not lead to vehicle groups overtaking each other. This can be explained by the CFL
condition:
Dt
Dn

max
dv
ds

����
���� 6 1: ð37Þ
Fig. 3. Vehicle and time discretization.
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The CFL condition (Courant et al., 1967) is a restriction on the discretization that guarantees that a vehicle group i will not,
within one time step of size Dt, travel further than the position of the leading vehicle group i � 1 at the beginning of that
time step: xkþ1

i 6 xk
i�1, with xk

i the position of the ith vehicle group at beginning of the kth time step. This also holds over
a node. Moreover, the CFL condition guarantees numerical stability and errors will not grow unbounded.

3.3. Discretization of changes in the fundamental diagram

A spatial or temporal change in the fundamental diagram is for example caused by a change in the speed limit, a spatial
change can also be caused by, e.g. a change in the number of lanes. As described before, in the case of a spatial change the
new fundamental diagram holds from the beginning of the time step following the time step during which the vehicle group
passed the node. Furthermore, in the case of a temporal change in the fundamental diagram, the new conditions apply from
the end of the time step after the actual change. In Fig. 4a and b two examples are shown. It can be seen that the change of
the fundamental diagram becomes effective in the numerical scheme a bit downstream of the actual change.

3.4. Discretization of 1-2 nodes

A 1-2 node can be an off-ramp or any other bifurcation where one road splits into two. If only the main road is of interest
the off-ramp can be seen as a sink, as shown in Fig. 4c. If both outgoing links are included in the network part of the groups
go in one direction, the rest of the groups go in the other direction, as shown in Fig. 4d. If furthermore the fundamental dia-
gram changes, this is applied as described before, that is: the new fundamental diagram applies to all groups from the begin-
ning of the next time step after crossing the node. The generalization of this approach to a 1-n node with one incoming and
multiple outgoing links is straightforward.

3.5. Discretization of 2-1 nodes

A 2-1 node can be an on-ramp or any other merge where two roads come together and continue as one. If only the state at
the main road is important (and the state at the on-ramp or merging road is not important) the approach is as follows. As
soon as enough vehicles have arrived at the node, the last vehicle group that passed the node is split into two groups at the
beginning of the next time step. Some examples are given in Fig. 4e and f. Fig. 4e shows a merge location where the on-ramp
(or other type of incoming link) itself is out of the computational domain. Fig. 4f shows a merge location with the on-ramp
(or other type of incoming link) is inside the computational domain and the trajectories of the vehicle groups at that location
are shown as broken lines. We note that the groups from the ramp only change there speed from the beginning of the first
time step after their arrival at the merge. Sometimes a 2-1 node is combined with a change in the fundamental diagram, for
Fig. 4. Discretization of nodes.
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example when two two-lane roads are merged and become one three-lane road. If this is the case, the new fundamental dia-
gram is applied just as described before, that is: the new fundamental diagram applies to all groups from the beginning of the
next time step after crossing the node. The generalization of this approach to an n-1 node with multiple incoming and one
outgoing links is straightforward.

In Section 2.5 we discussed priority rules at merges. The discretization of a 2 � 1 merge with priority rules is described
below. In the following we assume, without loss of generality that during the k + 1th time step vehicle group i from link 1
arrives at the merge. First the flow q around the merge has to be calculated. Therefore, (12) is applied to respectively the
most downstream vehicle group in link 1 and 2 and the most upstream vehicle group in link 3. Secondly, the discretized pri-
ority rules follow from the discussion in Section 2.5. This results in two criteria for a group to pass the node: there must be
enough remaining capacity at the outgoing link (that is: the resulting spacing must be lower than critical) and there should
be no other group that has priority over this group. Three cases can be distinguished:

1. If only one vehicle group arrives during one time step, it can pass only if the resulting spacing will be higher than critical.
2. If two groups arrive during one time step, calculate M1 the number of groups from link 1 that recently (within the last M

groups) passed the node
(a) If M1 < c1M the group from link 1 has priority: it can pass, but only if the resulting spacing will be higher than critical.
(b) If M1 P c1M the group from link 2 has priority: it can pass, but only if the resulting spacing will be higher than critical.

If one of the groups has passed the node, the other one can also pass but only if the resulting spacing will be higher than
critical.

Here M denotes the number of groups that are considered in determining what has recently been the actual merge rate.
This M has to be chosen appropriately and can depend on the actual flow rate. However, the tests described in the next sec-
tion show that it does not really matter whether M = 1, M = 5 or M = 10. The discretization above can roughly be interpreted
as follows: all arriving vehicles can pass the merge immediately, except if there are too many vehicles at or around the
merge. In that case the vehicles pass according to some predefined merge ratio.

3.6. Discretization of the boundary conditions

At an inflow boundary (x = 0), the arriving flow, that is the number of vehicles per time unit that arrive at the inflow
boundary is prescribed as in (31). The numerical discretization of the inflow boundary is shown schematically in Fig. 4g
and h. It comes down to releasing a vehicle group of size Dn to enter the computational domain at the beginning of a time
step whenever enough vehicles have arrived. We note that if there is congestion downstream of the inflow boundary or if the
inflow is larger than the maximum road capacity this might mean that one or more vehicle groups are waiting at the inflow
boundary until they can enter, as is shown in Fig. 4g. Furthermore, even if there is enough space directly after the arrival of
vehicles forming a new vehicle group, the group has to wait until the beginning of the next time step to enter the domain.
This leads to a delay of one group of at most the time step size Dt, see Fig. 4h.

At the outflow boundary (x = L) the mixed boundary condition (32) is used. Therefore, the flow just before the boundary,
that is the flow related to the last vehicle group that has left the domain needs to be calculated:
qðL�; tÞ ¼ qðxð0Þ; tÞ ¼ v�ð0; tÞ
sð0; tÞ ; ð38Þ
Fig. 5. Fundamental diagram and road layout of test case.



Table 1
Parameter settings for simulation.

Free flow speed 120 km/h
Critical speed 80 km/h
Critical spacing per lane 30 m/veh
Minimum spacing per lane 6 m/veh
Inflow main road 0.6� or 8� capacity veh/h
Inflow on-ramp 0.6� or 0.8� capacity veh/h
Vehicle group size 10 or 2 veh
Time step size 3.2 or 0.64 s
Nr of vehicle groups for merge priority (M) 5 or 1
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where L� = lime"0 L � e the location just upstream of the outflow boundary and x(0) denotes the location of the last vehicle
group (group n = 0) that has left the domain. If the flow of group 0 is lower than the outflow restriction S(t) all vehicle groups
are allowed to leave the domain and no special procedure is needed for discretization. If, however, the flow of group 0 is
higher than the outflow restriction not all vehicle groups are allowed to leave the domain and congestion will spill back into
the domain. Again, no special procedure is needed for the discretization of the boundary condition.
4. Simulations and results

The above described method combined with the fundamental diagram in Fig. 5a was applied to a main road with an on-
ramp. Two kilometer after the merge the number of lanes of the main road drops from 3 to 2, see Fig. 5b. The parameters in
Table 1 were used. With these parameter settings the CFL-condition (37) is satisfied as an inequality: (Dt/Dn)maxjdv/dsj = 8/
9. For the outflow boundary no restriction was applied. Three cases were studied:
Fig. 6. Results of on-ramp bottleneck simulations. Top: trajectories (black lines) of vehicles on main road. Center: trajectories (black lines) of vehicles on on-
ramp and on main road downstream of on-ramp. Colored dots indicate local vehicle speed: magenta: v < 0.2vcrit, red: 0.2vcrit 6 v < 0.4vcrit, yellow:
0.4vcrit 6 v < 0.7vcrit, green: 0.7 vcrit 6 v < vcrit, cyan: vcrit 6 v < 0.5 (vcrit + vmax), blue: 0.5(vcrit + vmax) 6 v < vmax. Bottom: resulting merge ratio (dots)
and expected merge ratio (line).



F. van Wageningen-Kessels et al. / Transportation Research Part C 34 (2013) 148–161 159
1. Low inflow: at inflow boundary of main road: 0.45� capacity of main road downstream of merge location, at on-ramp:
0.15� capacity of main road downstream of merge location.

2. High inflow: at inflow boundary of main road: 0.6� capacity of main road downstream of merge location, at on-ramp:
0.2� capacity of main road downstream of merge location. And full priority for on-ramp (cmain road = 0, con-ramp = 1).

3. High inflow: as case 2 but with merge priority (cmain road = 2/3, con-ramp = 1/3).

The results can be seen in Fig. 6.
Furthermore, we studied the influence of the number of vehicle groups that were used in determining merge priority and

the influence of the numerical resolution (vehicle group size and time step size). The results of case 2 (with normal resolu-
tion) and only the last vehicle group determining the priority (M = 1 instead of M = 5) are shown in Fig. 7a. The results of case
2 with small vehicle groups, small time steps and thus a high resolution (Dn = 2, Dt = 0.64 s instead of Dn = 10, Dt = 3.2 s) are
shown in Fig. 7b.
4.1. Discussion of simulation results

From the results of case 1 (Fig. 6a) we see that with low inflow no congestion occurs, as is to be expected. Furthermore,
the simulated merge ratio only depends on the inflow rates and there is no influence of the merge priority (not shown). From
the results of case 2 and 3 (Fig. 6b and c) we see that congestion starts at the bottleneck caused by this lane-drop. It then
spills back to the merge. There is also a little congestion at the main road starting at the merge. This is not supposed to occur
since the total inflow is equal to the capacity downstream of the node. This congestion is due to the discretization method.
Other tests (results not shown) show that this only occurs when the total inflow from main road and on-ramp is at or just
below capacity of the main road. A possible remedy can be found in applying a more exact procedure for both vehicle and
time discretization, as described in Sections 3.2.1, 3.2.2.

Finally, when the congestion from the lane-drop spills back to the merge the influence of the merge priority can be ob-
served. In case 2 (full priority for the on-ramp), the on-ramp remains in free flow, while the main road upstream of the merge
Fig. 7. Results of on-ramp bottleneck simulations, with some adjusted numerical parameters. Legend: see Fig. 6.



Fig. 8. Vehicle speeds in case 2 at three cross sections of the main road between the on-ramp and the lane-drop.
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becomes (more) congested. In case 3, where the priority is distributed over both incoming links, also the congestion spills
back over both incoming links. The calculated merge ratio is, in the long run, as expected from the analytical results.

The influence of the number of vehicle groups to determine the priority (M) was tested only for case 2. The results (see
Fig. 7a) show that the influence is negligible. We have also tested this with M = 10 (not shown), again the results were sim-
ilar. Case 2 was also used to study the influence of the numerical resolution (see Fig. 7b). Both the vehicle group size and time
step size were taken five times as small. The overall results are similar. However, in the low resolution case ’artificial stop-
and-go waves’ can be observed. Small low speed regions are created at the bottleneck and travel upstream. In the high res-
olution case, they have disappeared almost completely. In other simulation results (not shown) we have found that when the
CFL-condition is satisfied as an equality, there is less numerical diffusion and the artificial waves do not disappear. The dif-
fusion of the disturbances is also illustrated in Fig. 8. It shows that the artificial stop-and-go waves are indeed due to the
numerical discretization and resolution. Moreover, these artificial waves only influence a small region and they disappear
almost completely due to diffusion, in the low resolution case within 550 m upstream, in the high resolution case even with-
in 300 m upstream.
5. Conclusion

In this article we have derived an analytical expression for network components such as sinks and sources, boundaries
and changes in the fundamental diagram in the Lagrangian formulation of the kinematic wave model. The formulation
clearly shows how nodes in Lagrangian coordinates effectively generate (or remove) vehicles into (from) the flow and as
a result change the spacing of vehicles that pass the node.

In the discretized case we find that there are several options to choose from in terms of vehicle discretization and time
discretization. At the nodes, one can either break up all groups and form new ones according to the amount of vehicles enter-
ing or leaving or one could maintain the existing vehicle groups and add or remove group (in units Dn) entering or exiting.
Although the first method will lead to more accurate results on a small scale, the second method is more easy to implement
and leads to plausible and accurate results. A similar design choice relates to time discretization. One could add vehicles at
the time a group first passes the node, or do this at the next time step. Again the first option will lead to more accurate re-
sults, whereas the second is more straightforward to implement and leads to plausible and accurate results.

A disadvantage of the numerical solution method is the introduction of artificial stop-and-go waves and congestion. We
have shown that they are indeed created by the numerical method and that the stop-and-go-waves diffuse quickly. However,
they can easily be misinterpreted as real stop-and-go waves. More exact approaches, such as the other choices we mentioned
or an approach based on the minimum supply and demand scheme to be applied only at the nodes will lead to more accurate
results, without artificial stop-and-go waves. Furthermore, at inhomogeneities such as changes in the fundamental diagram
the conservation Eq. (1) or equivalently (3) is not strictly hyperbolic. Therefore, the proposed numerical method will create
numerical diffusion. This might be prevented by applying methods such as proposed in (Jin and Zhang, 2003).

Models of boundaries and nodes make it possible to model networks consisting of many interconnected inhomogeneous
roads in Lagrangian coordinates. These models and corresponding simulation tools and can be applied for online traffic state
estimation and prediction on real freeway networks. The computations based on the Lagrangian formulation are more effi-
cient (both in computation time and accuracy) than computations based on the Eulerian formulation. This has been verified
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for traffic state estimation in (Yuan et al., 2011). Furthermore, these ‘building blocks’ of a network are necessary for evalu-
ation of the model based on traffic data from either sensors fixed in space or floating car data.

With a reliable means at hand to implement nodes into the Lagrangian framework, larger scale modeling of traffic net-
works on the basis of the Lagrangian formulation becomes possible. Further research efforts will focus on such network
implementations. Secondly, the mixed-class node models and their discretization developed here will be generalized for
application to multi-class kinematic wave models. Furthermore, more exact approaches such as described above will be
studied, as well as errors introduced by the proposed methods.
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