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Problem area 
Improving stealth technology is an 
important field of research that is 
extensively used for both aircraft 
design and operations. Next to 
platform alignment, further 
reduction of the Radar Cross 
Section can be achieved by the use 
of advanced radar absorbing 
materials. In particular 
ferromagnetic materials can be 
utilised as a coating or as particles 
in a composite structure. To 
complement physical experiments, 
numerical methods provide a viable 
tool to analyse the backscattered 
radar field of a platform. 
 
Description of work 
In this report a promising method to 
numerically predict the Radar Cross 
Section will be presented. This 
method is designed for future appli-
cations such as predicting the radar 
signature of aircraft with advanced 
radar absorbing materials. Since 
nonlinear responses are expected, 
the method is fully formulated in 
the time domain, as opposed to 
standard approaches formulated in 
the frequency domain. A basic 
choice in this time domain method 
is the definition of temporal basis 
functions. The design of these 
functions will be motivated by a 
thorough accuracy analysis. 

Results and conclusions 
The widespread use of the shifted 
Lagrange basis functions are 
inspired by its optimal accuracy for 
the given class of functions that 
provide an efficient algorithm. The 
additional requirement of smooth 
basis functions can be achieved 
without impinging on the global 
accuracy. These novel spline basis 
functions result in both an accurate 
interpolation scheme and smooth 
electromagnetic fields. The 
presented analysis of temporal basis 
functions gives a careful foundation 
for high-order accurate methods in 
time. Numerical results obtained 
with the proposed method show 
electric surface currents that satisfy 
the accuracy and smoothness 
claimed by the mathematical 
analysis. 
 
Applicability 
Time Domain Integral Equation 
methods are a prerequisite to 
numerically model the nonlinear 
response of ferromagnetic radar 
absorbing materials. Large scale 
computations are expected to be 
feasible because use is made of a 
boundary integral formulation for 
which only the surface of the 
aircraft needs to be modelled. 
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Abstract

A key parameter in the design of integral equation methods for transient electromagnetic scatter-

ing is the choice of temporal basis functions. Newly constructed basis functions have to meet

requirements on accuracy, smoothness and efficiency, while the requirement of bandlimited-

ness is dropped for the nonlinear case. An analysis of the interpolation accuracy will justify the

widespread use of the shifted Lagrange basis functions, because these have optimal accuracy, but

introduce nonsmoothness in the calculated fields. Alternatively, a novel spline basis function is

proposed that has optimal accuracy under an additional smoothness constraint. Computational

results confirm the expected smoothness and accuracy.
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1 Introduction

Time Domain Integral Equation (TDIE) methods are used to model transient electromagnetic

scattering from complex structures. When, for example, the scatterer is coated with ferromag-

netic or chiral radar absorbing materials, its response will be nonlinear, and standard methods in

the frequency domain are not applicable. The boundary integral formulation has the added ad-

vantage of being efficient because the number of degrees of freedom scales squared instead of

cubed with the electrical size of the object. For realistic problems, efficiency can be improved

with plane-wave techniques (Refs. 6, 1, 5).

Historically, many choices for the definition of TDIE methods have been inspired by the Method

of Moments (MoM), its frequency domain analogue. However, temporal basis functions are not

encountered in the MoM. Linear functions have first been used as building block of the temporal

basis functions (Ref. 4), followed by the introduction of basis functions with quadratic Lagrange

polynomials (Ref. 3). The associated family of shifted Lagrange basis functions is still the most

popular choice as temporal basis function. Based on different design criteria many other tempo-

ral basis functions have been proposed, but with varying success (Ref. 2).

To the best of the authors’ knowledge, no comprehensive motivation for the choice of shifted La-

grange basis functions has been found in literature. This paper will show the unique advantage

of the Lagrange polynomials: its optimal accuracy for the given class of temporal basis func-

tions. Although optimal accurate, the piecewise smooth character of the shifted Lagrange basis

functions can result in nonsmooth solutions. Smoothness can only be enforced when alleviat-

ing accuracy requirements. As will be shown, a clever choice of requirements can maintain the

global accuracy while introducing smoothness. Aware of possible instabilities, this paper only

concentrates on the accuracy of the temporal basis functions. All computational results presented

are stable.

This paper starts in Section 2 by formulating the governing integral equations for transient elec-

tromagnetic scattering. How to construct temporal basis function for different criteria is ex-

plained in Section 3. The accuracy analysis of the temporal basis functions is presented in Sec-

tion 4. For different accuracy conditions the analysis not only results in the known Lagrange

polynomials and quadratic splines, but also gives a novel temporal basis function based on cu-

bic splines. In Section 5 computational results are shown for the TDIE method with different

temporal basis functions.

UNCLASSIFIED 1
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2 Formulation

For a closed and perfect electric conductor (PEC) with its surface denoted by S, integral equa-

tions give a relation between the incident and the scattered electromagnetic field. The scatterer

is surrounded by free space and the incident fields excite an electric surface current J(r, t) on S.

This electric surface current induces a scattered electric field Es(r, t) and scattered magnetic

field Hs(r, t). The differentiated scattered fields are given by

Ės(r, t) =
∫∫

S

(
µ
J̈(r′, τ)
4πR

− 1
ε
∇∇

′ · J(r′, τ)
4πR

)
dr′, (1)

Ḣs(r, t) = −
∫∫

S

(
∇× J̇(r′, τ)

4πR

)
dr′, (2)

for R = |r−r′|, τ = t− R
c denoting the retarded time, and ∇ and ∇′ denoting the nabla operator

with respect to r and r′, respectively. The surface conditions on the PEC scatterer are

−n× n×
(
Ėi(r, t) + Ės(r, t)

)
= 0, (3)

n×
(
Ḣi(r, t) + Ḣs(r, t)

)
= J̇(r, t), (4)

with n denoting the outward pointing unit normal on S. Substitution of the scattered fields (1)

and (2) into the surface conditions (3) and (4) results in the EFIE and MFIE, respectively. After

discretization, the CFIE is given by a linear combination of the EFIE and MFIE, that is,

(1− α)J̇− n×
(α

η
n× Ės + (1− α)Ḣs

)
= n×

(α

η
n× Ėi + (1− α)Ḣi

)
, (5)

for 0 ≤ α ≤ 1 and η =
√

µ/ε the impedance.

To solve the CFIE, the surface current J(r, t) is expanded in terms of NS spatial and Nt tempo-

ral basis functions as

J(r, t) =
NS∑
n=1

Nt∑
j=1

Jn,jfn(r)Tj(t). (6)

Spatially, a Galerkin testing procedure is applied. As spatial test and basis functions the RWG

function is used. The time span is divided into uniform intervals with time steps ti = i∆t for

i = 0, 1, 2, . . . . Temporal point matching in subsequent time levels tk results in the Marching on

in Time (MOT) algorithm (Ref. 7).

UNCLASSIFIED 2



  
NLR-TP-2011-042 

  
 6 

3 Construction of temporal basis functions 

UNCLASSIFIED
NLR-TP-2011-042

3 Construction of temporal basis functions

Temporal basis functions are constructed according to user defined design criteria. Important are

accuracy, smoothness, efficiency, and bandlimitedness, which can conflict with each other. How

much emphasis is put on which criterium can be inspired by the application of the TDIE method.

In this section it will be explained how these design criteria are used to construct temporal basis

functions.

Efficiency of the TDIE method is based on a trade-off between the amount of work and accuracy.

Generally speaking, basis functions with a small support result in an inexpensive TDIE method,

while a large support results in an accurate method. In this paper, only temporal basis functions

of a small support will be used: no entire-domain functions are taken into account. Moreover,

TDIE methods are solved as a MOT algorithm, for which the unknown surface current is solved

efficiently from solutions at previous time levels. Causal temporal basis functions naturally sat-

isfy the marching criterion. Therefore, the analysis is restricted to causal basis functions only.

Bandlimitedness has been imposed on temporal basis functions to exclude undesirable frequency

content from the TDIE method (Ref. 7). Since our main interest of application is nonlinear scat-

tering, bandlimitedness of the backscattered field can not be assumed. Therefore, no limits will

be imposed on the frequency band of the temporal basis function.

Smoothness is desired because smooth surface currents are expected from physical principles.

Furthermore, smooth functions will result in more accurate quadrature of the spatial integrals.

Accuracy will be the most important issue for the construction of temporal basis functions. The

accuracy analysis restricts to the error stemming from the time discretization only, which is one

part of the truncation error of the TDIE method. With the aid of the accuracy analysis not only

existing basis functions can be justified, it also provides a structured procedure to develop new

basis functions. Abandoning optimal accuracy gives way to incorporating smoothness into the

interpolation. Novel temporal basis functions can then be constructed with a user-defined trade-

off between accuracy and smoothness.

Classic EFIE formulations use an integral with respect to time, acting on the surface current. Be-

cause numerical procedures for evaluating these integrals are tedious, a differentiated formula-

tion is often used. This liberates the equations from time integrals, but is at the expense of a sec-

ond order time derivative. The time derivatives of the unkown functions are represented by the

derivatives of the interpolator. Because differentiation reduces the interpolation accuracy by one

order, also the accuracy of the time differentiated functions is reduced by one order.

UNCLASSIFIED 3
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4 Accuracy of temporal basis functions

A key factor for the success of the MOT algorithm is the proper choice of temporal basis func-

tions Tj(t) for j = 1, 2, . . . , Nt. Therefore a thorough analysis of the interpolation accuracy will

be presented in this section. The basis functions are chosen as Tj(t) = T (t − j∆t) for a pre-

defined function T (t). The function T is called the interpolant, since it interpolates functions at

a retarded time level between several discrete time steps. The interpolant has a bounded support

around zero, given by a fixed multiple of ∆t.

The temporal accuracy is measured as the order with respect to the time step size of the point-

wise interpolation error. The analysis starts with a general representation of temporal basis func-

tions. Imposing the orders of accuracy results in conditions on the interpolation functions. The

unique interpolator satisfying the proposed conditions gives a representation of the temporal ba-

sis function.

4.1 Optimal order accurate three-point interpolant
First, three-point interpolants will be analyzed. The corresponding temporal basis function can

be represented by a set of three independent functions. That is,

T (t) =



F0(t), −∆t < t ≤ 0,

F1(t), 0 < t ≤ ∆t,

F2(t), ∆t < t ≤ 2∆t,

0, else,

(7)

for arbitrary functions F0, F1, F2 that are twice continuously differentiable inside their respective

time intervals.

Consider an arbitrary retarded time instant τk, that is situated in the time interval t`−1 < τk ≤ t`.

Substitution of the interpolant (7) into the series expansion (6) of the surface current results in

J(r, τk) =
NS∑
n=1

fn(r)
(
Jn,`F0(τk − t`) + Jn,`−1F1(τk − t`−1) + Jn,`−2F2(τk − t`−2)

)
. (8)

This interpolation has to represent the surface current accurate for arbitrary τk. For three-point

interpolators, third order accuracy can be imposed. Because time differentiation drops the accu-

racy by one order, the first time derivative will thus be interpolated second order accurate, and

UNCLASSIFIED 4
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the second time derivative will have first order accuracy. In total this results in a first order accu-

rate TDIE method. These accuracy conditions are represented by

F0 + F1 + F2 = 1, (9)

F1 + 2F2 =
t` − τk

∆t
, (10)

F1 + 4F2 =
( t` − τk

∆t

)2
, (11)

as derived in Appendix A. The first equation is the well-known unit sum condition for inter-

polants. These three accuracy conditions uniquely determine the three-point interpolant as

T (t) =



1
2 t̃2 + 3

2 t̃ + 1, −1 < t̃ ≤ 0,

−t̃2 + 1, 0 < t̃ ≤ 1,

1
2 t̃2 − 3

2 t̃ + 1, 1 < t̃ ≤ 2,

0, else,

(12)

for the scaled time t̃ = t/∆t. This temporal basis function can be recognized as the quadratic

Lagrange basis function (Ref. 3).

4.2 Smooth and accurate three-point interpolant
Given optimal accuracy for three-point interpolation, the analysis results in a unique represen-

tation of the temporal basis function. The resulting quadratic Lagrange basis function is contin-

uous, but nonsmooth in the discrete time levels. Because the shifted Lagrange basis function is

the unique solution, the accuracy conditions have to be relaxed to give some freedom for other

conditions, like smoothness.

Quadratic Lagrange interpolants have a global accuracy of order one, but the function itself and

its first derivative are third and second order accurate, respectively. A natural choice of alleviat-

ing accuracy is to impose first order accuracy on the basis function, as well as its first and sec-

ond time derivative. The global accuracy of the TDIE method is thus order one. Additionally, a

continuous derivative of the basis functions is required. For these conditions, the interpolant is

uniquely defined as

T (t) =



1
2 t̃2 + t̃ + 1

2 −1 < t̃ ≤ 0,

−t̃2 + t̃ + 1
2 0 < t̃ ≤ 1,

1
2 t̃2 − 2t̃ + 2 1 < t̃ ≤ 2,

0 else.

(13)

This gives the temporal basis function based on quadratic splines (Ref. 2).

UNCLASSIFIED 5
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4.3 Optimal order accurate four-point interpolant
The quadratic Lagrange polynomials are the only three-point interpolants that approximate func-

tions third order accurate. Improvement in accuracy can thus only be achieved by increasing the

number of support points. Four-point interpolants are represented by

T (t) =



F0(t), −∆t < t ≤ 0,

F1(t), 0 < t ≤ ∆t,

F2(t), ∆t < t ≤ 2∆t,

F3(t), 2∆t < t ≤ 3∆t,

0, else.

(14)

Imposing the conditions

F0 + F1 + F2 + F3 = 1, (15)

F1 + 2F2 + 3F3 =
t` − τk

∆t
, (16)

F1 + 4F2 + 9F3 =
( t` − τk

∆t

)2
, (17)

F1 + 8F2 + 27F3 =
( t` − τk

∆t

)3
, (18)

results in interpolants that approximate functions fourth-order accurate. The first and second time

derivative is then interpolated third and second order accurate, respectively, resulting in a sec-

ond order accurate TDIE method. The unique interpolant satisfying these accuracy conditions is

given by

T (t) =



1
6 t̃3 + t̃2 + 11

6 t̃ + 1, −1 < t̃ ≤ 0,

−1
2 t̃3 − t̃2 + 1

2 t̃ + 1, 0 < t̃ ≤ 1,

1
2 t̃3 − t̃2 − 1

2 t̃ + 1, 1 < t̃ ≤ 2,

−1
6 t̃3 + t̃2 − 11

6 t̃ + 1, 2 < t̃ ≤ 3,

0, else,

(19)

which is the cubic Lagrange interpolant (Ref. 2).

4.4 Smooth and accurate four-point interpolant
Optimal accuracy is uniquely obtained by cubic Lagrange basis functions, which are continu-

ous but have a discontinuous time derivative in the discrete time levels. To obtain smooth inter-

polants, the accuracy conditions have to be softened. However, the same global accuracy can be

achieved by alleviating the accuracy conditions on the interpolant and its first derivative only.

UNCLASSIFIED 6
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Continuity of the derivative can be imposed additionally. The unique solution is defined by the

cubic spline interpolant, given by

T (t) =



1
6 t̃3 + t̃2 + 3

2 t̃ + 2
3 , −1 < t̃ ≤ 0,

−1
2 t̃3 − t̃2 + 3

2 t̃ + 2
3 , 0 < t̃ ≤ 1,

1
2 t̃3 − t̃2 − 3

2 t̃ + 8
3 , 1 < t̃ ≤ 2,

−1
6 t̃3 + t̃2 − 3

2 t̃, 2 < t̃ ≤ 3,

0, else.

(20)

In (Ref. 2) also a temporal basis function based on cubic splines has been used. Although both

named cubic spline interpolators, the definition of the basis function in (Ref. 2) differs from defi-

nition (20). The novel temporal basis function based on the cubic spline interpolator (20) has the

special property of being both smooth and second order accurate. Concluding, cubic spline basis

functions have the same accuracy as cubic Lagrange basis functions, and have the added advan-

tage of a continuous derivative. In Figure 1 the considered temporal basis functions are shown

and their characteristics are listed in Table 1.

Fig. 1 Temporal basis functions.

UNCLASSIFIED 7
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basis function acc. T acc. T ′ acc. T ′′ total acc. smoothness

quadratic Lagrange O(∆t3) O(∆t2) O(∆t) O(∆t) C0(R)

quadratic spline O(∆t) O(∆t) O(∆t) O(∆t) C1(R)

cubic Lagrange O(∆t4) O(∆t3) O(∆t2) O(∆t2) C0(R)

cubic spline O(∆t2) O(∆t2) O(∆t2) O(∆t2) C1(R)

Table 1 Accuracy for the three temporal terms, the total accuracy in time of the CFIE and the

smoothness of the various temporal basis functions.

5 Numerical results

The TDIE method with the temporal basis functions described in previous sections and shown in

Figure 1 is applied to a PEC cube with edges of 1 m. A Gaussian plane wave is used as incident

field, that is, Ei(r, t) = 120πp 4√
πT

e−(4(c(t−t0)−r·k)/T )2 . The parameters are given by: polariza-

tion p = x̂; propagation k = −ẑ; width T = 6 lm; and delay t0 = 4 lm. The CFIE-0.5 is used

with an implicit time step size of 0.71 lm.

Fig. 2 Electric surface current at the top face of a cube.

In Figure 2 the induced electric surface currents are shown. The reference solution is obtained
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5.1 Richardsons method 
6 Conclusions 
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with a small time step size of 0.012 lm. The surface currents calculated with the TDIE method

using shifted Lagrange basis functions show discontinuities in the gradient. These nonsmooth

solutions in discrete time levels correspond with the piecewise smooth character of the shifted

Lagrange basis function. On the contrary, the surface currents from the spline basis functions are

smooth, as expected from the its construction.

5.1 Richardsons method
Richardsons extrapolation algorithm can be used to approximate the accuracy of numerical meth-

ods. Considering the same test problem with time step sizes of 0.012, 0.023, 0.047, 0.093, and

0.186 lm, the order of accuracy can be predicted three times. The accuracy according to Richard-

sons method, shown in Table 2, is very close to the expected order of one for the quadratic and

two for the cubic functions, confirming the equal global order of accuracy of spline and Lagrange

interpolants.

basis function 0.012 lm 0.023 lm 0.047 lm

quadratic Lagrange 1.096 1.099 1.185

quadratic spline 0.981 0.963 0.922

cubic Lagrange 2.064 2.086 2.344

cubic spline 1.970 1.929 1.834

Table 2 Order of accuracy, with the smallest time step size listed.

6 Conclusions

In this paper, a thorough analysis of the accuracy of the temporal basis functions used in the

TDIE method is presented. For a causal interpolator with a fixed bounded support, only the La-

grange polynomials give an optimal order of accuracy. The shifted Lagrange basis functions

are piecewise smooth. Global smoothness can only be obtained when alleviating the accuracy

conditions. However, by alleviating the accuracy condition cleverly, the total accuracy of the

TDIE method can remain the same while contuinity of the derivative is required additionally.

This results in temporal basis functions based on splines. For example, the novel cubic spline ba-

sis function has a continuous derivative and is second order accurate, which is the same global

accuracy as the cubic Lagrange basis functions. Numerical results confirm the expected accuracy

and smoothness of the TDIE method.

UNCLASSIFIED 9
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Appendix A Derivation of accuracy conditions

Temporal basis functions in the MOT scheme are denoted by Tj(t) and formulated as Tj(t) =

T (t − j∆T ). The definition of T will then give a representation of all temporal basis functions.

The class of causal basis functions with a small support can be written as

T (t) =



F0(t), −∆t < t ≤ 0,

F1(t), 0 < t ≤ ∆t,

F2(t), ∆t < t ≤ 2∆t,

0, else,

(21)

for F0, F1 and F2 denoting quadratic polynomials and ∆t the time step size. Suppose the model

equations are evaluated in an arbitrary retarded time level τk, one can find a discrete time level t` =

`∆t such that t`−1 < τk ≤ t`. With σ defined as σ = t` − τk, the analysis can be restricted to an

arbitrary σ ∈ [0,∆t).

In the TDIE method one obtains an approximation of the unknown electric surface current. In the

present analysis, the unknown function is denoted by u(t). The MOT scheme provides approx-

imations un of the unknown at discrete time levels tn. Since only the interpolation error will be

analyzed, one can assume this to be the unknown at this time level, so ũn = u(tn). The interpo-

lation procedure results in an function û(t) that approximates u(t). In an arbitrary retarded time

level, this is given by

û(τk) =
k∑

n=0

Tn(τk)ũn, (22)

and similar for its time derivatives, i.e.,

û′(τk) =
k∑

n=0

T ′
n(τk)ũn (23)

and

û′′(τk) =
k∑

n=0

T ′′
n (τk)ũn. (24)

For quadratic polynomial basis functions (21) the interpolation rule gives

û(τk) = F0(−σ)ũ` +F1(∆t− σ)ũ`−1 +F2(2∆t− σ)ũ`−2, (25)

û′(τk) = F ′
0(−σ)ũ` +F ′

1(∆t− σ)ũ`−1 +F ′
2(2∆t− σ)ũ`−2, (26)

û′′(τk) = F ′′
0 (−σ)ũ` +F ′′

1 (∆t−σ)ũ`−1 +F ′′
2 (2∆t−σ)ũ`−2. (27)
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The interpolation error of û, û′, and û′′ at an arbitrary retarded time level is given by |û(τk)−uσ|,
|û′(τk) − u′σ|, and |û′′(τk) − u′′σ|, respectively, for uσ = u(τk), u′σ = u′(τk), and u′′σ = u′′(τk).

To obtain the order of accuracy, the functions in the nodal points are written as a Taylor series in

the unknown functions in the retarded time level. That is,

ũ` = u` = uσ + σu′σ +
σ2

2
u′′σ +O(σ3). (28)

ũ`−1 = u`−1 = uσ + (σ −∆t)u′σ +
(σ −∆t)2

2
u′′σ +O(σ3), (29)

ũ`−2 = u`−2 = uσ + (σ − 2∆t)u′σ +
(σ − 2∆t)2

2
u′′σ +O(σ3), (30)

Substitution of the Taylor series (28)-(30) into the approximations (25)-(27) and using O(σ) =

O(∆t) results in

û(τk) = A11uσ +A12u
′
σ +A13u

′′
σ +O(∆t3), (31)

û′(τk) = A21uσ +A22u
′
σ +A23u

′′
σ +O(∆t2), (32)

û′′(τk) = A31uσ +A32u
′
σ +A33u

′′
σ +O(∆t), (33)

with Aij given by

A11 = F0,σ + F1,σ + F2,σ, (34)

A12 = σF0,σ + (σ −∆t)F1,σ + (σ − 2∆t)F2,σ, (35)

A13 =
1
2
σ2F0,σ +

(σ −∆t)2

2
F1,σ +

(σ − 2∆t)2

2
F2,σ, (36)

A21 = F ′
0,σ + F ′

1,σ + F ′
2,σ, (37)

A22 = σF ′
0,σ + (σ −∆t)F ′

1,σ + (σ − 2∆t)F ′
2,σ, (38)

A23 =
1
2
σ2F ′

0,σ +
(σ −∆t)2

2
F ′

1,σ +
(σ − 2∆t)2

2
F ′

2,σ, (39)

A31 = F ′′
0,σ + F ′′

1,σ + F ′′
2,σ, (40)

A32 = σF ′′
0,σ + (σ −∆t)F ′′

1,σ + (σ − 2∆t)F ′′
2,σ, (41)

A33 =
1
2
σ2F ′′

0,σ +
(σ −∆t)2

2
F ′′

1,σ +
(σ − 2∆t)2

2
F ′′

2,σ, (42)

with the abbreviations

F0,σ = F0(−σ), (43)

F1,σ = F1(∆t− σ), (44)

F2,σ = F2(2∆t− σ). (45)
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To obtain a first order accurate interpolation scheme, one needs û(τk) = uσ + O(∆t), which

is satisfied if A11 = 1. So the accuracy condition for a first orde accurate interpolation of an

unknown function value is given by

F0,σ + F1,σ + F2,σ = 1. (46)

A second order accurate interpolation is obtained if A11 = 1 and A12 = 0, which is equivalent to

conditions (46) and

F1,σ + 2F2,σ =
σ

∆t
. (47)

A third order accurate interpolation is obtained if A11 = 1, A12 = 0 and A13 = 0, which is

equivalent to conditions (46), (47) and

F1,σ + 4F2,σ =
( σ

∆t

)2
. (48)

Notice that the three conditions (46), (47) and (48) imply A21 = 0, A31 = 0, A22 = 1, A32 = 0,

A23 = 0, A33 = 1 for all σ ∈ [0,∆t).

Concluding, conditions (46), (47) and (48) are sufficient to obtain optimal accuracy, i.e.,

|û(τk)− uσ| = O(∆t3), (49)

|û′(τk)− u′σ| = O(∆t2), (50)

|û′′(τk)− u′′σ| = O(∆t). (51)

To obtain first order accuracy for all three terms, it is sufficient to require A11 = 1, A22 = 1,

and A33 = 1, which is equivalent with

F0,σ + F1,σ + F2,σ = 1, (52)

F ′
1,σ + 2F ′

2,σ = − 1
∆t

, (53)

F ′′
1,σ + 4F ′′

2,σ =
2

∆t2
, (54)

for all σ ∈ [0,∆t). Notice that conditions (52) and (53) imply A21 = 0, A31 = 0, and A32 = 0,

and thus first order accuracy is obtained.
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