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Abstract 

Van der Vorst, H.A., and C. Vuik, The superlinear convergence behaviour of GMRES, Journal of Computa- 
tional and Applied Mathematics 48 (1993) 327-341. 

GMRES is a rather popular iterative method for the solution of nonsingular nonsymmetric linear systems. It is 
we11 known that GMRES often has a so-called superlinear convergence behaviour, i.e., the rate of convergence 
seems to improve as the iteration proceeds. For the conjugate gradients method this phenomenon has been 
related to a (modest) degree of convergence of the Ritz values. It has been observed in experiments that for 
GMRES too, changes in the convergence behaviour seem to be related to the convergence of Ritz values. In 
this paper we prove that as soon as eigenvalues of the original operator are sufficiently well approximated by 
Ritz values, GMRES from then on converges at least as fast as for a related system in which these eigenvalues 
(and their eigenvector components) are missing. 

Keywords: GMRES; Full Orthogonalization Method; Krylov subspace; Ritz values; convergence behaviour. 

0. Introduction 

In this paper we study the superlinear convergence behaviour of GMRES, observed when 
solving relevant nonsingular nonsymmetric linear systems. That is, our aim is to understand 
when and why the method converges faster than in a previous phase of the iteration process. 
This should not be confused with the fact that one can derive bounds for the residual that 
describe convergence with almost any desired rate of convergence. These bounds are usually 
obtained by replacing the actual Krylov iteration polynomial (which produces the actual 
minimum norm residuals) by polynomials that are the product of factors that vanish at selected 
eigenvalues of the operator and a Chebyshev polynomial that takes small values over the 
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remaining part of the interval. This is a well-known technique (see, e.g., [1,3,10]), which 
sometimes leads to useful bounds for the residuals, but which fails to predict the gradual 
changes that one observes in actual convergence histories. 

Our main motivation for this theoretical study are the results of the experiments reported in 
[6] (see also [12]), which suggest a relation between the convergence of the GMRES iterates 
and the convergence of the Ritz values to the eigenvalues of the matrix. Such a relation for the 
conjugate gradients method has been derived in [ll]. The main problem in obtaining a similar 
relation for GMRES is that the Ritz values are not the zeros of the iteration polynomial for 
GMRES, as is the case for conjugate gradients. 

Another difficulty is that a nonsymmetric matrix cannot always be transformed to diagonal 
form by similarity transformations. One might argue that in finite-precision arithmetic defec- 
tiveness of a matrix does not play a role, because when a matrix has Jordan blocks of dimension 
larger than one in exact arithmetic, then in the presence of rounding errors the multiplicity of 
the eigenvalues will be one in practice. However, the eigenvector matrix will be very ill-condi- 
tioned in that case. In our experiments we could not see the difference in convergence 
behaviour for operators with single eigenvalues, but ill-conditioned eigenvectors for some 
almost multiple eigenvalues, and operators with those almost multiple eigenvalues replaced by 
Jordan blocks of appropriate size. Therefore, we believe that it is worthwhile to include the 
Jordan block case in the analysis, even if we wish to explain the phenomena that one observes 
in rounding-error arithmetic. 

Our approach is based upon the relation with GMRES and the Full Orthogonalization 
Method (FOM), for which the iteration polynomial has the Ritz values as its zeros. In our 
analysis we assume exact arithmetic. Nevertheless, it appears that our analysis may help to 
understand phenomena that are observed in actual floating-point computation. 

In Section 1 we briefly describe GMRES and FOM, and we summarize some relevant 
properties of these methods. In Section 2 we present relations between the convergence of 
GMRES and FOM, and the convergence of the Ritz values. Finally, in Section 3, we describe 
some numerical experiments, which illustrate our theoretical results. 

1. Definitions and preliminaries 

In this section we recall some fundamental properties of the FOM and GMRES method 
12,101; which are iterative methods for solving linear systems with a nonsymmetric matrix. 

Consider the linear system Ax = b with X, b E 1w” and with a nonsingular A E Wx”. The 
Krylov subspace Kk(A; ro> is defined by K“(A; ra) = span{r,, Ar,,, . . . , Ak-‘rO}. In both FOM 
and GMRES, Arnoldi’s method is used for the construction of an orthonormal basis {ui, . . . , uk) 

for Kk(A; ra). The modified Gram-Schmidt version of Arnoldi’s method can be described as 
follows [4, p.155], [lo, p.8571: 

(1) start: choose x0 and compute r0 = b -Ax, and u1 = r,,/ II r0 II 2; 
(2) iterate: for j = 1,. . . , k do: 

uj+i :=Auj 
for i = 1, . . . , j do: 

hij := UjT+i7Ji, uj+i := uj+i - hijUi, 
hj+l j ‘= II uj+l II 23 uj+l = Uj+l/hj+l,j* 

(The nondefined hi,j are assumed to be zero.) 
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With the nxk matrix l/k=[ui,..., uk] we have that Hk = V,,=AVk is an upper k x k 

Hessenberg matrix whose entries are the scalars hjj. 

In the FOM method we construct an approximate solution xl of the form X: =x0 + z[ 
where .zF is an element of Kk(A; ro> with the following property: 

r,F=b-AX;IKk(A; Yo). (1) 

Note that if A is symmetric, then FOM is equivalent to CG (compare [ll, (2.311). If Hk is 
nonsingular, then it is easy to show that z: = V,yl, where y, satisfies H,yL = II r. II 2 e, and e, 
is the first unit vector in [Wk. However, when Hk is singular, it can be proved that a solution X: 
does not exist (see [2, Section 31). 

We describe the solution method in GMRES in little more detail, since some of the iteration 
coefficients are needed in Section 3. In GMRES the approximate solution X: =x0 + zf with 
2: E Kk(A; ro> is such that 

As a consequence of (2) we have that rk G is orthogonal to AKk(A; r,), or rf I Kk(A; Ar,). If 
A is symmetric, then GMRES is equivalent to MINRES [7]. 

Defining the matrix Hk E L@+lxk) as 

i&= o 
i 

Hk 
. . . I 0 hk+l,k ’ 

it follows that AT/, = I/,+,E,. Using this equation, it is shown [lo, Section 3.11 that xp =x0 + 
V, y,“, where yz solves the following least-squares problem: 

(3) 

with p = 11 r. 11 2 and e, the first unit vector in [W“+‘. In contrast with FOM, the approximations 
x: obtained with GMRES exist for all k [& Section 31, [lo, Section 3.41. 

TO solve the least-squares problem (31, Hk is factorized as Q,‘R, by Givens rotations, where 
Qk E [w (k+l)x(k+l) , QZQ, = Ib+,, and R, E [W(k+l)xk is an upper triangular matrix. The matrix 

Qk is taken as Qk = Fk . . -“k’i, where”the matrix Fi E [W(ktl)x(k+l) is the following Givens 
rotation: 

1 

1 
‘i 
‘i 

0 

-s; 

‘j 
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which eliminates the element in the (j + 1, j)th position of Fj_1Fj_2 * * * F1gk. The product 

(where an asterisk stands for a nonzero element) implies that ck and sk should be chosen as 
follows: 

ck= J&$--+ and sk= - /* * 

Using this factorization, the least-squares problem (3) is equivalent to 

(4) 

Since the last row of R, is zero, yk G is the solution of the linear system with the leading k X k 
submatrix of R, as the matrix and the first k components of QkPel as the right-hand side. 

We cite the following important results for FOM and GMRES. 

Lemma 1.1 (Saad and Schultz [lo, Proposition 1, p.862]). The GMRES 
following equation : 

residual satisfies the 

(6) 

Lemma 1.2 (Brown [2, Theorem 5.11). If ck # 0, then the FOM and the GMRES residuals satisfy 
the following equation: 

11 ‘I? 112 = 1 ck 1 II ‘kF 112’ (7) 

Note. For a discussion on the implications of these properties for FOM and GMRES, see [2]. 

The Ritz values and the Ritz vectors are defined as follows (compare [5, p.4151, [ll, Section 
2.31). 

Definition 1.3. The Ritz values ll$“‘, . . . , Oik) are the eigenvalues of the matrix Hk = vkTAI/k 
(note that V>V, = Ik). If y!“) E IWk is a normalized eigenvector of Hk corresponding to Oik), 
then the vector zk = I/,Y!~) is called a Ritz vector. I 1 

Definition 1.4. For all the iterative methods to be discussed, it follows that the residual rk at 
the kth iteration step is a member of K kfl( A; r-J, and hence it can be written as a kth-degree 
polynomial in A, acting on rO. In connection with this we will call the polynomials for method 
M, the M polynomials. 
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The following result is an immediate consequence of [9, Theorem 5.11. 

Lemma 1.5. If ck # 0, where ck is defined in (41, then 
(1) The FOMpolynomial satisfies p,“< Hk) = 0; 
(2) Btk’ # 0 i = 1 1 , , * * * 7 k; 

(3) d(t) = 
( @k’ - t) . . . (@I - t) 

(e’l”‘) . . . ((q’) . (8) 

2. The convergence of FOM and GMRES 

In this section we shall prove some relations between the convergence of the Ritz values and 
the convergence of the FOM and the GMRES method. The proofs of our theorems follow 
closely the lines of a proof given in [ll, p.5471 where the matrix A is symmetric and positive 
definite. In that proof two important properties of the CG method are exploited: an optimality 
property and the property that the Ritz values are the roots of the “CG polynomial”. However, 
when A is nonsymmetric, neither the FOM method nor the GMRES method has both 
properties. This has led us to base our proofs on the optimality property of GMRES (see (2)) 
together with the fact that the Ritz values are the roots of the FOM polynomial (see Lemma 
1.5). 

For each matrix A there exists a nonsingular n x n matrix X which reduces the matrix A to 
its Jordan normal form, i.e., 

‘J, \ 

x-lmzJz J2 . , 

\ Jr?? , 
where each of the nj x nj submatrices Jj has the form 

We assume that the Jj have been ordered so that if A, = A, for s > t, then Ai = A, for all 
t G i G s, i.e., blocks with equal A have been grouped together. Furthermore, we assume that if 

A, =ht+,, then n, > nt+l, i.e., blocks with equal A have been ordered in descending size. Note 
that these orderings can be realized by simple symmetric permutations to X. 

Occasionally we will write a vector with respect to the basis represented by the columns of 
X, and this representation will be partitioned correspondingly to the partition of J, in 
particular r0 =Xy, with y = (ri, . . . , y,,JT. 



332 H.A. Van der Vorst, C. Vuik / Superlinear convergence of GMRES 

Definition 2.1. If t is such that A, = A, and A,+i # A,, then the blockdiagonal matrix D(l), with 
nj x nj blocks Dj’) along its diagonal, corresponding to the block sizes of J, is defined by 

(0, if j<t, 

(we assume that n, < k). 
Furthermore we define a blockdiagonal matrix DC2) with a block structure corresponding to J 

as 

Dy)=ql(Jj), for j= l,..., m, and qr~17[11, 

where fli denotes the class of polynomials of degree at most k and constant term 1. 

It is readily verified that Do) and DC2) commute. Note that DC2)y =X-‘q,(A)r,, so that it 
describes the iteration effect for the polynomial q1 with respect to the basis defined by X. 
Multiplication of this vector by D (I) has the effect that the part corresponding to the first 
Jordan block is removed and the parts corresponding to the other blocks are multiplied by 
block matrices that converge to identity blocks as the first n, Ritz values converge to A, (i.e., 
roots B!k) converging to A, are replaced by A,, see the corresponding polynomial defined in 
(9)). r 

Theorem 2.3 relates the residuals in a certain phase of GMRES to the residuals of a 
comparison process in which the influence of A, has been removed. This comparison process is 
defined as follows. 

Definition 2.2. Let r-2 (or Y,‘) denote the residual in the kth step of GMRES (or FOM) applied 
to Ax = b, with starting residual r0 =Xy, i.e., rf =pF(A>ro (or rf =pF(A)r,). For k such that 
Hk is nonsingular we define a comparison GMRES (or FOM) process which starts with 
~6 =pE(A)Xy’, where 7; = 0 for j < t and +y/ = yj for j > t. That is, the comparison processes 
start with the kth residual of FOM, after having deleted all the components corresponding to 
A,. The residual at the Ith step of the comparison GMRES (or FOM) process is denoted by rrG’ 
(or r:‘), and the corresponding GMRES polynomial by 47’. 

Theorem 2.3. Let k be such that Hk is nonsingular and let ItI < k; then for all I> 0 we have that 

IlrF+I iI2 < II XD(l)X-l 11211 ry’ l12. 

Proof. For the comparison process we have the relation 

G’ r1 = q,G’(A)rh. 

We can write rIG’ with respect to X as 

rrG’ =Xq,G’(J)p,F(J)y’. 

Now we define the auxiliary polynomial h, E Hi as 

“1 @k’ /+, -_t 
hk(t) = ly 7 $j-$(t); 

1 I 

(9) 

(note that p:(t) is defined since Hk is nonsingular). 
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It follows from the optimality property of GMRES that 

II e+r II* G II ~lG’(+kG+O II* = II x@‘x-‘x~(2)PkF(J)Y’ II2 

< II xD(‘)x-1112)( r?’ 112, 

which completes the proof. 0 

With Lemma 1.2 we have immediately the following corollary. 

Corollary 2.4. If k and 1 are such that Hk, Hk+[ and H,’ are nonsingular, then 

We obtain the following bound for I] XD”‘X- ’ II 2: 

11 xD(‘)x-’ 112 < K,(x)11 0(‘)112 

(10) 

(11) 
In the derivation of this bound we have used that ((~1 -.Ti>-’ and /31--J, commute, and, 
furthermore, that ]l((~l-~~l-~(~I--J~l II 2 < Il(al-Ji>-‘(~I-Jj>IIm. 

In order to prove this inequality, we use the norm inequality II * II 2 G /II * II 1 II * II m 

[5, Corollary 2.3.21. By writing out the matrix expression in the norm, one may verify that 

When A is diagonalizable, i.e., nj = 1, for all i, then this rather unpleasant expression 
reduces to 

11 x#l)xpl 112 < K2( x) - = F,K,( x). (12) 

This expression is quite similar to the expression derived in [ll] for the CG process. In [ll] the 
factor K~(X) vanishes, since for symmetric A we have that X is orthogonal. 

When there is a Jordan block with A, of dimension n, # 1, then we have to wait for a phase 
in the GMRES process in which there are n1 Ritz values close to A,. From then on the factor 
II XD(‘)X-’ 1) 2 is bounded by K~(X) times a modest constant, and we may expect that the 

method will further converge about as fast as for a problem in which A, is absent. This is in 
quite good agreement with an experiment in [6, p.22 and Fig. 231. 

Theorem 2.3 says that from the kth step on, the continued GMRES process behaves, except 
for a certain factor, as a GMRES process that has been started with the FOM result after k 
steps, in which the components corresponding to A, have been deleted. In order to get this 
factor small enough, the value of k should be chosen so large that e(,k) is relatively close to A,. 
The weak point in this comparison is that we relate the convergence behaviour of the continued 
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GMRES process to the result of a FOM process, whereas it would be more natural to use the 
result of the first k GMRES iterations. In view of the relation between GMRES and FOM, the 
theorem is then only of practical value in situations where I ck 1 is not too far from 1, since 
)I rl)) 2 = ]I r: I] 2/I ck ( . In that case we may compare the continued GMRES process from the 

kth step on with another GMRES process that has been started with a slightly modified 
GMRES residual at the kth step. The assumption about ( ck I does not put a too severe 
restriction on the applicability of the theorem, since it holds as soon as there is a noticeable 
reduction in the norms of the residuals in GMRES (cf. Lemma 1.1). 

Theorem 2.3 may also be used in combination with convergence estimates for the GMRES 
method, and then it is a powerful tool to analyse the actual convergence behaviour of GMRES. 
Such convergence estimates for the GMRES process are given in [lo, Section 3.41. Note that, 
with Lemma 1.2 and Corollary 2.4 this procedure can also be followed for the FOM process. 

However, straightforward application of Theorem 2.3 with, for instance, [lo, Proposition 4, 
p.8661 leads to a bound for the continued GMRES process which contains the factor K,(X)* 
instead of K*(X). The following theorem does not have this disadvantage and it also relates the 
residuals of the continued GMRES process with the residuals of a related GMRES process. 
For simplicity this theorem has been formulated for the situation that all nj = 1, i.e., that A is 
diagonalizable. The extension to the Jordan form case is rather straightforward. 

Theorem 2.5. Let A E RYx” be diagonalizable. Let k be such that Hk is nonsingular and let 8) be 
defined as follows: 

II e+r II2 G j3Wll e 112, 
where Fk has been defined in (12). 

Proof. We use h, as in (9) and we define another auxiliary polynomial q1 E II/ as follows: q1 is 
the polynomial for which 

e(l)= *m:; \4&)(. 
1 

For existence and uniqueness of this polynomial we refer to [8, p.1151. Since qlhk E II:,,, we 
obtain 

‘P34) 0 

(1 rkG+/ [I2 < llql( A)h,( A)r, [I2 = XD(‘)D(*)X-‘X . - . 

\ 0 PW,) 

G 4Xm(L)ll r: II2 = K*wP$-j II 57 IL 
which proves the theorem. 0 

Theorem 2.5 can be generalized as follows (compare [ll, Theorem 5.11). 
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Theorem 2.6. Let A E Rnx” be diagonalizable and let k be such that Hk is nonsingular. Let A, 
denote a set of r different eigenvalues of A, and At = {hi I Ai # Ai for all Ai E A,}. &) is defined 
as &) = min,,,jmax, tAc I q(hi) I and I r 

Then, 

Proof. The proof follows the lines the proof of Theorem 2.5. The only differences are in the 
choice of h, and q,. Here they are chosen as 

(j!k’ Ai - t 

hk(t) = n A pP:(t) ,+A, hi ei(k) -t 

and 

q, E 17; is such that ~(‘9~) = AmifC Iq~(‘i) 1. ’ 
I r 

By Lemma 1.2 we obtain the following result for FOM. 

Corollary 2.7. Let k and 1 be such that Hk and Hk+r are nonsingular; then 

3. Numerical experiments 

We have chosen rather simple examples in order to have all the information available to 

understand the convergence behaviour. These examples also make it easy for the reader to 
repeat the experiments. First we give an example for which GMRES is superlinear convergent. 
Then we present an example in which the matrix has a Jordan block of size 3. Though even 
small rounding errors perturb the matrix to a diagonalizable system, we will see that the actual 
situation is quite different from the multiple eigenvalue situation and that the size of the 
Jordan block has a strong influence on the convergence behaviour. Finally, we discuss a 
well-known example where the Ritz values do not converge. In this example the GMRES 
method is only linear convergent, which corresponds with the results given in Section 2. 

Our problems have been taken from [6, pp. 16, 171. The matrix is of the form A = SBS-’ 
with A, S, B E R’oox’oo. We have selected S, B to be equal to 

1 P 0 1 0 
1 P l+(Y 

s= and B = 3 

. . p 
-0 l_ -0 100 _ 
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Table 1 
The convergence of the first Ritz value for (Y = 0 

k 13 14 15 16 17 18 19 20 
tq’ 3.26 2.77 2.35 1.99 1.71 1.49 1.34 1.23 
F k.1 24 24 7 4 2.6 2.0 1.6 1.4 

The system Rx = b is solved for right-hand sides, such that x = (1,. . . , l>T. The iterative 
methods start with x0 = (0,. . . , OjT. 

In our first example we consider the convergence behaviour for the linear system with (Y = 0 
and /3 = 0.9 in view of Theorem 2.3. The eigenvalues are numbered as A, = 1, A, = 1 and 
Aj = i, i = 3,. . . ) 100, and the Ritz values, which are real, are numbered such that 81“) < 0$$\. 

The actual reduction factors II rF+i )I */I( rf II 2 are shown in Fig. 1. From k = 16 on, 
GMRES appears to be superlinear convergent. For this problem the residuals can be bounded 
by an upper bound that has a decay rate Cd- - 1)/(/z + 1) (see [lo, Theorem 
5 (with v = O)], and use the fact that all eigenvalues are on the real axis). Of course, this gives 
only a rough indication for the actual reduction factors, but it shows that we may expect faster 
convergence for problems for which the eigenvalue ratio A,,,/Amin is smaller. Obviously, since 
the eigenvalues, except for the first two, are equidistantly distributed, the decay rate changes 
more if we delete a small eigenvalue instead of a large eigenvalue. For this reason we restrict 
our attention to the lower part of the spectrum. Note that the eigenvalue A, = 1 does not play a 
role in this example. 

Table 1 shows the convergence of the smallest Ritz value. It appears that Fk,r with A, = {A,} 
has a moderate value from k = 16, and, from the discussion to Theorem 2.3, this implies that 
the convergence behaviour is comparable with a process for a system in which the residual has 
no component in the direction of the eigenvector corresponding to A, = 1. After some 
iterations the second Ritz value converges to A, (see Table 2, where A2 has been taken as 
A, = {A,, AX}). After k = 23, the process converges as if the eigenvalues A, (as well as A, = A,) 
and A, are absent. 

This is quite in line with the superlinear convergence behaviour of GMRES as observed from 
Fig. 1. The decay rates for the upper bounds, corresponding to the comparison processes for 
the respective phases of the GMRES iteration process, are 

&X-l 

/h,,,/A,+l =Oeg2, 

&X3-1 

/a+1 =Oe7. 

&LK4-1 
= 0.67. 

\lbo/A, + 1 ’ 

respectively. We see that the relative reduction in the decay rates is relatively large after the 
elimination of A,, and then it becomes smaller and smaller. We see a similar trend reflected in 

Table 2 
The convergence of the second Ritz value for (Y = 0 

k 

0p 
F k,2 

20 21 22 23 24 25 26 27 28 29 30 
4.19 3.98 3.8 3.66 3.54 3.45 3.38 3.3 3.25 3.2 3.17 
9 85 8 4 2.8 2.2 1.9 1.6 1.5 1.4 1.3 
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0’ I 
0 10 20 30 40 50 60 

i __-> 

Fig. 1. GMRES; I: as = 0, II: (Y = 0.1. 

the reduction factors, displayed in Fig. 1: their decrease is, indeed, much larger just beyond 
k = 16 than it is near k = 23. Note also that the predicted decay rates are in quite good 
agreement with the observed decay rates. 

We consider in little more detail the situation for GMRES applied with cx = 0.1 and p = 0.9, 
also displayed in Fig. 1. In this example we take A, = 1, A, = 1.1 and Ai = i for i = 3,. . . ,100. 

Until k = 24, the convergence behaviour is virtually the same as for GMRES applied to the 
system with cr = 0 and p = 0.9. From k = 24 to k = 30 we observe only linear convergence. We 
note that 0524) = 1.107 and 0(225) = 1.091, thus from k = 25 the smallest Ritz value is in [A,, A2]. 

From k = 31 until k = 36 the reduction factor increases. The second Ritz value is 3.096 for 
k = 30 and 2.951 for k = 31, so in that phase GMRES “discovers” a second eigenvalue less 
than A, = 3. From k = 37 the reduction factor decreases again, which is in agreement with the 
results given in Table 3 (where A2 = {A,, A2)). 

In Fig. 2 we show the GMRES residuals for the choice (Y = 0 and a = 0.1. It appears that the 
close eigenvalues A, = 1 and A, = 1.1 for (Y = 0.1 have a decelerating effect. However, the 
number of steps that GMRES for (Y = 0.1 lags behind GMRES for (Y = 0 is rather small 

Table 3 
The convergence of the second Ritz value for (Y = 0.1 

k 
ep 
F k.2 

30 31 32 33 34 35 36 37 38 39 40 
3.03 2.95 2.87 2.77 2.63 2.46 2.24 1.98 1.74 1.54 1.39 

227 112 40 22 13 8 5.4 3.6 2.5 1.9 1.5 
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-6 - 

-8 - 

-10 - 

0 10 20 30 40 50 60 

i ___> 

Fig. 2. GMRES; I: cy = 0, II: (Y = 0.1. 

(compare [ll, Section 6.71). It is not clear whether this phenomenon also occurs for problems 
with a more realistic spectrum. 

In our second example we consider a situation with a multiple eigenvalue. In exact 
arithmetic the multiplicity of an eigenvalue plays no role, as long as the matrix A is 

1 

0.1 

t 
OL -I 

0 10 20 30 40 50 60 

i ___> 

Fig. 3. GMRES for a spectrum with multiple eigenvalues. 
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i ___> 

Fig. 4. GMRES for a spectrum with a Jordan block of size 3. 

diagonalizable. To illustrate this, we consider the case where A, = A, = A, = 1, and Aj = j for 
j > 3, and p = 0.9. In Fig. 3 we see the error reduction plot for this case. The first, by now 
familiar bulge arises at the fifteenth iteration, after which the first Ritz value gets below 4, i.e., 
enters its final interval, and thereafter we recognize the expected faster convergence. The 
picture changes completely if A is not diagonalizable, i.e, when the matrix is defective. In Fig. 4 
we see the error reduction history for a system in which the first three eigenvalues (all equal to 
11 occur in a Jordan block of size 3. 

At the first bulge, we have that 13(,i) comes close to 1, at the second bulge @) arrives near 1 
and at the third bulge a third Ritz value comes close to 1. Only after these three Ritz values 
have arrived close enough to A = 1, we see convergence at a reduced rate. This is quite in line 
with Theorem 2.3 which states that faster convergence, corresponding to a process in which 
only Aj for j > 3 are present, may be expected only after three Ritz values have been converged 
sufficiently close enough to A = 1. 

Because of rounding errors one might have expected the matrix to be diagonalizable, but in 
that case the transformation matrix X is very ill-conditioned, so that the system behaves like 
having a Jordan block, i.e., all three eigenvalues have to be discovered, and the corresponding 
subspace has to be removed, before faster convergence can really take place. 

In our final experiment we take the matrix B as follows [2,6]: 
(Y 0 *.. 0 1 
1 *. *. 0 

B= '. . . 

0 

-0 1’ cY_ 
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Fig. 5. a = 1.2; I: FOM, II: GMRES. 

We choose (Y = 1.2, p = 0, the right-hand side b = (1, 0,. . . , OjT and starting vector x0 = 0. It is 
easily seen that the Hessenberg matrix Hk, obtained by Arnoldi’s process, is equal to the k X k 

upper part of B. So for k < 99 the Ritz value 8, ck) = 1.2 does not move to one of the eigenvalues 
A, = cr = exp(2k7ri/lOO), k = 0,. . . , 99, of A. This is in agreement, of course, with our numeri- 
cal results. 

In Fig. 5 it can be seen that FOM has a linear convergence behaviour, which means that the 
reduction factors are constant. Applying GMRES, the reduction factor changes only in the first 
iterates. Experiments with other values of p and b show more or less the same convergence 
behaviour. 

4. Conclusions 

We have analyzed in some detail the often observed superlinear convergence behaviour of 
GMRES. Our results show that a reduction in the speed of convergence, in a certain phase of 
the iteration process, can be expected as soon as certain eigenvalues of the given matrix are 
sufficiently well approximated by Ritz values. However, we have no theory why these eigenval- 
ues should be approximated in that phase of the process. Our findings are reasonably 
well-illustrated by numerical experiments and we believe that they have the following important 
implication. In practice, full GMRES is seldomly used, instead one restarts GMRES after m 
iteration steps. It is then to be expected that if m is not large enough in order to allow critical 
eigenspaces to be approximated by Ritz values, then slow convergence may be expected. This is 
quite in line with observations reported in [6,12]. 
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