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Some applications of INS feature sequences of fast and slow transients

Motivations:

 Time adaptivity can reduce CPU times in these applications… 
 An effective a-posteriori error estimator is however mandatory

Standard a-posteriori error estimator requires:
• Complex space-time error estimator or
• The comparison of two numerical solutions obtained with different 

accuracy time discretizations (eg. Adams–Bashforth/BDF2, as in Kay, 
Gresho, Griffiths, Silvester, 2008)

Blood flow dynamics:
• fast transients during systole
• slower dynamics during diastole

Algebraic splittings of velocity/pressure can provide effective 
estimator as a by product of the computations.



Basic settings:

Incompressible Unsteady
Navier-Stokes Equations

Space: Galerkin methods LBB conditions fulfilled

Time: BDFq schemes  (q≤3)

Discretization

At each time level t=tn+1 we need to solve the system:

being A the stiffness matrix (viscous stresses + convection terms)



Incremental Pressure Schemes:

is the pressure extrapolated from previous time steps, and                                                                   

At each time step we write                                  , where 

• For velocity/pressure splitting:
• Incremental pressure schemes improve the accuracy in time.
• High order extrapolation in time might reduce the stability.

• For Schur-Complement/Monolithic solutions:
• Incremental pressure provides a good initial guess.
• High order extrapolation in time does not affect stability.

A. Prohl – Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes 
equations, Wiley Teubner Advances in Num. Math., 1997

M. Henriksen and J. Holmen – Algebraic Splitting for Incompressible Navier-Stokes Equations, J. Comp. 

For example if s=1 then and if s = 2 then

The incremental pressure formulation reads
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Inexact LU block factorization:

F and G appropriate approximations of C 1, Q is such that DGDT DFDTQ is small

Neumann expansion:

Mass preserving scheme: F=G=H, Q=INp (Algebraic Chorin Temam, Perot ’93)

Momentum preserving sch.: G=C-1, F=H (Q=INp: Yosida, Quarteroni, Saleri, Veneziani,’99)

H

Higher order schemes build a sequence of Qq such that:

provided Δt is small enough.

being                                     and

F. Saleri, A. Veneziani – Pressure correction algebraic splitting methods for the incompressible Navier-Stokes 
equations – SIAM J. Num. Anal. (2006)



Inexact LU block factorization:

Velocity splitting errors Pressure splitting errors

Higher order schemes build a sequence of Qq such that:

being                                     and

A. Veneziani, A Note on the Consistency and Stability Properties of Yosida Fractional Step Schemes for the 
Unsteady Stokes Equations, SIAM J. Numer. Anal.,2009



High order Yosida schemes:

//Pressure corrections

z(i)    = ZeroVector(dim_P);

//Temporanely data structures

zz(i,j) = ZeroVector(dim_U);

dzz(i,j)= ZeroVector(dim_P);

Solve: S z(0) = rhs;

for(i=0; i<q; ++i)

zz(i,0) = -H A H DT z(i);

dzz(i,0) = D zz(i,0);

cc = dzz(i,0);

for(j=1; j<1+i; ++j)

zz(i-j,j) = - H A zz(i-j,j-1);

dzz(i-j,j) = D zz(i-j,j);

cc += dzz(i-j,j);

Solve: S z(i+1) = cc;

P = sum(z);

Norms of the pressure corrections zi

A. Veneziani, U. Villa – ALADINS: an ALgebraic splitting time ADaptive solver for the Incompressible Navier-
Stokes equations, J. Comput. Phys. (2013)

Algorithm to apply (SQq)-1 to a vector

timestep

Computational cost for each correction step:
- Three mat-vec in the velocity space
- One linear solve with the spd matrix S 



Eigenvalues of (SQp)
-1

High Order Yosida as Preconditioner:
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High Order Yosida as Preconditioner:

Eigenvalues of (SQp)
-1
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Local Splitting error analysis:

Unsplit formulation

Split formulation

-

=

Local splitting error

Stokes System, incremental pressure approach* 

*The non incremental approach has been analyzed in P. Gervasio. SIAM J. Numer. Anal., 2008

and

A. Veneziani, U. Villa – ALADINS: an ALgebraic splitting time ADaptive solver for the Incompressible Navier-
Stokes equations, J. Comput. Phys. (2013) 



Local Splitting error analysis:

Non incremental method

Womersley analytical solution
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Local Splitting error analysis:

Incremental method (s=1)

Womersley analytical solution

V
el

o
ci

ty
 s

p
lit

ti
n

g 
er

ro
r

P
re

ss
u

re
 s

p
lit

ti
n

g 
er

ro
r



1. Yosida(q) – Yosida(q-1):

• Splitting based adaptivity (conditionally stable)

• The last pressure increment zq provides the error estimator.

2. Monolithic-Yosida(q-1) :

• Preconditioning based adaptivity (unconditionally stable)

• The difference between the split and unsplit solution provides the error 
estimator

A posteriori error estimators:



1. Yosida(q) – Yosida(q-1):

• Splitting based adaptivity (conditionally stable)

• The last pressure increment zq provides the error estimator.

2. Monolithic-Yosida(q-1) :

• Preconditioning based adaptivity (unconditionally stable)

• The difference between the split and unsplit solution provides the error 
estimator

then we pick where and

A posteriori error estimators:

h.o.t.

Assume we require an accuracy τ for the absolute pressure error

A. If χ < 1 reject the time step
B. If χ ≥ 1 accept the time step 

h.o.t.



At each time step we solve the coupled system in the velocity u and the 
pressure increment δp.

Monolithic – Yosida(q-1) Adaptivity:

As a left preconditioner we use the lower triangular 
part of the Yosida(q-1) splitting

Let                      the first preconditioned residual.

a posteriori error estimator:

Note: the High Order Yosida Preconditioner SQ1 is equivalent to the Least Square 
Commutator preconditioner by Elman (SIAM J. Sci. Comput., 1999)



Blood flow application:

Adaptivity:
Monolithic – Yosida 1 error estimator
Second order error estimator

Discretization:
TIME: BDF2 with incremental pressure (s=1)
SPACE: Inf-sup compatible P1Bubble-P1 FE

Reynolds Womersley

300 21

Real geometry, 
physiological conditions

Pressure peak Flux peak

Inflow pressure and flux



Blood flow application:



Blood flow application:

Pressure norm; Time Step Velocity norm; Time Step

Wall shear stress; Time Step

Steps per
heart beat

Non adaptive 834

Adaptive 221

Speed-up 3.75
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At each time step we solve the coupled system in the velocity u and the pressure p

with preconditioned GMRES iterations (Belos)

The block upper-triangular variant of the High Order Yosida Preconditioner

is applied inexactly using the AMG preconditioners available in ML
(Smoothed Aggregation and Symmetric Gauss-Seidel smoothers) for C and S

Energy minimization prolongation and unsmoothed aggregation are used to cope 
with the non-symmetry of C

Solution of the saddle-point system:



Strong Scalability Test:

Simulation of blood flow in a giant 
aneurysm on the internal carotid artery. 

Benchmark proposed in the CFD 
Challenge Workshop at ASME 2012.

T. Passerini, J. Slawinski, U. V., A. Veneziani, V. Sunderam – Experiences with a computational 
fluid dynamics code on clouds, grids, and on-premise resources. (submitted to JPDC 2012)

Space discretization: P1Bubble-P1 elements (≈ 3M unknowns).
Time discretization: BDF2 (timestep 0.01s). 



Weak Scalability Test:

Ethier-Steinman Benchmark (1994)
Unstructured Tetrahedral Mesh (Netgen)
Low Reynolds number (approx 100)

Space discretization

Taylor Hood P2-P1 FE Mini Element P1B-P1 FE

Second order approx of velocity First order approx of velocity

Denser FE matrices Sparser matrices

No mass lumping Accurate mass lumping

Convective term treatment

Semi-implicit Explicit

Non symmetric momentum matrix Symmetric momentum matrix

Add grad-div stabilization Block diagonal momentum matrix

Time-step proportional to the mesh diameter (accuracy and stability)



Weak Scalability Test:

P2-P1 Finite Elements (Consistent Velocity Mass Matrix)

Stopping criterion: relative norm of the residual less than 10-9
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Weak Scalability Test:

P1B-P1 Finite Elements (Lumped Velocity Mass Matrix)

Stopping criterion: relative norm of the residual less than 10-9



Weak Scalability Test:

P1B-P1 Finite Elements (Lumped Velocity Mass Matrix)

Stopping criterion: relative norm of the residual less than 10-9



Weak Scalability Speedup:
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• Incremental pressure methods improve the accuracy of the splitting.

• High order Yosida splittings provide an effective time adaptivity error 

estimator as a by-product of the computation.

• Schur complement/Monolithic adaptive schemes allows selection of larger 

time-step due to their unconditionally stability.

• High order Yosida splittings are optimal preconditioners for the unsteady NSE.

• (P)ALADINS is a (Parallel) ALgebraic ADaptive Incompressible Navier-Stokes 

Solver, based on algebraic splitting of velocity and pressure. 

• Good strong and weak scaling properties in parallel when the local problem 

size is large enough using Trilinos (ML, Belos).

Conclusions:


