

2013 SIAM Conference On Computational Science and Engineering Boston, 27th February 2013

PALADINS:

Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

U. Villa, A. Veneziani

Department of Mathematics and Computer Science
EMORY UNIVERSITY
Atlanta, GA, US

Outline:

Introduction

- Motivations
- Basic settings
- Incremental pressure schemes

Algebraic Splittings

- Inexact LU block factorizations
- High Order Yosida Schemes

Adaptivity

- Local splitting error analysis
- A posteriori error estimators
- An application to blood flow problems

Scalability

- Strong scaling test
- Weak scaling test

Conclusions

Motivations:

Some applications of INS feature sequences of fast and slow transients

Blood flow dynamics:

- fast transients during systole
- slower dynamics during diastole

- ☑ Time adaptivity can reduce CPU times in these applications...
- ☑ An effective a-posteriori error estimator is however mandatory

Standard a-posteriori error estimator requires:

- Complex space-time error estimator or
- The comparison of two numerical solutions obtained with different accuracy time discretizations (eg. Adams–Bashforth/BDF2, as in Kay, Gresho, Griffiths, Silvester, 2008)

Algebraic splittings of velocity/pressure can provide effective estimator as a by product of the computations.

Basic settings:

Incompressible Unsteady
$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \, \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p = \mathbf{f}(\mathbf{x}, t) \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Discretization

Space: Galerkin methods *LBB* conditions fulfilled

Time: BDFq schemes $(q \le 3)$

At each time level $t=t^{n+1}$ we need to solve the system: $A\mathbf{y}^{n+1} = \mathbf{b}^{n+1}$

$$\mathcal{A}\mathbf{y}^{n+1} = \mathbf{b}^{n+1}$$

$$\begin{bmatrix} C & D^T \\ D & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_u \\ \mathbf{f}_p \end{bmatrix}$$

$$C = \frac{\alpha_0}{\Delta t} M + A$$
 being A the stiffness matrix (viscous stresses + convection terms)

Incremental Pressure Schemes:

At each time step we write $p^n = \delta p^n + \sigma_p^n$, where

 σ_p^n is the pressure extrapolated from previous time steps, and

$$\|\delta p^n\| = \|p^n - \sigma_p^n\| = \mathcal{O}(\Delta t^s)$$

For example if s=1 then $\sigma_p^n=p^{n-1}$ and if s = 2 then $\sigma_p^n=2p^{n-1}-p^{n-2}$

The incremental pressure formulation reads $\begin{vmatrix} C & D^T \\ D & 0 \end{vmatrix} \begin{vmatrix} \mathbf{u}^n \\ \delta p^n \end{vmatrix} = \begin{vmatrix} \mathbf{f}_u - D^T \sigma_p^n \\ f_n \end{vmatrix}$

$$\begin{bmatrix} C & D^T \\ D & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}^n \\ \delta p^n \end{bmatrix} = \begin{bmatrix} \mathbf{f}_u - D^T \sigma_p^n \\ f_p \end{bmatrix}$$

- For velocity/pressure splitting:
 - Incremental pressure schemes improve the accuracy in time.
 - High order extrapolation in time might reduce the stability.
- For Schur-Complement/Monolithic solutions:
 - Incremental pressure provides a good initial guess.
 - High order extrapolation in time does not affect stability.

A. Prohl – Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Wiley Teubner Advances in Num. Math., 1997

Outline:

Introduction

- Motivations
- Basic settings
- Incremental pressure schemes

Algebraic Splittings

- Inexact LU block factorizations
- High Order Yosida Schemes

Adaptivity

- Local splitting error analysis
- A posteriori error estimators
- An application to blood flow problems

Scalability

- Strong scaling test
- Weak scaling test

Conclusions

Inexact LU block factorization:

$$\mathcal{A} = \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{D} & -\mathbf{D}\mathbf{C}^{-1}\mathbf{D}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{N_{\mathbf{u}}} & \mathbf{C}^{-1}\mathbf{D}^{T} \\ \mathbf{0} & \mathbf{I}_{N_{p}} \end{bmatrix} = \mathbf{L}\mathbf{U} \quad \Rightarrow$$

$$\hat{\mathcal{A}} = \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{D} & -\mathbf{D}\mathbf{F}\mathbf{D}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{N_{\mathbf{u}}} & \mathbf{G}\mathbf{D}^{T} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C}\mathbf{G}\mathbf{D}^{T} \\ \mathbf{D} & \mathbf{D}\mathbf{G}\mathbf{D}^{T} - \mathbf{D}\mathbf{F}\mathbf{D}^{T}\mathbf{Q} \end{bmatrix}$$

F and G appropriate approximations of C^{-1} , Q is such that $DGD^T - DFD^TQ$ is small

Neumann expansion:
$$C^{-1} = \frac{\Delta t}{\alpha_0} \sum_{k=1}^{\infty} \left(\frac{-\Delta t}{\alpha_0} \right)^{k-1} (M^{-1}A)^{k-1} M^{-1} \simeq \frac{\Delta t}{\alpha_0} M^{-1} \equiv H$$
 provided Δt is small enough.

Mass preserving scheme: F=G=H, $Q=I_{Np}$ (Algebraic Chorin Temam, Perot '93)

Momentum preserving sch.: $G=C^{-1}$, F=H ($Q=I_{Np}$: Yosida, Quarteroni, Saleri, Veneziani, '99)

Higher order schemes build a sequence of
$$\mathbf{Q}_q$$
 such that: $|||\Sigma-SQ_q|||=\mathcal{O}(\Delta t^{q+2})$ being $\Sigma=-DC^{-1}D^T$ and $S=-DHD^T$

F. Saleri, A. Veneziani – *Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations* – SIAM J. Num. Anal. (2006)

Inexact LU block factorization:

$$\hat{\mathcal{A}} = \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{D} & -\mathbf{D}\mathbf{F}\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{N_{\boldsymbol{u}}} & \mathbf{G}\mathbf{D}^T \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C}\mathbf{G}\mathbf{D}^T \\ \mathbf{D} & \mathbf{D}\mathbf{G}\mathbf{D}^T - \mathbf{D}\mathbf{F}\mathbf{D}^T\mathbf{Q} \end{bmatrix}$$

Higher order schemes build a sequence of Q such that: $|||\Sigma-SQ_q|||=\mathcal{O}(\Delta t^{q+2})$ being $\Sigma=-DC^{-1}D^T$ and $S=-DHD^T$

A. Veneziani, A Note on the Consistency and Stability Properties of Yosida Fractional Step Schemes for the Unsteady Stokes Equations, SIAM J. Numer. Anal.,2009

High order Yosida schemes:

Algorithm to apply (SQ_q)⁻¹ to a vector

```
Norms of the pressure corrections z<sub>i</sub>
//Pressure corrections
                                       10
        = ZeroVector(dim P);
z(i)
//Temporanely data structures
zz(i,j) = ZeroVector(dim U);
                                        10
dzz(i,j) = ZeroVector(dim P);
Solve: S z(0) = rhs;
                                        10
for(i=0; i<q; ++i)</pre>
    zz(i,0) = -H A H D^T z(i);
    dzz(i,0) = D zz(i,0);
    cc = dzz(i,0);
                                         10
                                                               10
    for(j=1; j<1+i; ++j)
                                                            timestep
         zz(i-j,j) = - H A zz(i-j,j-1);
         dzz(i-j,j) = D zz(i-j,j);
         cc += dzz(i-j,j);
                                       <u>Computational cost for each correction step:</u>
    Solve: S z(i+1) = cc;
                                       - Three mat-vec in the velocity space
P = sum(z);
```

A. Veneziani, U. Villa – ALADINS: an ALgebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations, J. Comput. Phys. (2013)

- One linear solve with the spd matrix S

High Order Yosida as Preconditioner:

Eigenvalues of $(SQ_p)^{-1}\Sigma$

High Order Yosida as Preconditioner:

Eigenvalues of $(SQ_p)^{-1}\Sigma$

High Order Yosida as Preconditioner:

Outline:

Introduction

- Motivations
- Basic settings
- Incremental pressure schemes

Algebraic Splittings

- Inexact LU block factorizations
- High Order Yosida Schemes

Adaptivity

- Local splitting error analysis
- A posteriori error estimators
- An application to blood flow problems

Scalability

- Strong scaling test
- Weak scaling test

Conclusions

Local Splitting error analysis:

Stokes System, incremental pressure approach*

$$\begin{cases} \frac{\alpha_0}{\Delta t} M \hat{\mathbf{u}}_{q,s}^k + \nu K \hat{\mathbf{u}}_{q,s}^k + D^T \hat{p}_{q,s}^k = \mathbf{f}_u^k + \frac{M}{\Delta t} \sum_{i=1}^p \alpha_i \hat{\mathbf{u}}_{q,s}^{k-i} \\ D\hat{\mathbf{u}}_{q,s}^k - (\Sigma - SQ_q) \delta \hat{p}_{q,s}^k = f_p^k \end{cases}$$

Locality assumption $\hat{\mathbf{u}}_{q,s}^i = \mathbf{u}^i$ and $p_{q,s}^i = p^i$ for $i = k - 1, \dots, k - p$

$$\mathbf{e}^{k,*} = \mathbf{u}^k - \hat{\mathbf{u}}_{q,s}^k$$
$$e^{k,*} = p^k - \hat{p}_{q,s}^k$$

$$\begin{aligned} & \underset{e^{k,*} = \mathbf{u}^k - \hat{\mathbf{u}}_{q,s}^k}{\mathbf{e}^{k,*} = \mathbf{u}^k - \hat{\mathbf{u}}_{q,s}^k} \\ & e^{k,*} = p^k - \hat{p}_{q,s}^k \end{aligned} \quad \begin{cases} & \frac{\alpha_0}{\Delta t} M \mathbf{e}^{k,*} + \nu K \mathbf{e}^{k,*} + D^T e^{k,*} = 0 \\ & D \mathbf{e}^{k,*} - (\Sigma - SQ_q) e^{k,*} = -(\Sigma - SQ_q) \delta p^k \end{cases}$$

$$\begin{aligned} & e^{n,*} = p^n - p^n_{q,s} & \text{(a. 1.4.4)} \\ & \| \mathbf{e}^{k,*} \|_0 & \leq & C \Delta t^{q+s+2} \\ & \| \mathbf{e}^{k,*} \|_1 & \leq & C \Delta t^{q+s+3/2} & \text{and} & \| e^{k,*} \|_0 & \leq & C \Delta t^{q+s+1} \end{aligned}$$

*The non incremental approach has been analyzed in P. Gervasio. SIAM J. Numer. Anal., 2008

A. Veneziani, U. Villa – ALADINS: an Algebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations, J. Comput. Phys. (2013)

Local Splitting error analysis:

Non incremental method

Womersley analytical solution

Local Splitting error analysis:

Incremental method (s=1)

Womersley analytical solution

A posteriori error estimators:

1. Yosida(q) – Yosida(q-1):

- Splitting based adaptivity (conditionally stable)
- The last pressure increment z_q provides the error estimator.

$$||p_{ex} - \hat{p}_{q-1}^{(s)}|| \le ||\hat{p}_q^{(s)} - \hat{p}_{q-1}^{(s)}|| + ||p_{ex} - \hat{p}_q^{(s)}|| \longrightarrow z = ||\hat{p}_q^{(s)} - \hat{p}_{q-1}^{(s)}|| = ||z_q^{(s)}|| = \mathcal{O}(\Delta t^{q+s})$$

2. Monolithic-Yosida(q-1):

- Preconditioning based adaptivity (unconditionally stable)
- The difference between the split and unsplit solution provides the error estimator

$$||p_{ex} - \hat{p}_{q-1}^{(s)}|| \le ||p^{(s)} - \hat{p}_{q-1}^{(s)}|| + ||p_{ex} - p^{(s)}|| \longrightarrow z = ||p^{(s)} - \hat{p}_{q-1}^{(s)}|| = \mathcal{O}(\Delta t^{q+s})$$

A posteriori error estimators:

1. Yosida(q) – Yosida(q-1):

- Splitting based adaptivity (conditionally stable)
- The last pressure increment z_q provides the error estimator.

$$\|p_{ex} - \hat{p}_{q-1}^{(s)}\| \leq \|\hat{p}_q^{(s)} - \hat{p}_{q-1}^{(s)}\| + \text{h.o.t.} \longrightarrow z = \|\hat{p}_q^{(s)} - \hat{p}_{q-1}^{(s)}\| = \|z_q^{(s)}\| = \mathcal{O}(\Delta t^{q+s})$$

2. Monolithic-Yosida(q-1):

- Preconditioning based adaptivity (unconditionally stable)
- The difference between the split and unsplit solution provides the error estimator

$$\|p_{ex} - \hat{p}_{q-1}^{(s)}\| \le \|p^{(s)} - \hat{p}_{q-1}^{(s)}\| +$$
 h.o.t. $\longrightarrow z = \|p^{(s)} - \hat{p}_{q-1}^{(s)}\| = \mathcal{O}(\Delta t^{q+s})$

Assume we require an accuracy au for the absolute pressure error $\|p_{ex} - \hat{p}_{q-1}\| \leq au$

then we pick
$$\Delta t_{new}=\chi\Delta t_{old}$$
 where $\chi=\left(rac{ au\Delta t}{z}
ight)^{rac{1}{q+s-1}}$ and

- A. If $\chi < 1$ reject the time step
- B. If $\chi \ge 1$ accept the time step

Monolithic - Yosida(q-1) Adaptivity:

At each time step we solve the coupled system in the velocity $\bf u$ and the pressure increment δp .

$$\begin{bmatrix} C & D^T \\ D & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}^{n+1} \\ \delta p_s^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_u - D^T \sigma_p^{n+1} \\ f_p \end{bmatrix}$$

As a **left preconditioner** we use the lower triangular part of the Yosida(q-1) splitting

$$P = \begin{bmatrix} C & 0 \\ D & SQ_{q-1} \end{bmatrix}$$

Let $\delta \hat{p}_{q-1,s}^{n+1}$ the first preconditioned residual.

 $igchtar{}$ a posteriori error estimator: $z=\|\delta p_s^{n+1}-\delta \hat{p}_{q-1,s}^{n+1}\|=\mathcal{O}(\Delta t^{q+s})$

$$\chi = \left(\frac{\tau \Delta t}{z}\right)^{\frac{1}{q+s-1}}$$

Note: the *High Order Yosida* Preconditioner SQ_1 is equivalent to the *Least Square Commutator* preconditioner by *Elman* (SIAM J. Sci. Comput., 1999)

Blood flow application:

Adaptivity:

Monolithic – Yosida 1 error estimator Second order error estimator

Discretization:

TIME: BDF2 with incremental pressure (s=1) SPACE: Inf-sup compatible P1Bubble-P1 FE

Real geometry, physiological conditions

Reynolds	Womersley
300	21

Blood flow application:

Blood flow application:

Wall shear stress; Time Step

Steps per heart beat

Non adaptive	834
Adaptive	221
Speed-up	3.75

Outline:

Introduction

- Motivations
- Basic settings
- Incremental pressure schemes

Algebraic Splittings

- Inexact LU block factorizations
- High Order Yosida Schemes

Adaptivity

- Local splitting error analysis
- A posteriori error estimators
- An application to blood flow problems

Scalability

- Strong scaling test
- Weak scaling test

Conclusions

Solution of the saddle-point system:

At each time step we solve the coupled system in the velocity **u** and the pressure p

$$\begin{bmatrix} C & D^T \\ D & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_u \\ \mathbf{f}_p \end{bmatrix}$$

with preconditioned **GMRES iterations** (Belos)

The block upper-triangular variant of the High Order Yosida Preconditioner

$$P = \begin{bmatrix} C & D^T \\ 0 & SQ_q \end{bmatrix}$$

is applied inexactly using the **AMG preconditioners** available in **ML** (Smoothed Aggregation and Symmetric Gauss-Seidel smoothers) for C and S

Energy minimization prolongation and **unsmoothed aggregation** are used to cope with the non-symmetry of C

Strong Scalability Test:

Simulation of blood flow in a giant aneurysm on the internal carotid artery.

Benchmark proposed in the CFD Challenge Workshop at ASME 2012.

Space discretization: P1Bubble-P1 elements (≈ **3M unknowns**).

Time discretization: BDF2 (timestep 0.01s).

T. Passerini, J. Slawinski, U. V., A. Veneziani, V. Sunderam – *Experiences with a computational fluid dynamics code on clouds, grids, and on-premise resources.* (submitted to JPDC 2012)

Ethier-Steinman Benchmark (1994) Unstructured Tetrahedral Mesh (Netgen) Low Reynolds number (approx 100)

Space discretization							
Taylor Hood P2-P1 FE	Mini Element P1B-P1 FE						
Second order approx of velocity	First order approx of velocity						
Denser FE matrices	Sparser matrices						
No mass lumping	Accurate mass lumping						

Convective term treatment							
Semi-implicit	Explicit						
Non symmetric momentum matrix	Symmetric momentum matrix						
Add grad-div stabilization	Block diagonal momentum matrix						
Time-step proportional to the mesh diameter (accuracy and stability)							

P2-P1 Finite Elements (Consistent Velocity Mass Matrix)

Semi-implicit convective term						Exp	licit con	vective	term
n_p	$N_{ m dof}$	$n_{ m it}$	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$	n_{it}	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$
1	29K	114	3.30	0.28	3.90	70	1.08	0.12	1.36
2	57K	110	3.42	0.34	4.20	71	1.23	0.17	1.59
4	113K	106	4.40	0.39	5.29	67	1.44	0.20	1.85
8	216K	105	6.39	0.48	7.41	66	2.12	0.24	2.58
16	428K	103	6.97	0.55	8.13	65	2.46	0.30	3.02
32	860K	102	7.33	0.59	8.57	64	2.70	0.33	3.32
64	1.66M	99	8.43	0.65	9.77	62	3.33	0.40	4.02
128	3.33M	91	9.08	0.70	10.55	61	4.35	0.45	5.16
256*	6.71M	80	13.98	1.16	16.29	57	6.78	0.79	8.25

* 12 processes per node instead of 8. (One mpi process per core)

 n_p : number of processes $N_{\rm dof}$ number of unknowns (DOFs) $n_{\rm it}$ average number of iterations $t_{\rm solve}$: average linear solver time $t_{\rm prec}$ average preconditioner setup $t_{\rm tot}$ average time per timestep

timings in seconds using gettimeofday function

P2-P1 Finite Elements (Consistent Velocity Mass Matrix)

Semi-implicit convective term					Explicit convective term				
n_p	$N_{ m dof}$	$n_{ m it}$	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$	n_{it}	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$
1	29K	114	3.30	0.28	3.90	70	1.08	0.12	1.36
2	57K	110	3.42	0.34	4.20	71	1.23	0.17	1.59
4	113K	106	4.40	0.39	5.29	67	1.44	0.20	1.85
8	216K	105	6.39	0.48	7.41	66	2.12	0.24	2.58
16	428K	103	6.97	0.55	8.13	65	2.46	0.30	3.02
32	860K	102	7.33	0.59	8.57	64	2.70	0.33	3.32
64	1.66M	99	8.43	0.65	9.77	62	3.33	0.40	4.02
128	3.33M	91	9.08	0.70	10.55	61	4.35	0.45	5.16
256*	6.71M	80	13.98	1.16	16.29	57	6.78	0.79	8.25

* 12 processes per node instead of 8. (One mpi process per core)

 n_p : number of processes $N_{\rm dof}$ number of unknowns (DOFs) $n_{\rm it}$ average number of iterations $t_{\rm solve}$: average linear solver time $t_{\rm prec}$ average preconditioner setup $t_{\rm tot}$ average time per timestep

timings in seconds using gettimeofday function

P1B-P1 Finite Elements (Lumped Velocity Mass Matrix)

Semi-implicit convective term					Exp	licit con	vective	term	
n_p	$N_{ m dof}$	$n_{ m it}$	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$	n_{it}	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$
1	23K	12	0.15	0.11	0.62	11	0.10	0.06	0.46
2	46K	12	0.18	0.17	0.77	10	0.10	0.10	0.55
4	93K	13	0.25	0.20	0.91	11	0.13	0.11	0.59
8	181K	15	0.42	0.25	1.16	12	0.23	0.13	0.70
16	363K	15	0.51	0.31	1.33	12	0.28	0.17	0.82
32	734K	15	0.59	0.37	1.49	12	0.35	0.20	0.91
64	1.43M	17	0.86	0.43	1.83	13	0.52	0.25	1.15
128	2.87M	18	1.20	0.49	2.30	14	0.79	0.31	1.53
256*	5.82M	21	2.10	0.78	3.70	16	1.28	0.56	2.48

^{* 12} processes per node instead of 8. (One mpi process per core)

 n_p : number of processes $N_{\rm dof}$ number of unknowns (DOFs) $n_{\rm it}$ average number of iterations $t_{\rm solve}$: average linear solver time $t_{\rm prec}$ average preconditioner setup $t_{\rm tot}$ average time per timestep

timings in seconds using gettimeofday function

P1B-P1 Finite Elements (Lumped Velocity Mass Matrix)

Semi-implicit convective term					Exp	licit cor	vective	term	
n_p	$N_{ m dof}$	$n_{ m it}$	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$	n_{it}	$t_{ m solve}$	$t_{ m prec}$	$t_{ m tot}$
1	23K	12	0.15	0.11	0.62	11	0.10	0.06	0.46
2	46K	12	0.18	0.17	0.77	10	0.10	0.10	0.55
4	93K	13	0.25	0.20	0.91	11	0.13	0.11	0.59
8	181K	15	0.42	0.25	1.16	12	0.23	0.13	0.70
16	363K	15	0.51	0.31	1.33	12	0.28	0.17	0.82
32	734K	15	0.59	0.37	1.49	12	0.35	0.20	0.91
64	1.43M	17	0.86	0.43	1.83	13	0.52	0.25	1.15
128	2.87M	18	1.20	0.49	2.30	14	0.79	0.31	1.53
256*	5.82M	21	2.10	0.78	3.70	16	1.28	0.56	2.48

^{* 12} processes per node instead of 8. (One mpi process per core)

 n_p : number of processes $N_{\rm dof}$ number of unknowns (DOFs) $n_{\rm it}$ average number of iterations $t_{\rm solve}$: average linear solver time $t_{\rm prec}$ average preconditioner setup $t_{\rm tot}$ average time per timestep

timings in seconds using gettimeofday function

Weak Scalability Speedup:

Outline:

Introduction

- Motivations
- Basic settings
- Incremental pressure schemes

Algebraic Splittings

- Inexact LU block factorizations
- High Order Yosida Schemes

Adaptivity

- Local splitting error analysis
- A posteriori error estimators
- An application to blood flow problems

Scalability

- Strong scaling test
- Weak scaling test

Conclusions

Conclusions:

- Incremental pressure methods improve the accuracy of the splitting.
- High order Yosida splittings provide an effective time adaptivity error estimator as a by-product of the computation.
- Schur complement/Monolithic adaptive schemes allows selection of larger time-step due to their unconditionally stability.
- High order Yosida splittings are optimal preconditioners for the unsteady NSE.
- (P)ALADINS is a (Parallel) ALgebraic ADaptive Incompressible Navier-Stokes Solver, based on algebraic splitting of velocity and pressure.
- Good strong and weak scaling properties in parallel when the local problem size is large enough using Trilinos (ML, Belos).