

### Challenging wind and waves

Linking hydrodynamic research to the maritime industry

# Performance of SIMPLE-type Preconditioners in CFD Applications for Maritime Industry

Christiaan Klaij and Kees Vuik

February 28, 2013 SIAM CSE 2013, Boston, USA



# <u>Maritime Research Institute Netherlands</u>

Located in Wageningen, Ede and Houston

Agents in Spain and Brasil

Joint Venture in China

330 employees

Foundation

Non-profit

Since 1932

9200 models

7100 propellers





# **Activities**





#### **Overview**

**Problem description:** maritime applications require large, unstructured grids

- matrix-free approach for coupled Navier-Stokes system
- only compact stencil for velocity and pressure sub-systems

**Proposed solution:** solve coupled system with Krylov subspace method and SIMPLE-type preconditioner

- coupled matrix not needed to build preconditioner
- special treatment of stabilization

**Evaluation:** SIMPLE as solver versus SIMPLE as preconditioner

reduction in number of non-linear iterations and wall-clock time?



# **Container vessel (unstructured grid)**



RaNS equations

k- $\omega$  turbulence model

$$y^+ \approx 1$$

Model-scale:

 $Re = 1.3 \cdot 10^7$ 

13.3m cells

max aspect ratio 1:1600



# Tanker (block-structured grid)



#### Model-scale:

$$Re = 4.6 \cdot 10^6$$

2.0m cells

 $\max \text{ aspect ratio } 1:7000$ 

#### Full-scale:

$$Re = 2.0 \cdot 10^9$$

2.7m cells

 $\max \, \text{aspect ratio} \, \, 1:930\,000$ 





streamlines around the stern and the axial velocity field in the wake.



#### **Discretization**

Co-located, cell-centered finite volume discretization of the steady Navier-Stokes equations with Picard linearization leads to linear system:

$$\begin{bmatrix} Q_1 & 0 & 0 & G_1 \\ 0 & Q_2 & 0 & G_2 \\ 0 & 0 & Q_3 & G_3 \\ D_1 & D_2 & D_3 & C \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ p \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ g \end{bmatrix}$$
 for brevity: 
$$\begin{bmatrix} Q & G \\ D & C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

with  $Q_1 = Q_2 = Q_3$ .

 $\Rightarrow$  Solve system with FGMRES and SIMPLE-type preconditioner Turbulence equations (k- $\omega$  model) remain segregated



#### **Defect correction: cornerstone of FVM**

Consider a lower-order scheme (e.g. the upwind scheme)

$$Q_{\rm UDS} u = f_{\rm UDS}$$

and a higher-order scheme (e.g. central or  $\kappa$ -scheme with limiter)

$$Q_{\text{CDS}} u = f_{\text{CDS}}$$

Then a single defect correction becomes

$$Q_{\text{UDS}} u^{k+1} = f_{\text{CDS}} - (Q_{\text{CDS}} u^k - Q_{\text{UDS}} u^k)$$

 $\Rightarrow$  matrix  $Q_{\text{UDS}}$  is an M-matrix. Easy to solve. Eccentricity and non-orthogonality corrections also in defect correction form.

CFD model: non-linear partial differential eqs (Navier-Stokes): N(x) = 0

Picard linearization  $(\rho u^2)^{(k+1)} \approx (\rho u)^{(k)} u^{(k+1)}$ 

non-linear iterations

Series of linear partial differential eqs:  $x^{(k+1)} = x^{(k)} + \omega \tilde{A}_k^{-1} (b - A_k x^{(k)})$ 

Finite Volume discretization

linear iterations

Linear system of algebraic equations:  $\tilde{A}x = b$ 

Krylov subspace method

$$\begin{bmatrix} Q & G \\ D & C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Preconditioner: 
$$\tilde{A}P^{-1}y = b, \quad x = P^{-1}y$$

$$\begin{vmatrix} P^{-1} \equiv \begin{bmatrix} I & -\operatorname{diag}(Q)^{-1}G \\ 0 & I \end{bmatrix} \begin{bmatrix} Q & 0 \\ D & R \end{bmatrix}^{-1}$$
SIMPLE

sub-system linear iterations

Momentum: Pressure:

$$Qu = f$$

$$Rp = g$$

with 
$$R \equiv C - D \operatorname{diag}(Q)^{-1}G$$



#### **SIMPLE-method**

Given  $u^k$  and  $p^k$ :

- 1. solve  $Qu^* = f Gp^k$
- 2. solve  $(C DQ^{-1}G)p' = g Du^* Cp^k$
- 3. compute  $u' = -Q^{-1}Gp'$
- 4. update  $u^{k+1}=u^*+u'$  and  $p^{k+1}=p^k+p'$  with the SIMPLE approximation  $Q^{-1}\approx \mathrm{diag}(Q)^{-1}$ .

 $\Rightarrow$  "Matrix-free": only assembly and storage of Q and  $(C-DQ^{-1}G)$ . For D, G and C the action suffices.



## SIMPLER: additional pressure prediction

Given  $u^k$  and  $p^k$ , start with a pressure prediction:

1. solve

$$(C - D\operatorname{diag}(Q)^{-1}G)p^* = g - Du^k - D\operatorname{diag}(Q)^{-1}(f - Qu^k)$$

2. continue with SIMPLE using  $p^*$  instead of  $p^k$ 



# Some practical constraints

Compact stencils are preferred on unstructured grids:

neighbors of cell readily available; neighbors of neighbors not

Also preferred because of MPI parallel computation:

domain decomposition, communication

Compact stencil?

- ✓ Matrix  $Q_1 (= Q_2 = Q_3)$ , thanks to defect correction
- Stabilization matrix C
- $\Rightarrow$  modify SIMPLE(R) such that C is not required on the l.h.s.



#### Treatment of stabilization matrix

• In SIMPLE, neglect C in l.h.s. of pressure correction equation

$$(C - D\operatorname{diag}(Q)^{-1}G)p' = g - Du^* - Cp^k$$

$$\downarrow \downarrow$$

$$-D\operatorname{diag}(Q)^{-1}Gp' = g - Du^* - Cp^k$$

• In SIMPLER, do *not* involve the mass equation when deriving the pressure prediction  $p^{*}$ 

$$(C - D\operatorname{diag}(Q)^{-1}G)p^* = g - Du^k - D\operatorname{diag}(Q)^{-1}(f - Qu^k)$$

$$\downarrow \qquad \qquad -D\operatorname{diag}(Q)^{-1}Gp^* = -D\operatorname{diag}(Q)^{-1}(f - Qu^k)$$



# **Example of iterative convergence (tanker)**

#### **SIMPLE**



 $\omega_u = 0.2 \quad \omega_p = 0.1$ 

#### KRYLOV-SIMPLER



$$\omega_u = 0.8$$
  $\omega_p = 0.3$ 



#### **Container vessel**

Tables show number of non-linear iterations and wall clock time needed to converge to machine precision, starting from uniform flow.

Model-scale  $Re = 1.3 \cdot 10^7$ , max cell aspect ratio 1:1600

| grid  | CPU cores | SIMPLE |            | KRYLOV-SIMPLER |            |
|-------|-----------|--------|------------|----------------|------------|
|       |           | # its  | Wall clock | # its          | Wall clock |
| 13.3m | 128       | 3187   | 5h 26mn    | 427            | 3h 27mn    |



# **Tanker**

Model-scale  $\mathrm{Re} = 4.6 \cdot 10^6$ , max cell aspect ratio 1:7000

| grid  | CPU cores | SIMPLE |            | KRYLOV-SIMPLER |            |
|-------|-----------|--------|------------|----------------|------------|
|       |           | its    | Wall clock | its            | Wall clock |
| 0.25m | 8         | 1379   | 25mn       | 316            | 29mn       |
| 0.5m  | 16        | 1690   | 37mn       | 271            | 25mn       |
| 1m    | 32        | 2442   | 57mn       | 303            | 35mn       |
| 2m    | 64        | 3534   | 1h 29mn    | 519            | 51mn       |

Full-scale  $\mathrm{Re} = 2.0 \cdot 10^9$ , max cell aspect ratio  $1:930\,000$ 

| grid | CPU cores | SIMPLE | SIMPLE     |      | KRYLOV-SIMPLER |  |
|------|-----------|--------|------------|------|----------------|--|
|      |           | its    | Wall clock | its  | Wall clock     |  |
| 2.7m | 64        | 29 578 | 16h 37mn   | 1330 | 3h 05mn        |  |



# Remaining problems



• Larger nb of non-linear iters to compensate for stagnation of linear iter. Does not happen for academic cases (backward-facing step, lid-driven cavity, finite flat plate)



# Remaining problems (cont'd)

Main theoretical weakness is the approximation of the Schur complement  $S \equiv C - DQ^{-1}G$ 

- 1. The SIMPLE approximation  $Q^{-1} \approx \operatorname{diag}(Q)^{-1}$ .
- 2. The stabilization matrix C is moved to r.h.s
- 3. The matrix  $-D\operatorname{diag}(Q)^{-1}G$  is approximated by a matrix R with local stencil.

Other weaknesses are on the level of the discretization (Picard linearization, defect corrections, ...)



### Summary

- Coupled Navier-Stokes system has 10 blocks, we only assemble and store 2, for the others their action suffices.
- The stabilization matrix *C* has a wide stencil, we changed SIMPLE(R) so that its assembly and storage is not needed.
- For maritime applications, we find that SIMPLE(R) as preconditioner reduces the number of non-linear iterations by 5 to 20 and the CPU time by 2 to 5. Greatest reduction found for most difficult case.



# Summary (cont'd)

C.M. Klaij and C. Vuik, SIMPLE-type preconditioners for cell-centered, colocated finite volume discretization of incompressible Reynolds-averaged Navier-Stokes equations, Int. J. Numer. Meth. Fluids 2013, 71(7):830–849.

#### Contains details on:

- academic benchmark cases (backward-facing step, lid-driven cavity, flat plate)
- choice of relaxation parameters
- choice of linear solvers and relative tolerances for sub-systems
- other variants (MSIMPLE and MSIMPLER)

• ...