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Introduction
°

Setting

@ Stationary, incompressible flow problems

@ Need: efficient and robust linear solvers

@ Examples:

Laminar flames
(chemically reacting)

(source: F. Bisetti/KAUST)
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Lid-driven cavity
(prototype)
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Grad-Div based Preconditioning

@ Numerical analysis has two subfields:

Error Analysis Numerical Linear Algebra
Error estimates Solvers
Stabilization methods Preconditioners

@ Problem: often treated separately

~+ Here: use Grad-Div stabilization to get efficient linear algebra

@ Heister and Rapin.
Efficient augmented Lagrangian-type preconditioning for the Oseen problem
using Grad-Div stabilization.
Int. J. Numer. Meth. Fluids, 2013, 71: 118-134.
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Introduction

Incompressible Navier-Stokes equations (instationary, nonlinear)

Find velocity w and pressure p in domain £ with

?;;—VAu—i-(u‘V)u—i-Vp:f,

V-u=0

Time discretization and linearization gives

(stationary, linear)

cu—vAu+ (b-V)u+ Vp = f,
V.-u=0

(viscosity v, reaction coefficient ¢, convection b)
~» Of interest: ¢ < 1, v < 1, ||b]] ~ 1 (convection dominated)
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Introduction: Linear System

Inf-sup stable finite element discretization,
here Taylor-Hood Q.1-Qs Lagrange elements!

@ Gives linear saddle point problem:

) 6)=()

Krylov subspace method (flexible GMRES)

Need preconditioner P:

A BT v v U
P*l — f ’ P*l —
B 0 q 0 q P
tensor-product polynomials of order k + 1 for the velocity and k for the
pressure




Grad-Div Preconditioning
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Grad-Div Stabilization

find (u,p) € V x Q := [HE(Q)]? x L}(Q) with
(vVu,Vo)+ ((b-V)u+cu,v) + (WV-u,V-v)—(V-v,p) =(f,v)
(V"U,,q) =0
for all (v,q) € V x Q.

Grad-Div:
@ Vanishes in the continuous case
@ Discretized: penalty term for the divergence
@ Why? Incompressibility

@ How to choose parameter vx on each cell K7
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Parameter Design: a-priori Analysis

m (Olshanskii, Lube, Heister, Lowe)

Given a sufficiently smooth continuous solution (u,p), the optimal
error is obtained with the choice:

YK ~ max m — 1,0 p on each cell K.
|u|Hk+1(f{)

@ Olshanskii, Lube, Heister, and Lowe.

Grad-div stabilization and subgrid pressure models for the incompressible
Navier-Stokes equations.

Computer Methods in Applied Mechanics and Engineering, 198(49-52):3975 —
3988, 2009.
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Parameter Design: In Practice

Parameter Design

YK ~ max M — 1,0 p on each cell K.
|U’Hk+1(f()

Evaluating vk is hard: non-linear, missing regularity, high
order derivatives . ..

For example f =0, k =1 gives vk ~ v + C||b||x
Often used: constant models vx = v (homogeneous flows)
Experiments: v € [0.1, 1] often good, better than v =0

From now on: v =7y
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Parameter Design: an Example

error
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Grad-Div Stabilization

Theorem (Heister,Rapin)

Let II be the L? orthogonal projector into pressure space Q,.
Define the fluctuation operator . := Id — II.
With velocity basis functions (p;) we have:

(V-05, Vi) = (I(V - 9;), IV - 93))  +(6(V - 95), 6(V - 3))

= (B"M,;'B).. + Stab
1
”
first part: second part:
@ does not change solution, @ changes the solution
because Bu =0 @ “projection stabilization”

@ algebraic influence @ adds dissipation on some scales
@ known: augmented Lagrangian @ vanishes for h — 0

@ Heister and Rapin.

Efficient augmented Lagrangian-type preconditioning for the Oseen problem
using Grad-Div stabilization.
Int. J. Numer. Meth. Fluids, 2013, 71: 118-134.
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Augmented Lagrangian Preconditioner

o Add ’yBTMp_lB to A:

(5 1)) C)

@ Use Schur complement based block preconditioner
o Efficient approximation of Schur complement possible
@ Problem: handling A + 'yBTMl;lB numerically

~» Here: Grad-Div instead of fyBTMp_lB

@ Benzi and Olshanskii.
An Augmented Lagrangian-Based Approach to the Oseen Problem.
SIAM J. Sci. Comput, 28:2095-2113, 2006.
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The Preconditioner

@ Discretized Oseen problem (with Grad-Div in A):

(%) 6)-(0)

@ Krylov method with block triangular preconditioner:

~ -1
pi._ (A gf
0o S
with approximations for A, and Schur complement

S=-BA'B”

(see Elman, Silvester, Wathen)
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Schur Complement

@ Approximate Schur complement:
7= —(BAT'BT)™

- _ (B [vLu+ N + cM, +vB" M, ' B + yStab] - BT>_1

- _ (B [vLy, + N + ¢M, + ~Stab] ™ BT) —yM;!
~ —1 —1 —1
~—vM, " —cL,” —~M,

(Ly,Lp: Laplacian, M, M,: mass matrices)

@ Neglect convection term N
~ good approximation, if v +c+ v 2 ||b]|
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Summary
Augmented Lagrangian: Grad-Div preconditioner:

o Add vBTM,;'B to A  Add Grad-Div to A, which is
YBT M, ' B + yStab

@ Does not change solution @ Changes solution

@ Free choice for v @ No free choice for

@ Assembly: hard, dense @ Easy to assemble, sparse

matrix
both:

@ Schur complement:

Sha—(v+y)M; =Lt
@ Increasing v:
e improves approximation quality of S
e makes solving for A harder
@ Large enough ~: iteration numbers independent of h, v, order
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Dependency on h, Element Order, and Viscosity

Number of lterations:

v=1.0 v=0.31 v=0.1
h:\v: | lel 1e-3 1le5 | lel 1e-3 1le-5 | lel 1le-3 1leb
Q2Q1 1/16 13 13 13 19 19 20 28 38 38
1/64 13 12 12 18 19 19 27 37 37
Q3Q2 1/16 13 13 13 19 20 20 29 38 38
1/64 13 12 12 18 19 19 27 36 37
Q4Q3 1/16 13 13 13 19 20 20 28 37 38
1/64 13 12 13 18 19 19 27 36 36

(high numbers due to very small stopping criterion: rel. res. le-10)

@ As expected: dependent on ~y

@ Independent of h, element order, v (this is really good!)
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Solver vs. Accuracy: a Tradeoff
Problem 1, v=1e-3

T T T T T
10° |- 7 10°
4
g 10 110!
el 5
£ 108 F 2
s &)
%) 4 J1n-2
= 102 —r? 10
10! + =103 —B— outer iterations
| | | | | —e— inner iterations
1073107210=* 10 10! —+— outer, A ILU
Y — |eu|1
Measure solver performance?

e total number of inner iterations (GMRES + ILU)
@ or inner with just an ILU for A

@ or factorization? (independent of )



Lid-driven Cavity

@ Popular benchmark

@ Stationary solutions if below critical reynolds number

@ Here: treat as stationary Navier-Stokes (nonlinear iteration!),
no wall adapted meshes

A
>

\

lid with u=1

N A 7

no flow

setup streamlines
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Lid-driven Cavity and Grad-Div Stabilization

10! -e--9Cq

€error

~o- h=1/32

10—1-+h:1/64| | | -

0 10741073107210"! 109 10%
v

(error in the minimum of the stream function, Re= 5000)




Lid-driven Cavity

Num. Results
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Lid-driven Cavity

h=1/32 h=1/64
v Grad-Div | PCD GD #nonlinear | PCD GD  #nonlinear
le2 ~=0 13 18 15 13 18 15
~v=0.1 17 4 15 16 5 15
le-3 =0 44 342 34 42 511 29
v=0.1 91 6 31| 109 8 29
2e-4 =0 4822 - 104 | 1031 - 49
~v=0.1 | 1064 7 40 | 1249 8 43

PCD: state of the art preconditioner (Elman, Silvester, Wathen)

Number of non-linear and average number of linear iterations
per non-linear step

Regular mesh; Re = 100, Re = 1000 and Re = 5000

Optimal -y from the error point of view, always v = 0.1
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Implementation and Parallelization

easy:
o Grad-div stabilization is just another term in the PDE

@ Block preconditioner consists of
matrix multiplications and inner solvers

@ Schur complement can be assembled
@ No difficulties with boundary conditions

@ Also no difficulties in parallel (no mat-mat needed)
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Disadvantages

Mostly useful for stationary problems
Needs Grad-div stabilization
Solving for A

Good parameter v? Compromise?

Equal-order elements
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Equal order elements?

o Algebraic term in the splitting
(V-u,V-v)= 11V u),II(V-v))+ (k(V-u),k(V-0v))
does no longer vanish:
YBT M, 'Bu=~yB"M,'Cp#0

because of the (2,2)-block from stabilization C

~> that means Grad-Div gives feedback from pressure?

o Possible with Augmented Lagrangian
@ Not easy with the Grad-Div preconditioner: ®

@ Also: theory gives vygo = h - 7, too small to be useful?
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“Just a different discretization of Augmented Lagrangian”?
Competitive(?) alternative to known preconditioners
Uses and profits from Grad-div stabilization

Detects regime (diffusion/reaction/convection dominant)

Implementation/parallelization is easy

Thanks for your attention!

8e
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