Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Timo Heister, Texas A&M University

2013-02-28 SIAM CSE

Setting

Introduction

- Stationary, incompressible flow problems
- Need: efficient and robust linear solvers.
- Examples:

Laminar flames (chemically reacting)

(source: F. Bisetti/KAUST)

Lid-driven cavity (prototype)

Numerical analysis has two subfields:

Error Analysis

Error estimates Stabilization methods

Numerical Linear Algebra

Solvers

Preconditioners

- Problem: often treated separately
- → Here: use Grad-Div stabilization to get efficient linear algebra

Introduction

Heister and Rapin.

Efficient augmented Lagrangian-type preconditioning for the Oseen problem using Grad-Div stabilization.

Int. J. Numer. Meth. Fluids. 2013. 71: 118-134.

Introduction

Incompressible Navier-Stokes equations (instationary, nonlinear)

Find velocity u and pressure p in domain Ω with

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \triangle \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = f,$$
$$\nabla \cdot \mathbf{u} = 0$$

Time discretization and linearization gives

Oseen Problem (stationary, linear)

$$c\mathbf{u} - \nu \triangle \mathbf{u} + (\mathbf{b} \cdot \nabla)\mathbf{u} + \nabla p = f,$$
$$\nabla \cdot \mathbf{u} = 0$$

(viscosity ν , reaction coefficient c, convection b) \rightarrow Of interest: $c \ll 1$, $\nu \ll 1$, $\|\boldsymbol{b}\| \sim 1$ (convection dominated)

Introduction: Linear System

- Inf-sup stable finite element discretization, here Taylor-Hood Q_{k+1} - Q_k Lagrange elements¹
- Gives linear saddle point problem:

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

Num. Results

- Krylov subspace method (flexible GMRES)
- Need preconditioner *P*:

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} P^{-1} \begin{pmatrix} v \\ q \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}, \qquad P^{-1} \begin{pmatrix} v \\ q \end{pmatrix} = \begin{pmatrix} u \\ p \end{pmatrix}$$

¹tensor-product polynomials of order k+1 for the velocity and k for the pressure

Grad-Div Stabilization

find
$$(\boldsymbol{u}, p) \in \boldsymbol{V} \times Q := [H_0^1(\Omega)]^d \times L_*^2(\Omega)$$
 with
$$(\nu \nabla \boldsymbol{u}, \nabla \boldsymbol{v}) + ((\boldsymbol{b} \cdot \nabla)\boldsymbol{u} + c\boldsymbol{u}, \boldsymbol{v}) + (\gamma \nabla \cdot \boldsymbol{u}, \nabla \cdot \boldsymbol{v}) - (\nabla \cdot \boldsymbol{v}, p) = (\boldsymbol{f}, \boldsymbol{v})$$
$$(\nabla \cdot \boldsymbol{u}, q) = 0$$
for all $(\boldsymbol{v}, q) \in \boldsymbol{V} \times Q$.

Num. Results

Grad-Div:

- Vanishes in the continuous case
- Discretized: penalty term for the divergence
- Why? Incompressibility
- How to choose parameter γ_K on each cell K?

Parameter Design: a-priori Analysis

Theorem (Olshanskii, Lube, Heister, Löwe)

Given a sufficiently smooth continuous solution (u, p), the optimal error is obtained with the choice:

Num. Results

$$\gamma_K \sim \max \left\{ rac{|p|_{H^k(K)}}{|oldsymbol{u}|_{H^{k+1}(\widetilde{K})}} -
u, 0
ight\} ext{ on each cell } K.$$

Olshanskii, Lube, Heister, and Löwe.

Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations.

Computer Methods in Applied Mechanics and Engineering, 198(49-52):3975 -3988, 2009.

Parameter Design: In Practice

Parameter Design

$$\gamma_K \sim \max \left\{ \frac{|p|_{H^k(K)}}{|\boldsymbol{u}|_{H^{k+1}(\widetilde{K})}} - \nu, 0 \right\} \text{ on each cell } K.$$

- Evaluating γ_K is hard: non-linear, missing regularity, high order derivatives . . .
- For example f=0, k=1 gives $\gamma_K \sim \nu + C\|b\|_K$
- Often used: constant models $\gamma_K = \gamma$ (homogeneous flows)
- Experiments: $\gamma \in [0.1, 1]$ often good, better than $\gamma = 0$
- From now on: $\gamma_K = \gamma$

Parameter Design: an Example

Theorem (Heister, Rapin)

Let Π be the L^2 orthogonal projector into pressure space Q_h .

Define the fluctuation operator $\kappa := Id - \Pi$.

With velocity basis functions (φ_i) we have:

$$(\nabla \cdot \varphi_j, \nabla \cdot \varphi_i) = (\Pi(\nabla \cdot \varphi_j), \Pi(\nabla \cdot \varphi_i)) + (\kappa(\nabla \cdot \varphi_j), \kappa(\nabla \cdot \varphi_i))$$
$$= (B^T M_p^{-1} B)_{ij} + \text{Stab}$$

first part:

- does not change solution, because Bu=0
- algebraic influence
- known: augmented Lagrangian

Heister and Rapin.

 $Efficient \ augmented \ Lagrangian-type \ preconditioning \ for \ the \ Oseen \ problem \ using \ Grad-Div \ stabilization.$

Int. J. Numer. Meth. Fluids, 2013, 71: 118-134.

second part:

- changes the solution
- "projection stabilization"
- adds dissipation on some scales
- vanishes for $h \to 0$

Augmented Lagrangian Preconditioner

• Add $\gamma B^T M_n^{-1} B$ to A:

$$\begin{pmatrix} A + \gamma B^T M_p^{-1} B & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

Num. Results

- Use Schur complement based block preconditioner
- Efficient approximation of Schur complement possible
- Problem: handling $A + \gamma B^T M_n^{-1} B$ numerically
- \rightsquigarrow Here: Grad-Div instead of $\gamma B^T M_n^{-1} B$

Benzi and Olshanskii.

An Augmented Lagrangian-Based Approach to the Oseen Problem. SIAM J. Sci. Comput, 28:2095-2113, 2006.

The Preconditioner

• Discretized Oseen problem (with Grad-Div in *A*):

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

Num. Results

Krylov method with block triangular preconditioner:

$$P^{-1} := \begin{pmatrix} \widetilde{A} & B^T \\ 0 & \widetilde{S} \end{pmatrix}^{-1}$$

with approximations for A, and Schur complement

$$S = -BA^{-1}B^T$$

(see Elman, Silvester, Wathen)

Schur Complement

Approximate Schur complement:

$$S^{-1} = -(BA^{-1}B^{T})^{-1}$$

$$= -(B[\nu L_{u} + N + cM_{u} + \gamma B^{T}M_{p}^{-1}B + \gamma Stab]^{-1}B^{T})^{-1}$$

$$= -(B[\nu L_{u} + N + cM_{u} + \gamma Stab]^{-1}B^{T})^{-1} - \gamma M_{p}^{-1}$$

$$\approx -\nu M_{p}^{-1} - cL_{p}^{-1} - \gamma M_{p}^{-1}$$

Num. Results

 $(L_u, L_p: Laplacian, M_u, M_p: mass matrices)$

 Neglect convection term N \rightsquigarrow good approximation, if $\nu + c + \gamma \gtrsim ||b||$

Summary

Augmented Lagrangian:

- \bullet Add $\gamma B^T M_p^{-1} B$ to A
- Does not change solution
- ullet Free choice for γ
- Assembly: hard, dense matrix

both:

Schur complement:

$$S^{-1} \approx -(\nu + \gamma)M_p^{-1} - cL_p^{-1}$$

- Increasing γ :
 - ullet improves approximation quality of S
 - ullet makes solving for A harder
- Large enough γ : iteration numbers independent of h, ν , order

Grad-Div preconditioner:

- Add Grad-Div to A, which is $\gamma B^T M_n^{-1} B + \gamma Stab$
- Changes solution
- ullet No free choice for γ
- Easy to assemble, sparse

Number of Iterations:

		$\gamma{=}1.0$			γ =0.31			$\gamma{=}0.1$		
	h: $\setminus \nu$:	1e-1	1e-3	1e-5	1e-1	1e-3	1e-5	1e-1	1e-3	1e-5
Q2Q1	1/16	13	13	13	19	19	20	28	38	38
	1/64	13	12	12	18	19	19	27	37	37
Q3Q2	1/16	13	13	13	19	20	20	29	38	38
	1/64	13	12	12	18	19	19	27	36	37
Q4Q3	1/16	13	13	13	19	20	20	28	37	38
	1/64	13	12	13	18	19	19	27	36	36

Num. Results

(high numbers due to very small stopping criterion: rel. res. 1e-10)

- ullet As expected: dependent on γ
- Independent of h, element order, ν (this is really good!)

Solver vs. Accuracy: a Tradeoff

Problem 1, $\nu=1e-3$

- Measure solver performance?
 - total number of inner iterations (GMRES + ILU)
 - or inner with just an ILU for A
 - or factorization? (independent of γ)

Lid-driven Cavity

- Popular benchmark
- Stationary solutions if below critical reynolds number
- Here: treat as stationary Navier-Stokes (nonlinear iteration!), no wall adapted meshes

streamlines

Lid-driven Cavity and Grad-Div Stabilization

(error in the minimum of the stream function, Re=5000)

Lid-driven Cavity

			h =	1/32	h = 1/64			
ν	Grad-Div	PCD	GD	#nonlinear	PCD	GD	#nonlinear	
1e-2	$\gamma = 0$	13	18	15	13	18	15	
	$\gamma = 0.1$	17	4	15	16	5	15	
1e-3	$\gamma = 0$	44	342	34	42	511	29	
	$\gamma = 0.1$	91	6	31	109	8	29	
2e-4	$\gamma = 0$	4822	-	104	1031	-	49	
	$\gamma = 0.1$	1064	7	40	1249	8	43	

Num. Results

00000

- PCD: state of the art preconditioner (Elman, Silvester, Wathen)
- Number of non-linear and average number of linear iterations per non-linear step
- \bullet Regular mesh; $Re=100,\,Re=1000$ and Re=5000
- ullet Optimal γ from the error point of view, always $\gamma=0.1$

Implementation and Parallelization

easy:

- Grad-div stabilization is just another term in the PDE
- Block preconditioner consists of matrix multiplications and inner solvers
- Schur complement can be assembled
- No difficulties with boundary conditions
- Also no difficulties in parallel (no mat-mat needed)

Disadvantages

- Mostly useful for stationary problems
- Needs Grad-div stabilization
- \bullet Solving for A
- Good parameter γ ? Compromise?
- Equal-order elements

source: http://sparklette.net/

Algebraic term in the splitting

$$(\nabla \cdot u, \nabla \cdot v) = (\Pi(\nabla \cdot u), \Pi(\nabla \cdot v)) + (\kappa(\nabla \cdot u), \kappa(\nabla \cdot v))$$

Num. Results

does no longer vanish:

$$\gamma B^T M_p^{-1} B u = \gamma B^T M_p^{-1} C p \neq 0$$

because of the (2,2)-block from stabilization C

- → that means Grad-Div gives feedback from pressure?
 - Possible with Augmented Lagrangian
 - Not easy with the Grad-Div preconditioner: ③
 - Also: theory gives $\gamma_{EO} = h \cdot \gamma$, too small to be useful?

- "Just a different discretization of Augmented Lagrangian"?
- Competitive(?) alternative to known preconditioners
- Uses and profits from Grad-div stabilization
- Detects regime (diffusion/reaction/convection dominant)
- Implementation/parallelization is easy

Thanks for your attention!

