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Aim and Impact

© Contribute to broad research on parallel scalable iterative solvers for Helmholtz
problems
© This presentation: matrix-free parallelization
> Complex shift Laplace Preconditioner (CSLP)

> Deflation methods
> Parallel performance
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Introduction - the Helmholtz Problem
& The Helmholtz equation (describing time-harmonic waves) + BCs
—Au(x) —k(x)?u(x) =g(x), on Q CR"

> A - Laplace operator, u (x) - Fourier-space representation of the wave function
> k(x) - wavenumber, k (x) = (27 f)/c(x), where f - frequency, ¢ - wave velocity

> Applications in seismic exploration, medical imaging, antenna synthesis, etc.

[ Larisa, High-performance implementation of Helmholtz equation with absorbing boundary conditions.
http://www.math.chalmers.se/~larisa/www/MasterProjects/HelmholtzABSbc.pdf
[2) M. Jakobsson, et al (2016). Mapping submarine glacial landforms using acoustic methods. Geological Society.
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Introduction - Challenges

& Linear system from discretization
Au=1b

> A is real, sparse, symmetric, normal, and indefinite; non-Hermitian with Sommerfeld BCs
? Direct solver or iterative solver
A Accuracy and pollution error (k*h? < 1): finer grid (3D) = larger linear system
#“ Memory-efficient methods; High-Performance Computing (HPC)

A Negative & positive eigenvalues: larger wavenumber = more iterations

#° Preconditioner: Complex Shifted Laplace Preconditioner (CSLP)
# (Higher-order) Deflation

A Parallelism
Aim

@ A wavenumber-independent convergent and parallel scalable solver
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Introduction - Metrics

© Convergence metric:
> Krylov-based solvers, GMRES-type: the number of iterations (#iter)
© Scalability:

> Strong scaling: the number of processors is increased while the problem size remains
constant

> Weak scaling: the problem size increases along with the number of tasks, so the
computation per task remains constant

> Wall-clock time: t,,; number of processors: np

t S twr N
> Speedup: S, = —=, Ep = p _ lwr NPy
tva np/npr 7(:w,p - np
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Introduction - Numerical Models

© Model problems on a rectangular domain  with boundary ' = 992
—Au(x) — k(x)?u(x) = § (x — Xq), on Q
Ou(x)
on

—ik(x)u(x) =0, on T
> Constant wavenumber: k(x) = k

> Non-constant wavenumber: Wedge, Marmousi problem
© Finite-difference discretization on a uniform grid with grid size h. (2D example)
> Laplace operator:

—Uj 1 — Wi—1,5 + AU 5 — i1 5 — Us 1

—Ahu ~ 2
> Sommerfeld BCs: a ghost point
ou ) Ugj — U2 . .
577 (0 95) = 1k(0,5)u(0, ;) ~ % —ik1jurg = 0= uoj = ug; + 2hiky jus ;
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Framework - Matrix-free operations

© Perform computations with a matrix without explicitly forming or storing the matrix
= Reduce memory requirements

Matrix-vector multiplication

If a matrix can be represented by a so-called stencil notation

a-11  ap1  ail
[Al=| a—10 a0 a0 |,
a_1,-1 Qo—1 Qi1

Then v = Au can be computed by

1 1
Vij = E : E : Ap,qWitp,j+q

p=—1q¢=-1

with the help of a ghost point on the physical boundary and one overlapping grid point. )
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Framework - Matrix-free operations

1 Stencil notation

> Laplace operator:

1 0 -1 0
[—Ah]:ﬁ -1 4 -1
0 -1 0
> “Wavenumber operator”:
0 0 O 0 00
k=10 K 0“0 1 0|k
0 0 O 0 00

> Au

|
=3

[Ap] = [~ An] — [Z1K?]
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CSLP

© Speed up convergence of Krylov subspace methods by Preconditioning
© Solve M~ 'Au=M""b
© Complex Shifted Laplace Preconditioner (CSLP)

My =-Ap, — (B1 — Bgi)Ihkz, (B1,62) €10,1], eg. 1 =1,82=05
@ Stencil notation
© Solve Mz = u by multigrid method (V-cycle) = z ~ M~ tu
> Vertex-centered coarsening based on the global grid

> Damped Jacobi smoother (easy to parallelize)
> Full-weight restriction I,%h & linear interpolation Igh

2h h
L1121 o2t
IM=1s]2 4 2| [ml=7]2 4 2
12 1], 12 1|,

> Coarse-grid operator obtained by re-discretization
& Stencil notation: [May] similar to [Mp]
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CSLP - Cons

© Increasing k = eigenvalues move fast towards origin

© Too many iterations for high frequency

© Project unwanted eigenvalues to zero = Deflation
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Deflation - introduction

© Project unwanted eigenvalues to zero = Deflation
© Deflation preconditioning: solve PA#u = Pb
P=I-—AQ, whereQ=ZE"'2Z", E=2TAZ
AeR™" Z e RM™

© Columns of Z span deflation subspace

© lIdeally Z contains eigenvectors

© In practice approximations: inter-grid vectors from multigrid

© Adapted Deflation Variant 1 (A-DEF1): Ps_pgr1 = M(_ﬂi,ﬂz)P +Q
> Combined with the standard preconditioner CSLP

© Linear approximation basis deflation vectors — higher-order deflation vectors
(Adapted Preconditioned DEF, APD)

> wavenumber-independent convergence

© Flexible GMRES-type methods — approximate E~ !, tol=10""!

Kees Vuik (TU Delft) ACIAM 2024, CAPE TOWN Oct. 02, 2024



Higher-order deflation vectors

© 2D: the higher-order interpolation & restriction has 5 x 5 stencil
> Two overlapping grid points are needed

1 4 6 4 1" 1 4 6 4 17*
1 4 16 24 16 4 1 4 16 24 16 4
[Z)= ;| 6 24 36 24 6|, [Z7]= |6 24 36 24 6
4 16 24 16 4 4 16 24 16 4
1 4 6 4 1 on 1 4 6 4 1 n
| |
1 1
»———?————»————?————
1 1
R R e+ fine grid points € Q" oh
: (i.3) € 92 * : coarse grid points € {2
1 1
1 1

Figure: The allocation map of interpolation operator
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Matrix-free coarse-grid operator
P=I1-AQ, whereQ=2E'Z" E=2zTAz
> With matrix constructed, E = Z¥ AZ, so-called Galerkin Coarsening
Matrix-free coarse-grid operation y = Ez?
© Straightforward Galerkin Coarsening operator;
1 = Zx, x2 = Apxa, y:Zsz =y =FEx
> unacceptable computational cost for consideration of multilevel method

© Re-discretization:

V ReD-02: The same as the fine grid
¥ ReD-04: Fourth-order re-discretization of the Laplace operator

0 0 1 0 0

1 0 0 —-16 0 0
[E] = S| 1 -16 60 —16 1 | —Zanksy,
1222 | g o —16 0 o0
0 0 1 0 0
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Matrix-free coarse-grid operator

@ ReD-Glk: Re-discretized scheme (stencil) from the result of Galerkin coarsening
-3 —44 -98 —-44 -3
1 1 —44 -—-112 56 —112 —-44
[—Aon] = S 5ea | 98 56 980 56 —98
) 2 —44 —-112 56 —112 —44
-3 —44 -98 —-44 -3

2u 92%u 130% 1 0%*u 13 8%u
= —Agpugy = —4@ ~455 ~ g oat T 2 5a75p2 @(.{9—1}4)(211)2 +O(h*)
1 28 70 28 1
1 28 784 1960 784 28
[Izhkﬁh] = 62 70 1960 4900 1960 70 k%h
28 784 1960 784 28
1 28 70 28 1

= [E] = [~ Aan] — [Zank3s]
? Boundary conditions - ReD-O2 on the boundary grid points
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Convergence - Constant wavenumber i i

081 0
Table: The number of iterations required by using APD-GMRES. ll e

Grid size k_ kh __ ReD-O2 ReD-O4 ReD-Glk
65 x 65 40 0625 20 17 9 ;
129 x 129 80  0.625 30 18 9
257 x 257 160  0.625 87 19 9 ]
513 x 513 320 0.625 319 23 10
1025 x 1025 640  0.625 1099 34 11 e e
2049 x 2049 1280 0.625 3417 79 13 (a) Exact solution

1 0.08
129 x 129 40 03125 18 18 7 B
257 x 257 80 03125 19 18 7 osf E
513 x 513 160 03125 21 18 7 [
1025 x 1025 320 0.3125 28 20 6 osf
2049 x 2049 640 03125 53 23 6 ~ [

@ Ex = 2% AnZx: #iter=T for kh = 0.625, 5 for kh = 0.3125
® ReD-04 better than ReD-02

0.2 04 06 08

@ ReD-GIk: close to wavenumber independence x
(b) kh = 0.625
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Convergence - 2D Wedge

Kees Vuik (TU Delft)
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Convergence - 2D Wedge

Table: The number of iterations required by using APD-GMRES.
Grid size f kh ReD-O2 ReD-O4 ReD-Glk

73x 121 10 0.35 22 22 9
145x 241 20 0.35 28 27 9
289x 481 40 0.35 31 29 9
577x 961 80 0.35 37 30 9
1153x 1921 160 0.35 58 34 8

@ Ez=ZTApZx: #iter=6
©® ReD-04 better than ReD-02

© ReD-Glk: wavenumber independence although it is derived

from constant wavenumber
Figure: Waves pattern at 80 Hz
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Convergence - Marmousi

Velocily (mis)

2000 4000 6000

4000 6000

X X

(a) Marmousi problem (b) Wave pattern at f = 40 Hz
Table: The number of iterations required by using APD-GMRES.
Grid size f kh ReD-O2 ReD-O4 ReD-Glk

737 x 241 10 05236 40 33 11 (64)
1473x 481 20 05236 71 35 11 (141)
2045x 961 40 05236 233 41 12 (381)

@ Exz=ZTAnZx: #iter=8
©@ Similar convergence properties for highly heterogeneous media
© ReD-Glk: close to wavenumber independence

©@ Many iterations are required to solve the coarse grid problem (in parentheses) = multilevel
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M u |t| |eve| Deﬂ atlon Algorithm Recursive two-level deflated FGMRES: TLADP-FGMRES (A, b)

1: Determine the current level [ and dimension m of the Krylov subspace

2: Initialize ug, compute 1y = b — Auyg, 3 =19/B;
3: Define H,, € C/™+D*™ and initialize to zero
© Apply two-level method recursively 4: for j =1,2,...,m or until convergence do
R . . . 5: 0j = z" 1)] > Restriction
© Re-discretization scheme derived from 6: if [+1==lyq then > Predefined coarsest level 1,45
Galerkin coarsening for both E and M 7 IR BT > Approximated by CSLP-FGMRES
8: else
> The size of the stencil remains 7 x 7 for level > 3 o le1+1
. . . 10: ¥ <~TLADP-FGMRES(E, ©) © Apply two-level deflation recursively
> Need three overlapping grid points 1 endif
> Zero-padding on the near-boundary grid points, 2 t= i’z > Interpolation
13: 5=
not need extra boundary schemes . F=u—s
© V-cycle: OnIy one FGMRES iteration per 15: ra M7 > CSLP, by multigrid method or Krylov iterations

. 16: Tj=r+t
coarse level except for the coarsest level, ie. |, ,/_ Az

m =1 in line 4 18 fori:=1,2,.. jdo
. . . . 19: hij = (w,v;)
> CSLP: Krylov iterations instead of multigrid 20: w e w — hy j;
0.254 - . 1 21: end for
> =
Max O(N°-<?) |térat|ons or tol=10 2 hyery = [l v = w/hisr
> Small complex shift: 1/kmaax 3 X =1 @l Hoo={hijhiciciiiiciom

24: end for
> Coarsest level: solved by CSLP-GMRES, tol=10"1 25: U = ug + XimYm where g, = arg min, ||Ber — Humy||

26: Return u,,
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Multilevel deflation - V-cycle

Remark
dm : for m > m, E,, is negative

definite. For m < m, E,, is indefinite.

Table: Number of outer FGMRES-iterations and CPU
time required for the Wedge problem with kh = 0.35.
The coarse-grid systems become negative definite from

k =100

5000

by

-5000

Figure: Spectrum of the coarse linear
systems for k£ = 100 and kh = 0.3125.
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the 4th level.
Three-level Four-level
L Outer CPU Outer CPU
f(Hz)  Grid size #iter  time (s) #iter  time (s)
20 145x241 7 3.78 8 7.00
40 289x481 7 20.14 9 103.31
80 577%x961 8 195.14 11 907.00
160 1153x1921 8 1060.50 13 5101.73

© V-cycle: coarsening needs to remain on
indefinite levels

=~ What about coarsening to negative
definite levels?
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Multilevel deflation - a robust and efficient variant
For the scenario of coarsening to negative definite levels:

© A tolerance for the second level (L2) (instead of one FGMRES iteration)
> |2 tol=1 % 10" — close to constant outer iterations
> 2 tol=3 x 10 ' — extra outer iterations but reduced computation time v
© One FGMRES iteration for the other coarse levels including the coarsest level

© CSLP: the first and second levels: multigrid method (one V-cycle); the other
coarse levels: Krylov iterations (GMRES), tol=1 x 107!

Table: Number of outer FGMRES-iterations and sequential CPU time required to solve the Marmousi
problem. For kh = 0.54, the coarse-grid systems become negative definite starting from the 3rd level.
In parentheses are the number of iterations to solve the second-level grid system.

Two-level, L2 tol=1 x 10T Five-level, [2 tol=1 x 10 Five-level, L2 tol=3 x 10 !
L Outer #iter CPU Outer #iter CPU Outer #iter CPU
f(Hz)  Grid size (L2 #iter) time (s) (L2 #iter) time (s) (L2 #iter) time (s)
10 737x241 11 (64) 23.15 11 (13) 18.57 13 (7) 12.67
20 1473x481 11 (141) 224.21 11 (24) 108.03 15 (15) 84.06
40 2945x961 12 (381) 4354.83 13 (50) 1084.42 18 (29) 816.38
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Multilevel deflation - complexity analysis
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Figure: Complexity analysis of the multilevel APD
preconditioned Krylov subspace method. Evolution
of the sequential computational time versus
problem size. Wedge model problem.
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Table: The number of outer iterations required to
solve the Wedge problems with kh = 0.17 by using
the multilevel APD-FGMRES.

Six-level deflation, |2 tol=3 » 10

Grid size f (Hz) ?E;e;%ﬁ;t:;r

280% 481 20 11 (3)

577 961 40 12 (4)
1153% 1921 80 12 (7)
2305x 3841 160 13 (13)
4609% 7681 320 14 (27)
0217x 15361 640 17 (47)

@ The number of iterations weakly
depends on the frequency

© The computational time behaves
asymptotically as N1
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Parallel performance

> Six-level deflation Preconditioned FGMRES
10%¢
> DelftBlue, GNU Fortran 8.5.0, Open MPI 4.1.1 o e s
----------- Ideal scaling
Table: Weak scaling for constant-wavenumber problem, k = 1600.
Grid size N np #iter CPU time (s) . 10%
5121x5121 26,224,641 64 14 100.84 E
10241x10241 104,878,081 256 13 79.69 3
20481x20481 419,471,361 1024 13 93.62 & 10k
Table: Weak scaling for the Wedge model problem, f = 320 Hz.
Grid size N np #iter CPU time (s)
2305x3841 8,853,505 48 16 69.75 105 s - T
4609 x 7681 35,401,729 192 14 53.20 Processors
9217x15361 141,582,337 768 14 67.03 . .
- Figure: Strong scaling for Wedge problem

© Good weak scalability for large wavenumber - in the context of minimizing
pollution error by grid refinement.
® Good strong scalability for massively parallel computing
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Conclusions and Perspectives

© Parallel CSLP preconditioned Krylov solvers

© Parallel two-level deflation preconditioned Krylov solvers

© Robust parallel multilevel deflation for high-frequency heterogeneous problems
© Matrix-free implementation with wavenumber-independent convergence

© Parallel framework with fairly good weak and strong scaling

< Generalize to real-world large-scale 3D applications

Further reading:

[2) Dwarka, V., Vuik, C.: Scalable convergence using two-level deflation preconditioning for the Helmholtz
equation, SIAM Journal on Scientific Computing, 42(2020), A901-A928.

[2) Dwarka, V., Vuik, C.: Scalable multi-level deflation preconditioning for highly indefinite time-harmonic
waves, Journal of Computational Physics, 469(2022), 111327.

[2) Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel solution method for the three-dimensional
heterogeneous Helmholtz equation, Electronic Transactions on Numerical Analysis, 59 (2023), 270-294.

Ej

Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel two-level deflation preconditioner for the
two-dimensional Helmholtz problems, Journal of Computational Physics, 514 (2024), 113264.
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Q&A

Thanks!
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