A scalable solver for the Helmholtz problems

Cornelis Vuik*, Jinqiang Chen, Vandana Dwarka

Technische Universiteit Delft

Aim and Impact

- Contribute to broad research on parallel scalable iterative solvers for Helmholtz problems
- ◆ This presentation: matrix-free parallelization
 - > Complex shift Laplace Preconditioner (CSLP)
 - > Deflation methods
 - > Parallel performance

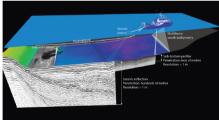
Introduction - the Helmholtz Problem

The Helmholtz equation (describing time-harmonic waves) + BCs

$$-\Delta u\left(\mathbf{x}\right)-k\left(\mathbf{x}\right)^{2}u\left(\mathbf{x}\right)=g\left(\mathbf{x}\right),\text{ on }\Omega\subseteq\mathbb{R}^{n}$$

- $\rightarrow \Delta$ Laplace operator, $u(\mathbf{x})$ Fourier-space representation of the wave function
- $k(\mathbf{x})$ wavenumber, $k(\mathbf{x}) = (2\pi f)/c(\mathbf{x})$, where f frequency, c wave velocity
- > Applications in seismic exploration, medical imaging, antenna synthesis, etc.





Larisa, High-performance implementation of Helmholtz equation with absorbing boundary conditions.

http://www.math.chalmers.se/~larisa/www/MasterProjects/HelmholtzABSbc.pdf

M. Jakobsson, et al (2016). Mapping submarine glacial landforms using acoustic methods. Geological Society.

Introduction - Challenges

Linear system from discretization

$$Au = b$$

- >A is real, sparse, symmetric, normal, and indefinite; non-Hermitian with Sommerfeld BCs
- ? Direct solver or iterative solver
- **A** Accuracy and pollution error $(k^3h^2 < 1)$: finer grid (3D) \Rightarrow larger linear system
 - Memory-efficient methods; High-Performance Computing (HPC)
- **A** Negative & positive eigenvalues: larger wavenumber ⇒ more iterations
 - Preconditioner: Complex Shifted Laplace Preconditioner (CSLP)
 - 🔑 (Higher-order) Deflation
- A Parallelism

Aim

A wavenumber-independent convergent and parallel scalable solver

Introduction - Metrics

- Convergence metric:
- > Krylov-based solvers, GMRES-type: the number of iterations (#iter)
- Scalability:
 - > Strong scaling: the number of processors is increased while the problem size remains constant
 - > Weak scaling: the problem size increases along with the number of tasks, so the computation per task remains constant
 - \rightarrow Wall-clock time: t_w ; number of processors: np
 - > Speedup: $S_p=\frac{t_{w,r}}{t_{w,p}}$, $E_P=\frac{S_p}{np/np_r}=\frac{t_{w,r}\cdot np_r}{t_{w,p}\cdot np}$

Introduction - Numerical Models

lacktriangle Model problems on a rectangular domain Ω with boundary $\Gamma=\partial\Omega$

$$\begin{split} -\Delta u(\mathbf{x}) - k(\mathbf{x})^2 u(\mathbf{x}) &= \delta \left(\mathbf{x} - \mathbf{x}_0\right), \text{ on } \Omega \\ \frac{\partial u(\mathbf{x})}{\partial \vec{n}} - \mathrm{i} k(\mathbf{x}) u(\mathbf{x}) &= 0, \text{ on } \Gamma \end{split}$$

- > Constant wavenumber: $k(\mathbf{x}) = k$
- > Non-constant wavenumber: Wedge, Marmousi problem
- lacktriangle Finite-difference discretization on a uniform grid with grid size h. (2D example)
 - > Laplace operator:

$$-\Delta_h \mathbf{u} \approx \frac{-u_{i,j-1} - u_{i-1,j} + 4u_{i,j} - u_{i+1,j} - u_{i,j+1}}{h^2}$$

> Sommerfeld BCs: a ghost point

$$\frac{\partial u}{\partial \vec{n}}(0,y_j) - \mathrm{i} k(0,y_j) u(0,y_j) \approx \frac{u_{0,j} - u_{2,j}}{2h} - \mathrm{i} k_{1,j} u_{1,j} = 0 \Rightarrow u_{0,j} = u_{2,j} + 2h\mathrm{i} k_{1,j} u_{1,j}$$

Framework - Matrix-free operations

▶ Perform computations with a matrix without explicitly forming or storing the matrix
 ⇒ Reduce memory requirements

Matrix-vector multiplication

If a matrix can be represented by a so-called stencil notation

$$[A] = \begin{bmatrix} a_{-1,1} & a_{0,1} & a_{1,1} \\ a_{-1,0} & a_{0,0} & a_{1,0} \\ a_{-1,-1} & a_{0,-1} & a_{1,-1} \end{bmatrix},$$

Then $\mathbf{v} = A\mathbf{u}$ can be computed by

$$v_{i,j} = \sum_{p=-1}^{1} \sum_{q=-1}^{1} a_{p,q} u_{i+p,j+q}$$

with the help of a ghost point on the physical boundary and one overlapping grid point.

Framework - Matrix-free operations

- i Stencil notation
- > Laplace operator:

$$[-\Delta_h] = rac{1}{h^2} \left[egin{array}{ccc} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \end{array}
ight]$$

> "Wavenumber operator":

$$\begin{bmatrix} \mathcal{I}_h \mathbf{k}^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & k_{i,j}^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{const}{=} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} k^2$$

 $\rightarrow A\mathbf{u} = \mathbf{b}$:

$$[A_h] = [-\Delta_h] - [\mathcal{I}_h \mathbf{k}^2]$$

CSLP

- Speed up convergence of Krylov subspace methods by Preconditioning
- Solve $M^{-1}Au = M^{-1}b$
- Och Complex Shifted Laplace Preconditioner (CSLP)

$$M_h = -\Delta_h - (\beta_1 - \beta_2 i) \mathcal{I}_h \mathbf{k}^2, \ (\beta_1, \beta_2) \in [0, 1], \quad e.g. \ \beta_1 = 1, \beta_2 = 0.5$$

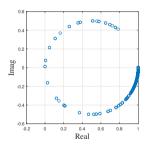
- ✓ Stencil notation
- Solve Mx = u by multigrid method (V-cycle) $\Rightarrow x \approx M^{-1}u$
 - > Vertex-centered coarsening based on the global grid
 - > Damped Jacobi smoother (easy to parallelize)
 - > Full-weight restriction I_h^{2h} & linear interpolation I_{2h}^h

$$[I_h^{2h}] = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}_h^{2h}, \ [I_{2h}^h] = \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}_{2h}^{h}$$

- > Coarse-grid operator obtained by re-discretization
 - Stencil notation: $[M_{2h}]$ similar to $[M_h]$

CSLP - Cons

- **1** Increasing $k \Rightarrow$ eigenvalues move fast towards origin
- Too many iterations for high frequency
- Project unwanted eigenvalues to zero ⇒ Deflation



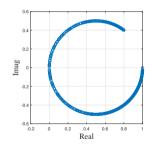


Figure:
$$\sigma\left(M_{(1.0.5)}^{-1}A\right)$$
 for $k=20$ (left) and $k=80$ (right)

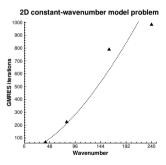


Figure: #Iter increases with k

Deflation - introduction

- Project unwanted eigenvalues to zero ⇒ Deflation
- Deflation preconditioning: solve $PA\hat{u} = Pb$

$$P = I - AQ, \quad \text{where } Q = ZE^{-1}Z^T, \quad E = Z^TAZ$$

$$A \in \mathbb{R}^{n \times n}, Z \in \mathbb{R}^{n \times m}$$

- Columns of Z span deflation subspace
- Ideally Z contains eigenvectors
- In practice approximations: inter-grid vectors from multigrid
- lack 2 Adapted Deflation Variant 1 (A-DEF1): $P_{A-DEF1}=M_{(eta_1,eta_2)}^{-1}P+Q$
 - > Combined with the standard preconditioner CSLP
- Linear approximation basis deflation vectors → higher-order deflation vectors (Adapted Preconditioned DEF, APD)
 - > wavenumber-independent convergence
- **•** Flexible GMRES-type methods \rightarrow approximate E^{-1} , tol= 10^{-1}

Higher-order deflation vectors

- \bullet 2D: the higher-order interpolation & restriction has 5×5 stencil
 - > Two overlapping grid points are needed

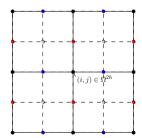


Figure: The allocation map of interpolation operator

Matrix-free coarse-grid operator

$$P = I - AQ$$
, where $Q = ZE^{-1}Z^{T}$, $E = Z^{T}AZ$

 \rightarrow With matrix constructed, $E=Z^TAZ$, so-called Galerkin Coarsening

Matrix-free coarse-grid operation y = Ex?

Straightforward Galerkin Coarsening operator;

$$x_1 = Zx$$
, $x_2 = A_h x_1$, $y = Z^T x_2 \Rightarrow y = Ex$

- > unacceptable computational cost for consideration of multilevel method
- Re-discretization:
 - \mathbf{P} **ReD**- \mathcal{O} **2**: The same as the fine grid
 - **ReD-***O***4**: Fourth-order re-discretization of the Laplace operator

$$[E] = \frac{1}{12 \cdot (2h)^2} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -16 & 0 & 0 \\ 1 & -16 & 60 & -16 & 1 \\ 0 & 0 & -16 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} - \mathcal{I}_{2h} \mathbf{k}_{2h}^2$$

Matrix-free coarse-grid operator

ReD-Glk: Re-discretized scheme (stencil) from the result of Galerkin coarsening

$$[-\Delta_{2h}] = \frac{1}{(2h)^2} \cdot \frac{1}{256} \begin{bmatrix} -3 & -44 & -98 & -44 & -3\\ -44 & -112 & 56 & -112 & -44\\ -98 & 56 & 980 & 56 & -98\\ -44 & -112 & 56 & -112 & -44\\ -3 & -44 & -98 & -44 & -3 \end{bmatrix}$$

$$\Rightarrow -\Delta_{2h}u_{2h} = -4\frac{\partial^2 u}{\partial x^2} - 4\frac{\partial^2 u}{\partial y^2} - (\frac{13}{48}\frac{\partial^4 u}{\partial x^4} + \frac{1}{2}\frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{13}{48}\frac{\partial^4 u}{\partial y^4})(2\mathbf{h})^2 + \mathcal{O}(h^4)$$

$$[\mathcal{I}_{2h}\mathbf{k}_{2h}^2] = \frac{1}{64^2} \begin{bmatrix} 1 & 28 & 70 & 28 & 1\\ 28 & 784 & 1960 & 784 & 28\\ 70 & 1960 & 4900 & 1960 & 70\\ 28 & 784 & 1960 & 784 & 28\\ 1 & 28 & 70 & 28 & 1 \end{bmatrix} \mathbf{k}_{2h}^2$$

$$\Rightarrow [E] = [-\Delta_{2h}] - [\mathcal{I}_{2h}\mathbf{k}_{2h}^2]$$

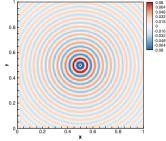
? Boundary conditions - ReD- $\mathcal{O}2$ on the boundary grid points

Convergence - Constant wavenumber

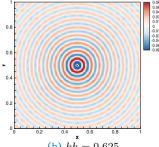
Table: The number of iterations required by using APD-GMRES.

Grid size	k	kh	ReD- $\mathcal{O}2$	ReD- $\mathcal{O}4$	ReD-Glk
65 × 65	40	0.625	20	17	9
129×129	80	0.625	30	18	9
257×257	160	0.625	87	19	9
513×513	320	0.625	319	23	10
1025×1025	640	0.625	1099	34	11
2049×2049	1280	0.625	3417	79	13
129 × 129	40	0.3125	18	18	7
257 × 257	80	0.3125	19	18	7
513×513	160	0.3125	21	18	7
1025×1025	320	0.3125	28	20	6
2049×2049	640	0.3125	53	23	6

- \bullet $Ex = Z^T A_h Zx$: #iter=7 for kh = 0.625, 5 for kh = 0.3125
- ReD-O4 better than ReD-O2
- ReD-Glk: close to wavenumber independence



(a) Exact solution



(b) kh = 0.625

Convergence - 2D Wedge

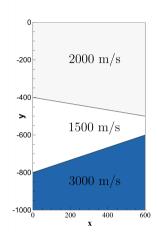


Figure: Wedge problem

Convergence - 2D Wedge

Table: The number of iterations required by using APD-GMRES.

Grid size	f	kh	ReD- <i>O</i> 2	ReD- <i>O</i> 4	ReD-Glk
73× 121	10	0.35	22	22	9
145×241	20	0.35	28	27	9
289×481	40	0.35	31	29	9
577×961	80	0.35	37	30	9
1153×1921	160	0.35	58	34	8

- \odot $Ex = Z^T A_h Zx$: #iter=6
- ReD-Glk: wavenumber independence although it is derived from constant wavenumber

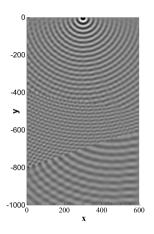
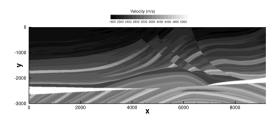
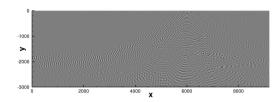


Figure: Waves pattern at 80 Hz

Convergence - Marmousi





(a) Marmousi problem

(b) Wave pattern at $f=40\,\mathrm{Hz}$

Table: The number of iterations required by using APD-GMRES.

Grid size	f	kh	ReD- <i>O</i> 2	ReD- <i>O</i> 4	ReD-Glk
737×241	10	0.5236	40	33	11 (64)
1473×481	20	0.5236	71	35	11 (141)
$2945 \!\times 961$	40	0.5236	233	41	12 (381)

- \bigcirc $Ex = Z^T A_h Zx$: #iter=8
- Similar convergence properties for highly heterogeneous media
- Many iterations are required to solve the coarse grid problem (in parentheses)
 ⇒ multilevel

- $oldsymbol{\circ}$ Re-discretization scheme derived from Galerkin coarsening for both E and M
- \rightarrow The size of the stencil remains 7×7 for level > 3
- > Need three overlapping grid points
- > Zero-padding on the near-boundary grid points, not need extra boundary schemes
- V-cycle: Only one FGMRES iteration per coarse level except for the coarsest level, i.e. m = 1 in line 4
- > CSLP: Krylov iterations instead of multigrid
 - Max $\mathcal{O}(N^{0.25})$ iterations or tol= 10^{-1}
 - ▶ Small complex shift: $1/k_{max}$
- \rightarrow Coarsest level: solved by CSLP-GMRES, tol= 10^{-1}

Algorithm Recursive two-level deflated FGMRES: TLADP-FGMRES(A, b)

```
1: Determine the current level l and dimension m of the Krylov subspace

 Initialize u<sub>0</sub>, compute r<sub>0</sub> = b - Au<sub>0</sub>, β = ||r<sub>0</sub>||, v<sub>1</sub> = r<sub>0</sub>/β;

 3: Define \bar{H}_m \in \mathbb{C}^{(m+1) \times m} and initialize to zero
 4: for j = 1, 2, ..., m or until convergence do
         \hat{v}_i = Z^T v_i
                                                                                       ▶ Restriction
         if l+1==l_{max} then
                                                             ▶ Predefined coarsest level lman
              \tilde{v} \approx E^{-1}\hat{v}
                                                        ▶ Approximated by CSLP-FGMRES
 R٠
         else
             l \leftarrow l + 1
 Q٠
              \tilde{v} \leftarrow \text{TLADP-FGMRES}(E, \hat{v}) \Rightarrow \text{Apply two-level deflation recursively}
10:
         end if
11.
12:
         t = Z\tilde{v}
                                                                                    ▶ Interpolation
         s = At
13.
14.
         \tilde{r} = v_i - s
         r \approx \dot{M}^{-1}\tilde{r}
                                     ▷ CSLP, by multigrid method or Krylov iterations
15.
         x_i = r + t
16:
17:
         w = Ax_i
         for i := 1, 2, ..., i do
18:
19:
             h_{i,j} = (w, v_i)
20:
              w \leftarrow w - h_{i,i}v_i
         end for
21.
         h_{i+1,i} := ||w||_2, v_{i+1} = w/h_{i+1,i}
22:
         X_m = [x_1, ..., x_m], \bar{H}_m = \{h_{i,j}\}_{1 \le i \le j+1, 1 \le j \le m}
24: end for
25: u_m = u_0 + X_m y_m where y_m = \arg\min_u ||\beta e_1 - \bar{H}_m y||
26: Return u_m
```

Multilevel deflation - V-cycle

Remark

 $\exists \tilde{m}: \text{for } m>\tilde{m},\, E_m \text{ is negative}$ definite. For $m\leq \tilde{m},\, E_m$ is indefinite.

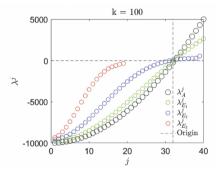


Figure: Spectrum of the coarse linear systems for k = 100 and kh = 0.3125.

Table: Number of outer FGMRES-iterations and CPU time required for the Wedge problem with kh=0.35. The coarse-grid systems become **negative definite** from the **4th level**.

		Thre	ee-level	Fou	r-level
f (Hz)	Grid size	Outer	CPU	Outer	CPU
) (П2)	Grid Size	#iter	time (s)	#iter	time (s)
20	145×241	7	3.78	8	7.00
40	289×481	7	20.14	9	103.31
80	577×961	8	195.14	11	907.00
160	1153×1921	8	1060.50	13	5101.73

- V-cycle: coarsening needs to remain on indefinite levels
- What about coarsening to **negative definite** levels?

Multilevel deflation - a robust and efficient variant

For the scenario of coarsening to **negative definite** levels:

- A tolerance for the second level (L2) (instead of one FGMRES iteration)
 - > L2 tol= 1×10^{-1} \rightarrow close to constant outer iterations
 - > L2 tol= 3×10^{-1} → extra outer iterations but reduced computation time ✓
- One FGMRES iteration for the other coarse levels including the coarsest level
- CSLP: the first and second levels: multigrid method (one V-cycle); the other coarse levels: Krylov iterations (GMRES), tol= 1×10^{-1}

Table: Number of outer FGMRES-iterations and sequential CPU time required to solve the Marmousi problem. For kh=0.54, the coarse-grid systems become negative definite starting from the 3rd level. In parentheses are the number of iterations to solve the second-level grid system.

		Two-level, L2 tol= 1×10^{-1}		Five-level, L2	Five-level, L2 tol= 1×10^{-1}		Five-level, L2 tol= 3×10^{-1}	
f (Hz) Grid size	Outer #iter	CPU	Outer #iter	CPU	Outer #iter	CPU		
J (HZ)	Grid Size	(L2 #iter)	time (s)	(L2 #iter)	time (s)	(L2 #iter)	time (s)	
10	737×241	11 (64)	23.15	11 (13)	18.57	13 (7)	12.67	
20	1473×481	11 (141)	224.21	11 (24)	108.03	15 (15)	84.06	
40	$2945{\times}961$	12 (381)	4354.83	13 (50)	1084.42	18 (29)	816.38	

Multilevel deflation - complexity analysis

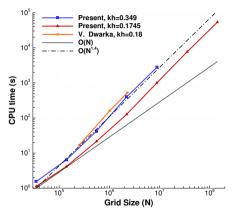


Figure: Complexity analysis of the multilevel APD preconditioned Krylov subspace method. Evolution of the **sequential** computational time versus problem size. Wedge model problem.

Table: The number of outer iterations required to solve the Wedge problems with kh=0.17 by using the multilevel APD-FGMRFS

Six-level deflation, L2 tol= 3×10					
Grid size	f (Hz)	Outer #iter (L2 #iter)			
200 401	20				
289×481	20	11 (3)			
577×961	40	12 (4)			
1153×1921	80	12 (7)			
2305×3841	160	13 (13)			
4609×7681	320	14 (27)			
9217×15361	640	17 (47)			

- The number of iterations weakly depends on the frequency
- \odot The computational time behaves asymptotically as $N^{1.4}$

Parallel performance

- > Six-level deflation Preconditioned FGMRES
- > DelftBlue, GNU Fortran 8.5.0, Open MPI 4.1.1

Table: Weak scaling for constant-wavenumber problem, k = 1600.

Grid size	N	np	#iter	CPU time (s)
5121×5121	26,224,641	64	14	100.84
10241×10241	104,878,081	256	13	79.69
20481×20481	419,471,361	1024	13	93.62

Table: Weak scaling for the Wedge model problem, $f=320\,\mathrm{Hz}.$

Grid size	N	np	#iter	CPU time (s)
2305×3841	8,853,505	48	16	69.75
4609×7681	35,401,729	192	14	53.20
9217×15361	141,582,337	768	14	67.03

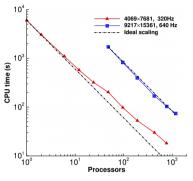


Figure: Strong scaling for Wedge problem

- **⊘** Good strong scalability for massively parallel computing

Conclusions and Perspectives

- ❷ Parallel two-level deflation preconditioned Krylov solvers
- **⊘** Robust parallel multilevel deflation for high-frequency heterogeneous problems
- Parallel framework with fairly good weak and strong scaling
- Generalize to real-world large-scale 3D applications

Further reading:

- Dwarka, V., Vuik, C.: Scalable convergence using two-level deflation preconditioning for the Helmholtz equation, SIAM Journal on Scientific Computing, 42(2020), A901-A928.
- Dwarka, V., Vuik, C.: Scalable multi-level deflation preconditioning for highly indefinite time-harmonic waves, Journal of Computational Physics, 469(2022), 111327.
- Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel solution method for the three-dimensional heterogeneous Helmholtz equation, Electronic Transactions on Numerical Analysis, 59 (2023), 270–294.
- Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel two-level deflation preconditioner for the two-dimensional Helmholtz problems, Journal of Computational Physics, 514 (2024), 113264.

Q&A

Thanks!

Kees Vuik (TU Delft) ACIAM 2024, CAPE TOWN Oct. 02, 2024 24/24