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Aim and Impact

 Contribute to broad research on parallel scalable iterative solvers for Helmholtz
problems

 This presentation: matrix-free parallelization

∠ Complex shift Laplace Preconditioner (CSLP)
∠ Deflation methods
∠ Parallel performance
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Introduction - the Helmholtz Problem
� The Helmholtz equation (describing time-harmonic waves) + BCs

−∆u (x)− k (x)2 u (x) = g (x) , on Ω ⊆ Rn

∠ ∆ - Laplace operator, u (x) - Fourier-space representation of the wave function

∠ k (x) - wavenumber, k (x) = (2πf)/c (x), where f - frequency, c - wave velocity

∠ Applications in seismic exploration, medical imaging, antenna synthesis, etc.

 Larisa, High-performance implementation of Helmholtz equation with absorbing boundary conditions.
http://www.math.chalmers.se/~larisa/www/MasterProjects/HelmholtzABSbc.pdf

 M. Jakobsson, et al (2016). Mapping submarine glacial landforms using acoustic methods. Geological Society.
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Introduction - Challenges

� Linear system from discretization
Au = b

∠ A is real, sparse, symmetric, normal, and indefinite; non-Hermitian with Sommerfeld BCs

? Direct solver or iterative solver

 Accuracy and pollution error (k3h2 < 1): finer grid (3D) ⇒ larger linear system

r Memory-efficient methods; High-Performance Computing (HPC)

 Negative & positive eigenvalues: larger wavenumber ⇒ more iterations

r Preconditioner: Complex Shifted Laplace Preconditioner (CSLP)
r (Higher-order) Deflation

 Parallelism

Aim

 A wavenumber-independent convergent and parallel scalable solver
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Introduction - Metrics

 Convergence metric:

∠ Krylov-based solvers, GMRES-type: the number of iterations (#iter)

 Scalability:

∠ Strong scaling: the number of processors is increased while the problem size remains
constant

∠ Weak scaling: the problem size increases along with the number of tasks, so the
computation per task remains constant

∠ Wall-clock time: tw; number of processors: np

∠ Speedup: Sp =
tw,r

tw,p
, EP =

Sp

np/npr
=

tw,r · npr
tw,p · np
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Introduction - Numerical Models

 Model problems on a rectangular domain Ω with boundary Γ = ∂Ω

−∆u(x)− k(x)2u(x) = δ (x− x0) , on Ω

∂u(x)

∂n⃗
− ik(x)u(x) = 0, on Γ

∠ Constant wavenumber: k(x) = k

∠ Non-constant wavenumber: Wedge, Marmousi problem

 Finite-difference discretization on a uniform grid with grid size h. (2D example)

∠ Laplace operator:

−∆hu ≈
−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1

h2

∠ Sommerfeld BCs: a ghost point

∂u

∂n⃗
(0, yj)− ik(0, yj)u(0, yj) ≈

u0,j − u2,j

2h
− ik1,ju1,j = 0⇒ u0,j = u2,j + 2hik1,ju1,j
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Framework - Matrix-free operations
 Perform computations with a matrix without explicitly forming or storing the matrix
⇒ Reduce memory requirements

Matrix-vector multiplication

If a matrix can be represented by a so-called stencil notation

[A] =

 a−1,1 a0,1 a1,1
a−1,0 a0,0 a1,0
a−1,−1 a0,−1 a1,−1

 ,

Then v = Au can be computed by

vi,j =

1∑
p=−1

1∑
q=−1

ap,qui+p,j+q

with the help of a ghost point on the physical boundary and one overlapping grid point.
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Framework - Matrix-free operations

 Stencil notation

∠ Laplace operator:

[−∆h] =
1

h2

 0 −1 0
−1 4 −1
0 −1 0


∠ “Wavenumber operator”:

[
Ihk2

]
=

 0 0 0

0 k2i,j 0

0 0 0

 const
=

 0 0 0
0 1 0
0 0 0

 k2

∠ Au = b:
[Ah] = [−∆h]− [Ihk2]
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CSLP

 Speed up convergence of Krylov subspace methods by Preconditioning

 Solve M−1Au = M−1b

 Complex Shifted Laplace Preconditioner (CSLP)

Mh = −∆h − (β1 − β2i) Ihk2, (β1, β2) ∈ [0, 1] , e.g. β1 = 1, β2 = 0.5

✓ Stencil notation

 Solve Mx = u by multigrid method (V-cycle) ⇒ x ≈M−1u
∠ Vertex-centered coarsening based on the global grid
∠ Damped Jacobi smoother (easy to parallelize)
∠ Full-weight restriction I2hh & linear interpolation Ih2h

[I2hh ] =
1

16

 1 2 1
2 4 2
1 2 1

2h

h

, [Ih2h] =
1

4

 1 2 1
2 4 2
1 2 1

h

2h

∠ Coarse-grid operator obtained by re-discretization

✓ Stencil notation: [M2h] similar to [Mh]
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CSLP - Cons

 Increasing k ⇒ eigenvalues move fast towards origin

 Too many iterations for high frequency

 Project unwanted eigenvalues to zero ⇒ Deflation
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Deflation - introduction

 Project unwanted eigenvalues to zero ⇒ Deflation

 Deflation preconditioning: solve PAû = Pb

P = I −AQ, where Q = ZE−1ZT , E = ZTAZ

A ∈ Rn×n, Z ∈ Rn×m

 Columns of Z span deflation subspace

 Ideally Z contains eigenvectors

 In practice approximations: inter-grid vectors from multigrid

 Adapted Deflation Variant 1 (A-DEF1): PA−DEF1 = M−1
(β1,β2)

P +Q

∠ Combined with the standard preconditioner CSLP

 Linear approximation basis deflation vectors → higher-order deflation vectors
(Adapted Preconditioned DEF, APD)

∠ wavenumber-independent convergence

 Flexible GMRES-type methods → approximate E−1, tol=10−1
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Higher-order deflation vectors
 2D: the higher-order interpolation & restriction has 5× 5 stencil

∠ Two overlapping grid points are needed

[Z] =
1

64


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1


h

2h

, [ZT ] =
1

64


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1


2h

h

: fine grid points ∈ Ωh

: coarse grid points ∈ Ω2h
(i, j) ∈ Ω2h

Figure: The allocation map of interpolation operator
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Matrix-free coarse-grid operator

P = I −AQ, where Q = ZE−1ZT , E = ZTAZ

∠ With matrix constructed, E = ZTAZ, so-called Galerkin Coarsening

Matrix-free coarse-grid operation y = Ex?

 Straightforward Galerkin Coarsening operator;

x1 = Zx, x2 = Ahx1, y = ZTx2 ⇒ y = Ex

∠ unacceptable computational cost for consideration of multilevel method

 Re-discretization:
 ReD-O2: The same as the fine grid
 ReD-O4: Fourth-order re-discretization of the Laplace operator

[E] =
1

12 · (2h)2


0 0 1 0 0
0 0 −16 0 0
1 −16 60 −16 1
0 0 −16 0 0
0 0 1 0 0

− I2hk
2
2h
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Matrix-free coarse-grid operator

 ReD-Glk: Re-discretized scheme (stencil) from the result of Galerkin coarsening

[−∆2h] =
1

(2h)2
· 1

256


−3 −44 −98 −44 −3
−44 −112 56 −112 −44
−98 56 980 56 −98
−44 −112 56 −112 −44
−3 −44 −98 −44 −3


⇒ −∆2hu2h = −4

∂2u

∂x2
− 4

∂2u

∂y2
− (

13

48

∂4u

∂x4
+

1

2

∂4u

∂x2∂y2
+

13

48

∂4u

∂y4
)(2h)2 +O(h4)

[I2hk
2
2h] =

1

642


1 28 70 28 1
28 784 1960 784 28
70 1960 4900 1960 70
28 784 1960 784 28
1 28 70 28 1

k2
2h

⇒ [E] = [−∆2h]− [I2hk
2
2h]

? Boundary conditions - ReD-O2 on the boundary grid points
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Convergence - Constant wavenumber

Table: The number of iterations required by using APD-GMRES.

Grid size k kh ReD-O2 ReD-O4 ReD-Glk

65 × 65 40 0.625 20 17 9
129 × 129 80 0.625 30 18 9
257 × 257 160 0.625 87 19 9
513 × 513 320 0.625 319 23 10
1025 × 1025 640 0.625 1099 34 11
2049 × 2049 1280 0.625 3417 79 13

129 × 129 40 0.3125 18 18 7
257 × 257 80 0.3125 19 18 7
513 × 513 160 0.3125 21 18 7
1025 × 1025 320 0.3125 28 20 6
2049 × 2049 640 0.3125 53 23 6

○ Ex = ZTAhZx: #iter=7 for kh = 0.625, 5 for kh = 0.3125

○ ReD-O4 better than ReD-O2

○ ReD-Glk: close to wavenumber independence
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Convergence - 2D Wedge

Table: The number of iterations required by using APD-GMRES.

Grid size f kh ReD-O2 ReD-O4 ReD-Glk

73× 121 10 0.35 22 22 9
145× 241 20 0.35 28 27 9
289× 481 40 0.35 31 29 9
577× 961 80 0.35 37 30 9
1153× 1921 160 0.35 58 34 8

○ Ex = ZTAhZx: #iter=6

○ ReD-O4 better than ReD-O2

○ ReD-Glk: wavenumber independence although it is derived

from constant wavenumber

Figure: Wedge problem
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Convergence - 2D Wedge

Table: The number of iterations required by using APD-GMRES.

Grid size f kh ReD-O2 ReD-O4 ReD-Glk

73× 121 10 0.35 22 22 9
145× 241 20 0.35 28 27 9
289× 481 40 0.35 31 29 9
577× 961 80 0.35 37 30 9
1153× 1921 160 0.35 58 34 8

○ Ex = ZTAhZx: #iter=6

○ ReD-O4 better than ReD-O2

○ ReD-Glk: wavenumber independence although it is derived

from constant wavenumber

Figure: Waves pattern at 80 Hz
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Convergence - Marmousi

(a) Marmousi problem (b) Wave pattern at f = 40Hz

Table: The number of iterations required by using APD-GMRES.

Grid size f kh ReD-O2 ReD-O4 ReD-Glk

737 × 241 10 0.5236 40 33 11 (64)
1473× 481 20 0.5236 71 35 11 (141)
2945× 961 40 0.5236 233 41 12 (381)

○ Ex = ZTAhZx: #iter=8
○ Similar convergence properties for highly heterogeneous media
○ ReD-Glk: close to wavenumber independence

○ Many iterations are required to solve the coarse grid problem (in parentheses) ⇒ multilevel
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Multilevel Deflation

 Apply two-level method recursively

 Re-discretization scheme derived from
Galerkin coarsening for both E and M

∠ The size of the stencil remains 7× 7 for level > 3

∠ Need three overlapping grid points

∠ Zero-padding on the near-boundary grid points,

not need extra boundary schemes

 V-cycle: Only one FGMRES iteration per
coarse level except for the coarsest level, i.e.
m = 1 in line 4

∠ CSLP: Krylov iterations instead of multigrid

▶ Max O(N0.25) iterations or tol=10−1

▶ Small complex shift: 1/kmax

∠ Coarsest level: solved by CSLP-GMRES, tol=10−1

Algorithm Recursive two-level deflated FGMRES: TLADP-FGMRES(A, b)

1: Determine the current level l and dimension m of the Krylov subspace
2: Initialize u0, compute r0 = b−Au0, β = ||r0||, v1 = r0/β;
3: Define H̄m ∈ C(m+1)×m and initialize to zero
4: for j = 1, 2, ...,m or until convergence do
5: v̂j = ZT vj ▷ Restriction
6: if l + 1 == lmax then ▷ Predefined coarsest level lmax

7: ṽ ≈ E−1v̂ ▷ Approximated by CSLP-FGMRES
8: else
9: l← l + 1

10: ṽ ←TLADP-FGMRES(E, v̂) ▷ Apply two-level deflation recursively
11: end if
12: t = Zṽ ▷ Interpolation
13: s = At
14: r̃ = vj − s
15: r ≈M−1r̃ ▷ CSLP, by multigrid method or Krylov iterations
16: xj = r + t
17: w = Axj
18: for i := 1, 2, ..., j do
19: hi,j = (w, vi)
20: w ← w − hi,jvi
21: end for
22: hj+1,j := ||w||2, vj+1 = w/hj+1,j

23: Xm = [x1, ..., xm], H̄m = {hi,j}1≤i≤j+1,1≤j≤m
24: end for
25: um = u0 +Xmym where ym = arg miny

∣∣∣∣βe1 − H̄my
∣∣∣∣

26: Return um
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Multilevel deflation - V-cycle

Remark
∃m̃ : for m > m̃, Em is negative

definite. For m ≤ m̃, Em is indefinite.

Figure: Spectrum of the coarse linear
systems for k = 100 and kh = 0.3125.

Table: Number of outer FGMRES-iterations and CPU
time required for the Wedge problem with kh = 0.35.
The coarse-grid systems become negative definite from
the 4th level.

Three-level Four-level

f (Hz) Grid size
Outer CPU Outer CPU
#iter time (s) #iter time (s)

20 145×241 7 3.78 8 7.00
40 289×481 7 20.14 9 103.31
80 577×961 8 195.14 11 907.00
160 1153×1921 8 1060.50 13 5101.73

 V-cycle: coarsening needs to remain on
indefinite levels

è What about coarsening to negative
definite levels?
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Multilevel deflation - a robust and efficient variant
For the scenario of coarsening to negative definite levels:

 A tolerance for the second level (L2) (instead of one FGMRES iteration)

∠ L2 tol=1× 10−1 → close to constant outer iterations
∠ L2 tol=3× 10−1 → extra outer iterations but reduced computation time Ë

 One FGMRES iteration for the other coarse levels including the coarsest level

 CSLP: the first and second levels: multigrid method (one V-cycle); the other
coarse levels: Krylov iterations (GMRES), tol=1× 10−1

Table: Number of outer FGMRES-iterations and sequential CPU time required to solve the Marmousi
problem. For kh = 0.54, the coarse-grid systems become negative definite starting from the 3rd level.
In parentheses are the number of iterations to solve the second-level grid system.

Two-level, L2 tol=1× 10−1 Five-level, L2 tol=1× 10−1 Five-level, L2 tol=3× 10−1

f (Hz) Grid size
Outer #iter CPU Outer #iter CPU Outer #iter CPU
(L2 #iter) time (s) (L2 #iter) time (s) (L2 #iter) time (s)

10 737×241 11 (64) 23.15 11 (13) 18.57 13 (7) 12.67
20 1473×481 11 (141) 224.21 11 (24) 108.03 15 (15) 84.06
40 2945×961 12 (381) 4354.83 13 (50) 1084.42 18 (29) 816.38
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Multilevel deflation - complexity analysis

Grid Size (N)

C
P

U
 t

im
e

 (
s

)

10
5

10
6

10
7

10
810

0

10
1

10
2

10
3

10
4

10
5

Present, kh=0.349

Present, kh=0.1745

V.  Dwarka, kh=0.18

O(N)

O(N
1.4

)

Figure: Complexity analysis of the multilevel APD
preconditioned Krylov subspace method. Evolution
of the sequential computational time versus
problem size. Wedge model problem.

Table: The number of outer iterations required to
solve the Wedge problems with kh = 0.17 by using
the multilevel APD-FGMRES.

Six-level deflation, L2 tol=3× 10−1

Grid size f (Hz)
Outer #iter
(L2 #iter)

289× 481 20 11 (3)
577× 961 40 12 (4)
1153× 1921 80 12 (7)
2305× 3841 160 13 (13)
4609× 7681 320 14 (27)
9217× 15361 640 17 (47)

○ The number of iterations weakly
depends on the frequency

○ The computational time behaves
asymptotically as N1.4
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Parallel performance

∠ Six-level deflation Preconditioned FGMRES

∠ DelftBlue, GNU Fortran 8.5.0, Open MPI 4.1.1

Table: Weak scaling for constant-wavenumber problem, k = 1600.

Grid size N np #iter CPU time (s)

5121×5121 26,224,641 64 14 100.84
10241×10241 104,878,081 256 13 79.69
20481×20481 419,471,361 1024 13 93.62

Table: Weak scaling for the Wedge model problem, f = 320Hz.

Grid size N np #iter CPU time (s)

2305×3841 8,853,505 48 16 69.75
4609×7681 35,401,729 192 14 53.20
9217×15361 141,582,337 768 14 67.03
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Figure: Strong scaling for Wedge problem

○ Good weak scalability for large wavenumber - in the context of minimizing
pollution error by grid refinement.

○ Good strong scalability for massively parallel computing
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Conclusions and Perspectives

○ Parallel CSLP preconditioned Krylov solvers

○ Parallel two-level deflation preconditioned Krylov solvers

○ Robust parallel multilevel deflation for high-frequency heterogeneous problems

○ Matrix-free implementation with wavenumber-independent convergence

○ Parallel framework with fairly good weak and strong scaling

è Generalize to real-world large-scale 3D applications

Further reading:

 Dwarka, V., Vuik, C.: Scalable convergence using two-level deflation preconditioning for the Helmholtz
equation, SIAM Journal on Scientific Computing, 42(2020), A901-A928.

 Dwarka, V., Vuik, C.: Scalable multi-level deflation preconditioning for highly indefinite time-harmonic
waves, Journal of Computational Physics, 469(2022), 111327.

 Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel solution method for the three-dimensional
heterogeneous Helmholtz equation, Electronic Transactions on Numerical Analysis, 59 (2023), 270–294.

 Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel two-level deflation preconditioner for the
two-dimensional Helmholtz problems, Journal of Computational Physics, 514 (2024), 113264.
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Q&A

Thanks!
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