Multigrid for Helmholtz revisited Methods for Indefinite Systems Delft University of Technology

Vandana Dwarka June 24, 2025

Vandana Dwarka (TU Delft)

DD29 2025

Introduction

• Inhomogeneous Helmholtz equation + BC's

$$(-
abla^2 - k^2) \, u(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \Omega \subseteq \mathbb{R}^n$$

- k is the dimensionless wave number: $k = \frac{2\pi}{\lambda}$
- Practical applications in quantum mechanics, imaging problems and plasma fusion

Introduction - Numerical Model

• Start with analytical 1D model problem

$$-\frac{d^2u}{dx^2} - \frac{k^2}{u} = \delta(x - \frac{1}{2}),$$

$$u(0) = 0, u(1) = 0,$$

$$x \in \Omega = [0, 1] \subseteq \mathbb{R},$$

- Discretization using second-order FD with at least 10 gpw
- We obtain a linear system $A\hat{u} = f$

$$A = \frac{1}{h^2}$$
tridiag $[-1 \ 2 - (kh)^2 \ -1],$

• Using Sommerfeld BC's A becomes non-Hermitian indefinite

Preconditioning - CSLP

- Preconditioning to speed up convergence of Krylov subspace methods
- Solve $M^{-1}Au = M^{-1}f$, *M* is CSLP-preconditioner.

$$M = L - (\beta_1 - \beta_2 i)k^2 I,$$

= $A + \frac{\beta_2 ik^2 I}{(\beta_1, \beta_2)} \in (0, 1]$

• *L* is the discretized Laplace operator

Preconditioning - CSLP

- Preconditioning to speed up convergence of Krylov subspace methods
- Solve $M^{-1}Au = M^{-1}f$, *M* is CSLP-preconditioner.

$$M = L - (\beta_1 - \beta_2 i)k^2 I,$$

= $A + \beta_2 ik^2 I,$
 $(\beta_1, \beta_2) \in (0, 1]$

- *L* is the discretized Laplace operator
- Increasing k ⇒ eigenvalues move fast towards origin ⇒ inscalable CSLP-solver

Figure: $\sigma(M^{-1}A)$ for k = 50 (top) and k = 150 bottom.

Preconditioning - CSL

Table: GMRES iterations using tol = 10^{-6} with (β_1, β_2) for 1D problem. CSL inversion using multigrid.

k	(1, 1)	(1,0.5)		
50	25	20		
100	41	30		
500	138	87		
1 000	254	156		
5 000	1 153	693		

- Already convergence issues for simple toy 1D-problem!
- k increases ⇒ more near-zero eigenvalues ⇒ more iterations
- Project unwanted eigenvalues onto zero = Deflation

Preconditioning - Deflation

• Projection principle: solve *PAu* = *Pf*

$$\tilde{P} = AQ$$
 where $Q = ZE^{-1}Z^T$ and $E = Z^T AZ$,
 $P = I - \tilde{P}, Z \in \mathbb{R}^{m \times n}, m < n$

- Columns of Z span deflation subspace
- Ideally Z contains eigenvectors
- In practice approximations: inter-grid vectors from multigrid (linear interpolation polynomial)
- Use DEF + CSLP combined ⇒ spectral improvement

$$M^{-1}PAu = M^{-1}Pf$$

Monitor eigenvalues using RFA (Dirichlet)

Preconditioning - Deflation

- Deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid ⇒ interpolation error
- Measure effect by projection error E $E(kh) = ||(I - P)\phi_{j_{\min},h}||^2$, $P = Z(Z^T Z)^{-1} Z^T$

Preconditioning - Deflation

- Deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid ⇒ interpolation error
- Measure effect by projection error E $E(kh) = \|(I - P)\phi_{j_{\min},h}\|^2,$ $P = Z(Z^T Z)^{-1} Z^T$

Figure: Restricted & interpolated eigenvectors (left kh = 0.625, right $k^3h^2 = 0.625$

k	E(0.625)	E(0.3125)
10 ²	0.88	0.10
10 ³	9.29	1.00
10 ⁴	92.57	10.01
10 ⁵	926.13	100.13
10 ⁶	9 261.71	1 001.38

Higher-order Deflation

- Higher-order deflation vectors
- Rational quadratic Bezier curve ⇒ one control-point
- Weight-parameter w to adjust control-point

• w determined such that projection error minimized

Projection Error

k	w = 0.1250	w = 0.0575	w = 0.01875	w = 0.00125
	kh = 1	kh = 0.825	kh = 0.625	kh = 0.3125
10 ²	0.0127	0.0075	0.0031	0.0006
10 ³	0.0233	0.0095	0.0036	0.0007
10^{4}	0.0246	0.0095	0.0038	0.0007
10 ⁵	0.0246	0.0095	0.0038	0.0007
10 ⁶	0.0246	0.0095	0.0038	0.0007

Table: Projection error E(kh) for various w for 1D

- Weight-parameter w chosen to minimize projection error
- In all cases projection error strictly < 1
- Confirmed with RFA and spectral analysis for Dirichlet BC

Two-Level Deflation - 3D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSLP(1,1). AD contains <u>no CSLP</u>.

k	APD(0.125)	AD(0)
	Iterations	Iterations
10	4	4
25	4	5
50	4	5
75	4	5

- DEF (linear) + CSLP takes 66 iterations for k = 40
- *k*-independent convergence
- Two-level method memory ⇒ multilevel methods

Multilevel methods

Multilevel Deflation

Pros

Close to linear complexity Memory efficient Recursive structure Use as preconditioner with FGMRES

Cons

Needs more inner cycles Convergence depends weakly on k

Multigrid

Pros

Linear complexity

Memory efficient

Recursive structure

Use as stand-alone or preconditioner

Cons

Diverges for Helmholtz Slow convergence small *k*

Multigrid - Challenges for Helmholtz

- Still open-problem
- Near-zero eigenvalues coarser level(s)
- Smoother amplifies error
- Literature mostly for constant k and restricted hierarchy (no full coarsening)

Multigrid - Two-Grid V(1,1)

- Constant k using Sommerfeld BC
- Damped Jacobi smoothing
- Coarsening on Helmholtz operator

k	Quadrat	tic Bezier	Linear		
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125	
50	0.2436	0.2852	1.290	0.9217	
100	0.2441	0.2076	3.325	1.0225	
250	0.2443	0.1538	5.4108	21.5327	
500	0.2443	0.1354	15.5047	21.5327	
1000	0.2443	0.1350	27.7478	21.5327	

Table: Two-grid spectral radius using h.o. scheme

- H.o. scheme gives spectral radius strictly < 1
- Analogous to projection error *strictly* < 1 for deflation!

Multigrid - 2D

- Constant k using Sommerfeld BC
- Construct two-grid V(1,1)-cycle
- Coarsening on Helmholtz operator

k	$\omega - J$	lacobi	Gaus-Seidel		
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125	
50	14	14	6	5	
100	14	14	6	5	
250	14	14	6	5	
500	14	14	6	5	

- Both cases *k*-independence
- Still exact solve on second-level \Rightarrow memory constraints
- Can we create a deeper V-cycle?

Multigrid - 2D

- Constant *k* using Sommerfeld BC
- Three-grid cycle with $kh_{coarsest} = 2.5 \approx \frac{2\pi}{2.5}$

Figure: V-cycle

 Deeper cycle diverges despite h.o. scheme ⇒ coarsen on CSLP using level-dependent scheme + GMRES(3) smoothing (Cools)

Multigrid

- With CSL coarsening, level-dependent parameter (Cools)
- But, level-indep. convergence if:

Higher-order prolongation/restriction (deflation!) Coarsening on CSL

- Small number of smoothing steps using ω–Jacobi
- No restriction on coarsest grid
- Works for both V/W-cycles

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = \left(I - PA_c^{-1}P'A\right)\left(I - X^{-1}A\right).$$

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = \left(I - PA_c^{-1}P'A\right)\left(I - X^{-1}A\right).$$

We write T_0 as $T_0 = I - DA$, such that

$$T_0^H T_0 = I - \Gamma$$

Next, if Γ is HPD, then the two-grid iteration converges.

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = \left(I - PA_c^{-1}P'A\right)\left(I - X^{-1}A\right).$$

We write T_0 as $T_0 = I - DA$, such that

$$T_0^H T_0 = I - \Gamma$$

Next, if Γ is HPD, then the two-grid iteration converges. We show that:

1 Coarsening on CSL instead of A and

2 Using h.o. interpolation & restriction, leads to Γ HPD.

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = \left(I - PA_c^{-1}P'A\right)\left(I - X^{-1}A\right).$$

We write T_0 as $T_0 = I - DA$, such that

$$T_0^H T_0 = I - \Gamma$$

Next, if Γ is HPD, then the two-grid iteration converges. We show that:

1 Coarsening on CSL instead of A and

2 Using h.o. interpolation & restriction,

leads to Γ HPD.

Remark:

1 Γ can be HPD, while **DA** is **not**

Consequently, our two-grid iteration matrix becomes:

$$T_0 = \left(I - P \frac{C_c^{-1}}{P'} A\right) \left(I - X^{-1} A\right)$$

with $C_c = P'CP$, X damped-Jacobi.

Consequently, our two-grid iteration matrix becomes:

$$T_0 = \left(I - PC_c^{-1}P'A\right)\left(I - X^{-1}A\right)$$

with $C_c = P'CP$, X damped-Jacobi.

	Lin	ear	Bezier				
k	A, A_c	A, C_c	A, A_c	A, C_c			
5	× 0.960	× 0.960	✓ 0.865	✓ 0.865			
10	× 1.004	× 0.999	× 0.887	✓ 0.887			
20	× 1.081	× 1.015	× 0.896	✓ 0.896			
30	× 1.122	× 1.021	× 0.898	✓ 0.898			

Table: Spectral radius of T_0 with 1 post-smoothing step using damped-Jacobi.

Multigrid - 2D

• Constant k using Sommerfeld BC

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$), tol. 10⁻⁵. ν is the number of ω -Jacobi smoothing steps.

	k	= 50	<i>k</i> =	= 100	k =	150	<i>k</i> =	= 200	k =	= 250
	N =	6 724	N =	26 244	N =	57 600	N =	102400	N = 1	160 000
	N	o = 8	N _D	= 8	N _D	= 4	N _D	8 = 8	N _D	b = 4
γ	1	2	1	2	1	2	1	2	1	2
$\nu = 4$	58	58	104	108	155	159	209	213	267	271
$\nu = 5$	58	58	104	104	150	166	194	229	238	287
$\nu = 6$	55	58	99	102	139	167	183	222	226	283
$\nu = 7$	53	60	97	101	136	163	179	219	221	280
$\nu = 8$	53	60	95	104	131	161	178	212	218	277

- Coarsening on CSLP (shift = 0.7)
- Linear interpolation still diverges ($k = 50, \gamma = 1$)
- What about GMRES(3) smoothing? (Elman)

Multigrid - 2D

• Constant k using Sommerfeld BC

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$), tol. 10⁻⁵. ν is the number of GMRES(3) smoothing steps.

	k =	= 50	k =	= 100	k =	= 150	k	= 200	k :	= 250
	N =	6 724	N =	26 244	N =	57 600	N =	102 400	N =	160 000
	$ N_{L}$	8 = 8	NL	o = 8	$ N_L$	₀ = 4	N	D = 8	N	_D = 4
γ	1	2	1	2	1	2	1	2	1	2
u = 1	14	7	24	10	39	19	51	24	64	29
$\nu = 2$	8	5	13	7	22	10	28	13	34	16
$\nu = 3$	6	5	10	6	16	9	20	10	24	12
$\nu = 4$	6	5	8	5	12	7	15	9	18	10
$\nu = 5$	5	5	7	5	11	7	13	8	15	9

- Coarsening + on CSLP (shift = k^{-1})
- Iteration count with $\gamma = 2$ close to *k*-independent
- Linear interpolation 199 iterations ($k = 50, \gamma = 1$)
- What about heterogeneous problems?

$\begin{array}{c} \text{Multigrid - 2D random } k \text{ (high-contrast)} \\ \text{Figure: } k(x,y) & \text{Figure: } u(x,y) \end{array}$

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$). ν denotes the number of GMRES(3) smoothing steps.

	$(k_1, $	$k_2) = (10, 50)$	$(k_1,, k_n)$	$k_2) = (10, 75)$
γ	1	2	1	2
u = 1	28	12	31	12
$\nu = 2$	16	8	17	7
$\nu = 3$	12	7	12	6
$\nu = 4$	10	6	10	6
$\nu = 5$	9	6	9	6

Multigrid - 2D Wedge Model Figure: k(x, y)Figure: u(x, y)0 100 04 5000 0.8 200 300 (m) 0.3 0.6 4000 0.2 > 0.4 3000 0.1 400 2000 0.2 0 500 -0.1 600 0 1000 400 600 0 200 0 0.2 0.4 0.6 0.8 x (m) х $2L\pi f$ k(x, y) =f (Hz) Iterations $\overline{c(x,y)}$ [4.18, 25.13] 4 78 8 [8.37, 50.26] 179 12 [12.56, 75.39] 381 [14.66, 87.96] 14 610 16 [16.75, 100.53] 794

Table: Number of V-cycles ($\gamma = 1$) with coarsening until size of the system is less than 10×10 . We use tolerance 10^{-8} with fixed 8 pre- and post-smoothing with damped Jacobi.

Conclusion

- Non-Hermitian indefinite systems cause many convergence issues
- Deflation gives k-independent convergence, but memory constrained (two-level)
- Use higher-order approximation from deflation for multigrid
- H.o. scheme + CSL coarsening \Rightarrow convergence
- We lose *k*-independent convergence

References

V. Dwarka, C. Vuik.

Scalable Convergence Using Two-Level Deflation Preconditioning for the Helmholtz Equation

SIAM Journal on Scientific Computing, 42(3):A901–A928, 2020.

V. Dwarka, R. Tielen, M. Moller and C. Vuik

Towards Accuracy and Scalability: Combining Isogeometric Analysis with Deflation to Obtain Scalable Convergence for the Helmholtz Equation

Computer Methods in Applied Mechanics and Engineering, 377:113694, 2021.

V. Dwarka and C. Vuik

Scalable multi-level deflation preconditioning for highly indefinite time-harmonic waves

Journal of Computational Physics, 469 111327 (2022)

V. Dwarka, C. Vuik,

Stand-alone Multigrid for Helmholtz Revisited: Towards Convergence Using Standard Components

https://arxiv.org/abs/2308.13476 (2023)

J. Chen, V. Dwarka, C. Vuik,

A matrix-free parallel two-level deflation preconditioner for the two-dimensional Helmholtz problems