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Discretization methods 

• FDM 
 

• FEM 
 

• FVM 
 

• DG 
 

• isoGEO FEM 
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Smart algorithms 

• Flexible 
 

• Adaptive 
 

• Robust 
 

• Parallel 
 

• Accuracy 
 

• Physics-based 
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Future computers 

• Slow increase in speed 
 

• Double / single precision 
 

• Parallel coarse / fine 
 

• Memory bound 
 

• Data movement 
 

• Power requirements 
 

• Heat problem 
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Project description

Aim of the project:

Develop a dedicated flow solver that is able to simulate two-phase
pipe flow instabilities (possibly for turbulent flows).

Project boundaries:

I Fixed (cylindrical) domain geometry and grid.

I Use FD/FV techniques for speed and e�ciency.

I Use previously developed Mass Conserving Level Set method
as interface model.



Calculation of the flow field

Solving the cylindrical Navier Stokes equations:

I Incompressible and isothermal on cylindrical grid.
Structured grid for fast numerical methods and improved accuracy.

I Special attention to r = 0!
Coordinate singularity.

I Conservative spatial FD and time integration scheme.
Important for stability at high Reynolds numbers.

I Second order in space and time.
Central discretization in space, Implicit Midpoint method in time.



Calculation of the interface

Mass Conserving Level Set (MCLS) approach:

I Level Set is used for sharp interface properties.
Main drawback: does not conserve volume over time.

I Volume of Fluid is used for conservation properties.
Main drawback: requires complex interface reconstruction.

I Both are combined through a function VOF = f (LS ,rLS).

I Key: LS is locally corrected using VOF to conserve mass.

I Both methods’ strengths are used to form a superior hybrid
method.
Proof of concept on uniform Cartesian grids.



Some results - rising bubble

MCLS OpenFoam Star-CCM+ Fluent



Some results - rising bubble



Some results - Taylor bubble

Comparison with Prosperetti and Lu, 2009, ’A Numerical Study of Taylor Bubbles’

Eo = 15, Fr = 0.23 Eo = 18.7, Fr = 0.1 Eo = 74.6, Fr = 0.27



Some results - Bamboo waves

Bai, Chen, Joseph, 1991 Bai, Chen, Joseph, 1991

MCLS



Some results - Benjamin bubble / Breaking dam problem



Some results - Kelvin-Helmholtz instability

MCLS

OpenFOAM

Fluent (geometric reconstruction)



Geomechanical problems are hard

I Geomechanical problems typically involve large volumes of
soil/rock and various structural components.

I Non-linear finite element models are used to compute the
deformation field.

I Difficult to solve because large variations in stiffness and many
degrees of freedom.
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I geomechanical problems are hard
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Domain decomposition



I domain decomposition

Two methods to create the sub-domains and the corresponding
sub-domain matrices are:
• the traditional, element-based method;
• an alternative, node-based method.

TU Delft Dynaflow Research Group 3



I domain decomposition

First step: partition the nodes without overlap.

Mesh

Unique node partition = native nodes
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Preconditioner

Application of the preconditioner to a vector:
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I preconditioner

Augmenting the preconditioning with a coarse grid
preconditioner (use the Rigid Body Modes of each sub-domain):
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First results are mixed
I Good performance and speed up for uniform models.

Coarse grid perconditioner works well.

I Worse performance than original solver for non-uniform models.

I Reason: large variations in material stiffness within
sub-domains.
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Physics-based partitioning

I Experiments indicated that the partitioning method is very
important.

I Effective method: partition according material/element types.

Number of iterations reduced by factor four for a test case
comprising layers of soil, rock and concrete.

I Difficulty: create a specified number of sub-domains and avoid
load imbalance.
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I physics-based partitioning

I Physics-based partitioning scheme:

1 create node groups based on material/element types;

2 create regions from connected nodes with the same group
number;

3 merge small regions;

4 partition remaining regions with Metis.
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I physics-based partitioning

I Create node groups based on material/element types

I Create regions from connected nodes with the same group number
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I physics-based partitioning

Merge small regions
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I physics-based partitioning

Partition remaining regions with Metis (5 sub-domains)
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Performance results



Performance results

Comparison with PARDISO

Model Emin [MPa] Emax [MPa] # DOFs

1 1.5 3.0 · 104 680,000
2 1.5 3.0 · 104 414,000

Model 1 Model 2
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Performance results I comparison with pardiso

Model 1

Solver # threads Precon [s] Solve [s] # iter

PARDISO 8 200 150 1
Original 1 320 680 140

New

1 140 550 134
2 82 180 80
4 43 150 111
8 23 100 113

Model 2

Solver # threads Precon [s] Solve [s] # iter

PARDISO 8 71 72 1
Original 1 170 140 32

New

1 58 90 62
2 22 84 74
4 19 41 39
8 14 29 45
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I Read the full paper.
F.J. Lingen and P.G. Bonnier and R.B.J. Brinkgreve and M.B. van
Gijzen and C. Vuik
A parallel linear solver exploiting the physical properties of the
underlying mechanical problem
Computational Geosciences, 18, pp. 913-926, 2014
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Lin14BBGV.pdf

I Contact the authors:

• Kees Vuik (c.vuik@tudelft.nl)
• Erik Jan Lingen (erikjan.lingen@dynaflow.com)
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2. Preconditioners
• RBB preconditioner
• Truncated Neumann Series (TNS)
• Deflation
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1. Problem description: ship simulator

Linearized Variational Boussinesq for interactive waves:

∂ζ

∂t
+∇ · (ζU + h∇ϕ− hD∇ψ) = 0, (1a)

∂ϕ

∂t
+ U ·∇ϕ+ gζ = −Ps, (1b)

Mψ +∇ · (hD∇ϕ−N∇ψ) = 0. (1c)

After discretization (FVM for space, Leapfrog for time):

Aψ⃗ = b, (2)

dq

dt
= Lq+ f . (3)
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Problem Description: Bubbly Flow

Mass-Conserving Level-Set method for Navier Stokes

−∇.(
1

ρ(x)
∇p(x)) = f(x), x ∈ Ω (4)

∂

∂n
p(x) = 0, x ∈ ∂Ω (5)

• Pressure-Correction equation is discretized to Ax = b.

• Most time consuming part is the solution of this SPSD

system
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2. Preconditioners: RRB

The RRB-solver:

• is a PCG-type solver (Preconditioned Conjugate

Gradient)

• uses as preconditioner: the RRB preconditioner

RRB stands for “Repeated Red-Black”.

The RRB preconditioner determines an incomplete

factorization:

A = LDLT +R =⇒ M = LDLT ≈ A
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Preconditioners: RRB

As the name RRB reveals: multiple levels

Therefore the RRB-solver has good scaling behaviour

(Multigrid)

Method of choice because:

• shown to be robust for all of MARIN’s test problems

• solved all test problems up to 1.5 million nodes within 7

iterations(!)



7

Delft Institute of Applied Mathematics

Special ordering

An 8× 8 example of the RRB-numbering process

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

All levels combined:
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CUDA implementation (1)

Besides the typical Multigrid issues such as idle cores on the coarsest

levels, in CUDA the main problem was getting “coalesced memory

transfers”.

Why is that?

Recall the RRB-numbering: the number of nodes becomes 4× smaller

on every next level:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)
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CUDA implementation (2)

New storage scheme: r1/r2/b1/b2

Nodes are divided into four groups:

r1 b1

r2b2

r1 b1

b2

r1 b1

b2

r2

=⇒

Next level

r1 b1

b2 r2
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Preconditioners: TNS

Truncated Neumann Series Preconditioninga,b

M−1 = KTD−1K, where K = (I − LD−1 + (LD−1)2 + · · · )

L is the strictly lower triangular of A, and D=diag(A).

1. More terms give better approximation.

2. In general the series converges if ∥ LD−1 ∥∞< 1.

3. As much parallelism as Sparse Matrix Vector Product.

a
A vectorizable variant of some ICCG methods. Henk A. van der Vorst. SIAM Journal of Scientific

Computing. Vol. 3 No. 3 September 1982.
b

Approximating the Inverse of a Matrix for use in Iterative Algorithms on Vector Processors. P.F. Dubois.

Computing (22) 1979.
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Preconditioners: Deflation

Removes small eigenvalues from the spectrum of M−1A.

The linear system Ax = b can be solved by the splitting,

x = (I − P T )x+ P Tx where P = I −AQ. (6)

⇔ Pb = PAx̂. (7)

Q = ZE−1ZT , E = ZTAZ.

Em = a1 is the coarse system

Z is an approximation of the ’bad’ eigenvectors of M−1A.

For our experiments Z consists of piecewise constant vectors.
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Preconditioners: Deflation

Operations involved in deflationa b.

• a1 = ZT p.

• m = E−1a1.

• a2 = AZm.

• ŵ = p− a2.

where, E = ZTAZ is the Galerkin Matrix and Z is the matrix of

deflation vectors.
a

Efficient deflation methods applied to 3-D bubbly flow problems. J.M. Tang, C. Vuik Elec. Trans. Numer.

Anal. 2007.
b

An efficient preconditioned CG method for the solution of a class of layered problems with extreme

contrasts in the coefficients. C. Vuik, A. Segal, J.A. Meijerink J. Comput. Phys. 1999.
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3. Numerical results: ship simulator

• Including: 2D Poisson, Gelderse IJssel (NL), Plymouth

Sound (UK)

• Realistic domains up to 1.5 million nodes
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Numerical results: ship simulator
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Speed up numbers for the realistic test problems.
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Numerical results: Bubbly flow

Speedup =
TCPU

TGPU

(8)

• Number of Unknowns = 1283.

• Tolerance set to 10−6.

• Density Contrast is 10−3

Naming deflation vectors

• SD-i -> Sub-domain deflation with i vectors.

• LS-i -> Level-Set deflation with i vectors.

• LSSD-i -> Level-Set Sub-domain deflation with i vectors.
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Numerical results: Bubbly flow

9 bubbles - 64 Sub-domains

CPU GPU-CUSP

DICCG(0) DPCG(TNS)

SD-64 SD-63 LSSD-135

Number of Iterations 472 603 136

Total Time 81.39 13.61 5.58

Iteration Time 81.1 10.61 2.48

Speedup - 7.64 32.7
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4. Conclusions

• ILU type preconditioners can be used on GPU’s by a

Neumann series approach or a carefull reordering

• Deflation type preconditioners are very suitable for

GPU’s

• The combination of Neumann series and Deflation

preconditioners leads to robust and fast solvers on the

GPU

• A special ordering of a red black reordering can lead to

speedup of a factor 30-40 on the GPU.
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Questions and Remarks


