
1 Challenge the future 

Robust and Fast Solvers for 
Partial Differential Equations 

September 17, 2015 
Kees Vuik 

Delft University of Technology 

Deltares 



2 Challenge the future 

Affiliation 

• Professor of Numerical Analysis 
 http://ta.twi.tudelft.nl/users/vuik/ 

 
• Scientific Director of 3TU.AMI Applied Mathematics Institute 
 http://www.3tu.nl/ami/en/ 

 
• Director of Delft Centre for Computational Science and Engineering 
 http://www.cse.tudelft.nl/ 



3 Challenge the future 

Contents 

• Introduction 
 

• Two-phase flow 
 

• Mechanical solver 
 

• High Performance Computing 



4 Challenge the future 

Discretization methods 

• FDM 
 

• FEM 
 

• FVM 
 

• DG 
 

• isoGEO FEM 



5 Challenge the future 

Smart algorithms 

• Flexible 
 

• Adaptive 
 

• Robust 
 

• Parallel 
 

• Accuracy 
 

• Physics-based 
 



6 Challenge the future 

Future computers 

• Slow increase in speed 
 

• Double / single precision 
 

• Parallel coarse / fine 
 

• Memory bound 
 

• Data movement 
 

• Power requirements 
 

• Heat problem 



’CFD for Flow Instabilites in Multiphase Systems’

Project sponsored by:



Project description

Aim of the project:

Develop a dedicated flow solver that is able to simulate two-phase
pipe flow instabilities (possibly for turbulent flows).

Project boundaries:

I Fixed (cylindrical) domain geometry and grid.

I Use FD/FV techniques for speed and e�ciency.

I Use previously developed Mass Conserving Level Set method
as interface model.



Calculation of the flow field

Solving the cylindrical Navier Stokes equations:

I Incompressible and isothermal on cylindrical grid.
Structured grid for fast numerical methods and improved accuracy.

I Special attention to r = 0!
Coordinate singularity.

I Conservative spatial FD and time integration scheme.
Important for stability at high Reynolds numbers.

I Second order in space and time.
Central discretization in space, Implicit Midpoint method in time.



Calculation of the interface

Mass Conserving Level Set (MCLS) approach:

I Level Set is used for sharp interface properties.
Main drawback: does not conserve volume over time.

I Volume of Fluid is used for conservation properties.
Main drawback: requires complex interface reconstruction.

I Both are combined through a function VOF = f (LS ,rLS).

I Key: LS is locally corrected using VOF to conserve mass.

I Both methods’ strengths are used to form a superior hybrid
method.
Proof of concept on uniform Cartesian grids.



Some results - rising bubble

MCLS OpenFoam Star-CCM+ Fluent



Some results - rising bubble



Some results - Taylor bubble

Comparison with Prosperetti and Lu, 2009, ’A Numerical Study of Taylor Bubbles’

Eo = 15, Fr = 0.23 Eo = 18.7, Fr = 0.1 Eo = 74.6, Fr = 0.27



Some results - Bamboo waves

Bai, Chen, Joseph, 1991 Bai, Chen, Joseph, 1991

MCLS



Some results - Benjamin bubble / Breaking dam problem



Some results - Kelvin-Helmholtz instability

MCLS

OpenFOAM

Fluent (geometric reconstruction)



Geomechanical problems are hard

I Geomechanical problems typically involve large volumes of
soil/rock and various structural components.

I Non-linear finite element models are used to compute the
deformation field.

I Difficult to solve because large variations in stiffness and many
degrees of freedom.

TU Delft Dynaflow Research Group 1



I geomechanical problems are hard

TU Delft Dynaflow Research Group 2



Domain decomposition



I domain decomposition

Two methods to create the sub-domains and the corresponding
sub-domain matrices are:
• the traditional, element-based method;
• an alternative, node-based method.

TU Delft Dynaflow Research Group 3



I domain decomposition

First step: partition the nodes without overlap.

Mesh

Unique node partition = native nodes

TU Delft Dynaflow Research Group 4



Preconditioner

Application of the preconditioner to a vector:

TU Delft Dynaflow Research Group 5



I preconditioner

Augmenting the preconditioning with a coarse grid
preconditioner (use the Rigid Body Modes of each sub-domain):

TU Delft Dynaflow Research Group 6



First results are mixed
I Good performance and speed up for uniform models.

Coarse grid perconditioner works well.

I Worse performance than original solver for non-uniform models.

I Reason: large variations in material stiffness within
sub-domains.

TU Delft Dynaflow Research Group 7



Physics-based partitioning

I Experiments indicated that the partitioning method is very
important.

I Effective method: partition according material/element types.

Number of iterations reduced by factor four for a test case
comprising layers of soil, rock and concrete.

I Difficulty: create a specified number of sub-domains and avoid
load imbalance.

TU Delft Dynaflow Research Group 8



I physics-based partitioning

I Physics-based partitioning scheme:

1 create node groups based on material/element types;

2 create regions from connected nodes with the same group
number;

3 merge small regions;

4 partition remaining regions with Metis.

TU Delft Dynaflow Research Group 9



I physics-based partitioning

I Create node groups based on material/element types

I Create regions from connected nodes with the same group number

domain with 
node group id's

1

2
3

2

4

1

2

3

2

4

regions

material 1

material 2

detail of nodal assignment

material 1

material 2

TU Delft Dynaflow Research Group 10



I physics-based partitioning

Merge small regions

1

2

3

2

4

regions merged regions

1

2

3

2

4

TU Delft Dynaflow Research Group 11



I physics-based partitioning

Partition remaining regions with Metis (5 sub-domains)

1

3

2

4

merged regions
1

3

2

4

2

p 1

p 2

p 3

p 4

p 5

partitioned regions

TU Delft Dynaflow Research Group 12



Performance results



Performance results

Comparison with PARDISO

Model Emin [MPa] Emax [MPa] # DOFs

1 1.5 3.0 · 104 680,000
2 1.5 3.0 · 104 414,000

Model 1 Model 2

TU Delft Dynaflow Research Group 14



Performance results I comparison with pardiso

Model 1

Solver # threads Precon [s] Solve [s] # iter

PARDISO 8 200 150 1
Original 1 320 680 140

New

1 140 550 134
2 82 180 80
4 43 150 111
8 23 100 113

Model 2

Solver # threads Precon [s] Solve [s] # iter

PARDISO 8 71 72 1
Original 1 170 140 32

New

1 58 90 62
2 22 84 74
4 19 41 39
8 14 29 45

TU Delft Dynaflow Research Group 15



I Read the full paper.
F.J. Lingen and P.G. Bonnier and R.B.J. Brinkgreve and M.B. van
Gijzen and C. Vuik
A parallel linear solver exploiting the physical properties of the
underlying mechanical problem
Computational Geosciences, 18, pp. 913-926, 2014
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Lin14BBGV.pdf

I Contact the authors:

• Kees Vuik (c.vuik@tudelft.nl)
• Erik Jan Lingen (erikjan.lingen@dynaflow.com)



1

Delft Institute of Applied Mathematics

Delft University of Technology

Fast Solvers for Linear Systems on

the GPU

Kees Vuik, Rohit Gupta, Martijn de Jong

Martin van Gijzen, Auke Ditzel (MARIN), Auke van der Ploeg (MARIN)



2

Delft Institute of Applied Mathematics

Contents

1. Problem description

2. Preconditioners
• RBB preconditioner
• Truncated Neumann Series (TNS)
• Deflation

3. Numerical results

4. Conclusions



3

Delft Institute of Applied Mathematics

1. Problem description: ship simulator

Linearized Variational Boussinesq for interactive waves:

∂ζ

∂t
+∇ · (ζU + h∇ϕ− hD∇ψ) = 0, (1a)

∂ϕ

∂t
+ U ·∇ϕ+ gζ = −Ps, (1b)

Mψ +∇ · (hD∇ϕ−N∇ψ) = 0. (1c)

After discretization (FVM for space, Leapfrog for time):

Aψ⃗ = b, (2)

dq

dt
= Lq+ f . (3)



4

Delft Institute of Applied Mathematics

Problem Description: Bubbly Flow

Mass-Conserving Level-Set method for Navier Stokes

−∇.(
1

ρ(x)
∇p(x)) = f(x), x ∈ Ω (4)

∂

∂n
p(x) = 0, x ∈ ∂Ω (5)

• Pressure-Correction equation is discretized to Ax = b.

• Most time consuming part is the solution of this SPSD

system



5

Delft Institute of Applied Mathematics

2. Preconditioners: RRB

The RRB-solver:

• is a PCG-type solver (Preconditioned Conjugate

Gradient)

• uses as preconditioner: the RRB preconditioner

RRB stands for “Repeated Red-Black”.

The RRB preconditioner determines an incomplete

factorization:

A = LDLT +R =⇒ M = LDLT ≈ A



6

Delft Institute of Applied Mathematics

Preconditioners: RRB

As the name RRB reveals: multiple levels

Therefore the RRB-solver has good scaling behaviour

(Multigrid)

Method of choice because:

• shown to be robust for all of MARIN’s test problems

• solved all test problems up to 1.5 million nodes within 7

iterations(!)



7

Delft Institute of Applied Mathematics

Special ordering

An 8× 8 example of the RRB-numbering process

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

All levels combined:



8

Delft Institute of Applied Mathematics

CUDA implementation (1)

Besides the typical Multigrid issues such as idle cores on the coarsest

levels, in CUDA the main problem was getting “coalesced memory

transfers”.

Why is that?

Recall the RRB-numbering: the number of nodes becomes 4× smaller

on every next level:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)



9

Delft Institute of Applied Mathematics

CUDA implementation (2)

New storage scheme: r1/r2/b1/b2

Nodes are divided into four groups:

r1 b1

r2b2

r1 b1

b2

r1 b1

b2

r2

=⇒

Next level

r1 b1

b2 r2



10

Delft Institute of Applied Mathematics

Preconditioners: TNS

Truncated Neumann Series Preconditioninga,b

M−1 = KTD−1K, where K = (I − LD−1 + (LD−1)2 + · · · )

L is the strictly lower triangular of A, and D=diag(A).

1. More terms give better approximation.

2. In general the series converges if ∥ LD−1 ∥∞< 1.

3. As much parallelism as Sparse Matrix Vector Product.

a
A vectorizable variant of some ICCG methods. Henk A. van der Vorst. SIAM Journal of Scientific

Computing. Vol. 3 No. 3 September 1982.
b

Approximating the Inverse of a Matrix for use in Iterative Algorithms on Vector Processors. P.F. Dubois.

Computing (22) 1979.



11

Delft Institute of Applied Mathematics

Preconditioners: Deflation

Removes small eigenvalues from the spectrum of M−1A.

The linear system Ax = b can be solved by the splitting,

x = (I − P T )x+ P Tx where P = I −AQ. (6)

⇔ Pb = PAx̂. (7)

Q = ZE−1ZT , E = ZTAZ.

Em = a1 is the coarse system

Z is an approximation of the ’bad’ eigenvectors of M−1A.

For our experiments Z consists of piecewise constant vectors.



12

Delft Institute of Applied Mathematics

Preconditioners: Deflation

Operations involved in deflationa b.

• a1 = ZT p.

• m = E−1a1.

• a2 = AZm.

• ŵ = p− a2.

where, E = ZTAZ is the Galerkin Matrix and Z is the matrix of

deflation vectors.
a

Efficient deflation methods applied to 3-D bubbly flow problems. J.M. Tang, C. Vuik Elec. Trans. Numer.

Anal. 2007.
b

An efficient preconditioned CG method for the solution of a class of layered problems with extreme

contrasts in the coefficients. C. Vuik, A. Segal, J.A. Meijerink J. Comput. Phys. 1999.



13

Delft Institute of Applied Mathematics

3. Numerical results: ship simulator

• Including: 2D Poisson, Gelderse IJssel (NL), Plymouth

Sound (UK)

• Realistic domains up to 1.5 million nodes



14

Delft Institute of Applied Mathematics

Numerical results: ship simulator

0

5

10

15

20

25

30

35

IJssel

Plymouth

Presto

S
p
e
e
d

u
p

100k 200k 500k 1M 1.5M

Speed up numbers for the realistic test problems.



15

Delft Institute of Applied Mathematics

Numerical results: Bubbly flow

Speedup =
TCPU

TGPU

(8)

• Number of Unknowns = 1283.

• Tolerance set to 10−6.

• Density Contrast is 10−3

Naming deflation vectors

• SD-i -> Sub-domain deflation with i vectors.

• LS-i -> Level-Set deflation with i vectors.

• LSSD-i -> Level-Set Sub-domain deflation with i vectors.



16

Delft Institute of Applied Mathematics

Numerical results: Bubbly flow

9 bubbles - 64 Sub-domains

CPU GPU-CUSP

DICCG(0) DPCG(TNS)

SD-64 SD-63 LSSD-135

Number of Iterations 472 603 136

Total Time 81.39 13.61 5.58

Iteration Time 81.1 10.61 2.48

Speedup - 7.64 32.7



17

Delft Institute of Applied Mathematics

4. Conclusions

• ILU type preconditioners can be used on GPU’s by a

Neumann series approach or a carefull reordering

• Deflation type preconditioners are very suitable for

GPU’s

• The combination of Neumann series and Deflation

preconditioners leads to robust and fast solvers on the

GPU

• A special ordering of a red black reordering can lead to

speedup of a factor 30-40 on the GPU.



18

Delft Institute of Applied Mathematics

References

• H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz

Krylov solver preconditioned by a shifted Laplace multigrid method Journal of

Computational and Applied Mathematics, 236, pp. 281-293, 2011

• R. Gupta, M.B. van Gijzen and C. Vuik 3D Bubbly Flow Simulation on the GPU -

Iterative Solution of a Linear System Using Sub-domain and Level-Set Deflation,

21st Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP), 2013, ISBN 978-1-4673-5321-2, pp. 359-366,

2013

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6498576

• M. de Jong Developing a CUDA solver for large sparse matrices for MARIN, MSc

Thesis, Delft University of Technology, 2012

http://ta.twi.tudelft.nl/nw/users/vuik/numanal/jong_afst.pdf



19

Delft Institute of Applied Mathematics

Questions and Remarks


