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Reservoir Simulation in a Nutshell

Background

� Need simulation to optimize production

� Where to drill
� How many wells
� How long to produce
� Where and when to inject fluids or gas

� Need simulation to reduce risks on million dollar investments.
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Reservoir Simulation in a Nutshell

Background
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SPH in a Nutshell

Fundamental Relations ∀r′, r ∈ R3

A(r) =
〈
A(r′), δ(r − r′)

〉
=

∫
Ω,r∈Ω

A(r′)δ(r − r′)dr′

〈
1, δ(r − r′)

〉
=

∫
Ω,r∈Ω

δ(r − r′)dr′ = 1,

Set of Kernel Functions:{W (r − r′, h)} ∈ C 1(Ω)

lim
h→0

{
W (r − r′, h)

}
=weakly= δ(r − r′)∫

Ω,r∈Ω

W (r − r′, h)dr′ = 1,

where h is the smoothing length.
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SPH in a Nutshell

Basic Equalities:

A(r) = lim
h→0

∫
Ω,r∈Ω

A(r′)W (r − r′, h)dr′

A(r) =

∫
Ω,r∈Ω

A(r′)W (r − r′, h)dr′ +O(h2) =

=
∑

J∈Ωr,h

A(rJ)W (r − rJ , h)VJ +O(h2),∀h ∈ Ωh,

ν(rI , rJ) =
∑

rJ ∈ ΩrI ,h̃I

W (rJ − rI , h̃IJ)VrJ ,

where rJ are the particles in the neighborhood of particle r, VJ is the volume of
particle J, Ωr,h is the entire neighborhood of particle r.
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SPH in a Nutshell

Kernel Function:

W (z, h) =
Ξ

hD


1−

3

2
z2 +

3

4
z3, 0 ≤ z ≤ 1

1

4
(2− z)3, 1 ≤ z ≤ 2

0, z > 2
where z = ‖r − r′‖2 /h, Ξ = 3

2
, 10

7π
, 1
π

in 1D, 2D and 3D
respectively.

Figure: Neighboring
particles of a Kernel
support.

Kernel Gradient ∇W (rJ − rI , h̃IJ):

(I )∇rJW (rJ − rI , h̃IJ) = −∇rI W (rJ − rI , h̃IJ),

(II ) ∇W (rJ − rI , h̃IJ) =
∇rI W (rJ − rI , h̃IJ)

ν(rI )
−

W (rJ − rI , h̃IJ)∇rI ν(rI )

ν2(rI )
,

(III ) ∇rJW (rJ − rI , h̃IJ) =
∇rJW (rJ − rI , h̃IJ)

ν(rI )
,

(IV ) ∇̃rJW (rJ − rI , h̃IJ) =
∇rJW (rJ − rI , h̃IJ)

ν(rI , rJ)
−

W (rJ − rI , h̃IJ)∇rJ ν(rI , rJ)

ν2(rI , rJ)
,
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Scheme for Fluid Flow in Porous Media
Lukyanov & Vuik (2017) scheme:

n

Γ̄−1
ββ

〈∇ (m (rI )∇F (rI ))〉 =

∑
ΩrI ,h

VrJ [F (rJ)− F (rI )]
(rJ − rI ) · (mJ + mI ) · ∇W (rJ − rI , h)

‖rJ − rI‖2

−
−


∑

ΩrI ,h

VrJ · (mI + mJ) · [F (rJ)− F (rI )]∇∗αW (rJ − rI , h)

Nα

 ,

[Lukyanov & Vuik, Meshfree Methods for Partial Differential Equations VIII, 67-84]

where n = 1, 2, 3 is the spatial dimension and tensor Γ̄αβ is defined by

Γ̄αβ (rI ) =

 Γ∗αβ (rI ) , Γ∗αβ (rI ) 6= 0,

Γαβ (rI ) , Γ∗αβ (rI ) = 0,

c.vuik@tudelft.nl Copyright 2017 TU Delft



Overal Nonlinear Solver Loop

Time integration step:

Figure: CPR-based FIM simulation framework: two stage CPR where AMG is used to
solve the pressure equation and ILU(0) for the second-stage full residual correction.
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Linear Solver Strategy

Linearized system of governing equations:

Ax = b or

[
App Aps

Asp Ass

] [
xp
xs

]
=

[
bp
bs

]
xp is associated with the pressure (primary) variables
xs is associated with the other (secondary) variables.

CPR preconditioner:

The pressure equation is constructed by an IMPES-like (i.e., Quasi-IMPES or
True-IMPES) reduction using the matrix:

A∗pp∆xp ≈ b∗p , A∗pp = CTM1AC, CT =
[
I 0

]
, M1 =

[
I −Q
0 I

]
where

Q = ApsA
−1
ss ≈ colsum(Aps) · colsum(Ass)

−1.

c.vuik@tudelft.nl Copyright 2017 TU Delft



Linear Solver Strategy

Algorithm 1 Right-Preconditioned GMRES Based Method

1: Setup A∗pp
2: Compute r0 = (b − Ax0), β = ‖r0‖2, and v1 = r0/β.

3: for j = 1, 2, . . . ,m do
4: wj = A∗ppM−1vj
5: for i = 1, . . . , j do
6: hi,j = (wj , vi )
7: wj = wj − hijvi
8: end for
9: hj+1,j = ‖wj‖2

10: if hj+1,j = 0 or converged then
11: set m = j and go to 15
12: end if
13: vj+1 = wj/hj+1,j

14: end for

15: Fill H̄m = {hij} for 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m.
16: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 + M−1Vmum.
17: if converged then xm solution and return else set x0 = xm and go to 2
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Multiscale, Multilevel, Multigrid and Deflation Methods

Common Solution Trends

� Algebraic Multigrid (AMG), Smoothed Aggregation AMG, Non-Galerkin AMG,
element-based Algebraic Multigrid (AMGe), Multilevel Solver

[Ruge and Stuben, 1987], [Vanek et al., 1996], [Falgout and Schroeder, 2014], [Brezina et al., 2001] [Jones et al., 2001], [Lashuk

and Vassilevski, 2008], [Griebel and Schweitzer, 2002]

� Multiscale, Algebraic Multiscale (AMS), Multiscale Restriction Smoothed Basis
(MsRSB)

[Hou and Wu, 1997], [Jenny et al., 2003], [Hajibeygi et al., 2008], [Efendiev and Hou, 2009], [Lunati et al.(2011)], [Zhou and

Tchelepi, 2012], [Cortinovis and Jenny, 2014], [Wang et al., 2014], [Tene et al., 2014], [Manea et al., 2015], [Cusini et al., 2015],

[Møyner and Lie, 2016]

� Deflation Theory

[Nicolaides, 1987], [Dostál, 1988], [Frank and Vuik, 2001], [Vuik et al., 2002], [Tang and Vuik, 2007], [van der Linden et al., 2016]
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Multiscale, Multilevel, Multigrid and Deflation Methods

Galerkin Projection:

A coarse-scale system can be constructed by applying restriction R and prolongation P
operators (a number of times)

Ak+1 = RkAkPk ,

where k is the level of the appropriate step of multiscale, multilevel, multigrid, and
deflation methods, Ak+1 is the matrix on the next level (for the pressure system), Rk ,
Pk are the restriction and prolongation operators at the level k.

Post-Galerkin Projection Steps:

� Smoothing (e.g., Gauss-Seidel (GS) or ILU(k) or BILU(k) smoothing method or
Krylov-space accelerator)

� Filtering of fills in (Non-Galerkin projection)

� Solving deflated system
k∏

i=1

Di
1Ax̂ =

k∏
i=1

Di
1b.
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Multiscale, Multilevel, Multigrid and Deflation Methods

V-cycle

Typical V-cycle scheme of five levels for (multilevel-) multiscale, multigrid, and
multilevel deflated method is shown below.
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Multiscale, Multilevel, Multigrid and Deflation Methods

Problem Description: Strong Scalability AMG ?
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Multiscale, Multilevel, Multigrid and Deflation Methods

Problem Description: Strong Scalability AMG ?
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Multiscale, Multilevel, Multigrid and Deflation Methods

Problem Description: Strong Scalability AMG ?
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Multiscale, Multilevel, Multigrid and Deflation Methods

Problem Description: Strong Scalability AMG ?
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Multiscale Finite Volume (MSFV) Method

MSFV: Two-level solver

xk

Dual-Coarse Cell Coarse Cell

⌦̃j ⌦̆k

Figure: MSFV grid imposed on the given fine-scale grid (center): Nc coarse (solid
lines) and Nd dual-coarse (dashed lines) grids. A coarse and a dual-coarse grid cell are
highlighted on the right and left, respectively.
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CPR-MS method for Fully Implicit Simulations

Linear Solver Settings:

Table: SPE9 model with capillary pressure: settings. Differences
can be seen in the smoothers and in the solver used on the
coarse scale pressure system.

Runs Presmoothing Post-smoothing Coarse Solver
Run 1 GS GS AMG
Run 2 GS GS GMRES-AMG
Run 3 2xGS 2xGS GMRES-AMG

Figure: SPE9 Model.

Simulation Results:

Table: SPE9 with capillary pressure: the table shows the total numbers of nonlinear
and of linear iterations and the total and the linear solver CPU time of each run.

Iteration Count CPU time (s)
Runs Timesteps Nonlinear Linear Linear solver Total
Run 1 75 284 1888 759 1672
Run 2 75 284 1867 1202 2130
Run 3 75 281 1627 1105 2036

CPR-AMG 75 281 1381 1093 1863

[Lukyanov, 2014], [Cusini et al., 2014]
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Multiscale Restriction-Smoothed Basis (MsRSB) Method

MsRSB in a Nutshell

The discretized computational domain Ω is first decomposed into d
non-overlapping subdomains Ω̄j with j ∈ {1, . . . , d}. The deflation vector Z̄j

forms j-th column of the deflation operator Z or initial basis functions P0
j of

MsRSB method, corresponding to Ω̄j(
P0

j

)
i

=
(
Z̄j

)
i

=

{
1, xi ∈ Ω̄j

0, xi ∈ Ω \ Ω̄j ,

where xj is a fine-scale grid cell center. Based on the above definition, Z̄j and
P0

j are piecewise-constant vectors or functions (equal to a constant value of
one inside the corresponding coarse domain Ω̄j), disjoint and orthogonal.

[Frank and Vuik, 2001], [Tang, 2008], [van der Linden, 2013], [Lukyanov et al., 2014], [van der Linden et al., 2016]

[Møyner and Lie, 2015], [Møyner and Lie, 2016], [Shah et al., 2016]
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Multiscale Restriction-Smoothed Basis (MsRSB) Method

MsRSB in a Nutshell
The final restriction-smoothed basis functions are computed by employing a modified
form of the damped-Jacobi smoothing approach:

δPηk = −ωD−1APηk ,

[Møyner and Lie, 2016], [Shah et al., 2016]

where A is the fine-scale matrix, D = diag(A) is the diagonal part of the matrix A.
The final update for prolongation operator is defined as

Pη+1
k = Pηk + δP̂ηk ,

where δP̂ηk is the restricted iterative increments. Finally, the basis functions of the
MsRSB method can be written in the abstract form as:

Pη+1
k = M

1
2
MsRSBP

0
k ,

where M
1
2
MsRSB is the predefined smoothing matrix of MsRSB method.
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Meshless Deflation Theory

Fine and Coarse Spaces:

1. Fine points set SF (e.g., cell centers of underlying mesh), i.e.

Ω = span
{

Ω̄XI ,h̄F
/I = 1, ...,NF

}
consisting of NF patches which are interior to

the support of the kernel W̄
(
X− XI , h̄F

)
, i.e. ΩX,h̄F

= supp W̄ (X− ξ, h̄F ), NF

is the number of points, h̄F is the fine scale diameter (or smoothing length);

2. Coarse points set SC (e.g., user defined points), i.e.

Ω = span
{

Ω̃XJ ,h̄C
/J = 1, ...,NC

}
consisting of NC patches which are interior to

the support of the kernel W̄
(
XI − X, h̄C

)
, i.e. ΩX,h̄C

= supp W̄ (X− ξ, h̄F ),

NC < NF is the number of points, h̄C is the coarse scale diameter (or smoothing
length);
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Meshless Deflation Theory

Meshless Deflation Vectors - Zero Order Consistency

pF (r) ≈
NC∑
J=1

VξJ · W̄ (r − ξJ , h̄C ) · pC (ξJ)

Meshless Deflation Vectors - First Order Consistency

pF
(

rI
)
≈ rI ·

NC∑
J=1

VξJ
· W̄

(
rI − ξJ , h̄C

)
C1
(
ξJ
) +

NC∑
J=1

[
VξJ
· W̄

(
rI − ξJ , h̄C

)
· C2

(
ξJ
)]

where

C1
(
ξJ
)

=

 NC∑
K=1

[
pC
(
ξK
)
− pC

(
ξJ
)]
∇∗W̄

(
ξJ − ξK , h̄C

)
C2
(
ξJ
)

=
[
pC
(
ξJ
)
− ξJ · C1

(
ξJ
)]

,
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Multiscale Meshless Based Method (MsMBM)

Richardson Iteration Scheme

[pF ]m+1 = [pF ]m + V · (bF − AF [pF ]m)

where m is the iteration index, [pF ]m is the pressure vector at the iteration m, V is the
left multiscale meshless based preconditioner defined as an operational object.

Meshless multiscale preconditioner

[zF ] = P (AC )−1 R [vF ] , AC = RM−1AF P

[wF ] = [zF ] + S−1
γ · ([vF ]− AF [zF ])

where S−1
γ is the smoothing operator (e.g., Gauss-Seidel (GS) or ILU(k) or BILU(k)

smoothing method or Krylov-space accelerator) applied γ times.
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Numerical Results: Geometry

Meshless Model:

Mesh Model:
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Numerical Results: Convergence Analysis -
”Perfect Preconditioner”

Meshless Model:
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Numerical Results: Convergence Analysis -
”Perfect Preconditioner”

Mesh Model:
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Numerical Results: Convergence Analysis -
”Perfect Preconditioner”

Mesh Model: MsMBM vs. MsRSB
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Numerical Results: Convergence Analysis

Meshless Model:
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Numerical Results: Convergence Analysis

Mesh Model:
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Numerical Results: Convergence Analysis

Mesh Model: MSMBM vs. MsRSB
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Numerical Results

Basic Properties of the Simulated Test Cases

The black oil, iso-thermal and thermal compositional models with varying degree of
heterogeneity in the reservoir grid properties are considered in this paper to test the
performance of the Multiscale Meshless Based Method (MsMBM)
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Numerical Results

Serial Runs
The simulation tests clearly shows that MsMBM leads to a noticeable speedup around
20% in general for serial runs:
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Numerical Results

Parallel Runs
Scalability of the total time of the simulation runs for CPR-AMG-ILU(0) and MsMDM
solution strategies in the case 389557:
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Summary

Collection of Methods

� Fully Implicit SPH Based Multiscale Method is presented and allows to handle
low-frequency modes on the coarse level. High-frequency errors are then resolved
by employing a smoother on fine grid.

� Restrictions and prolongation operators reduce to the subdomain-levelset
deflation vectors, used in subdomain-levelset deflation method and MsRSB.

� This method does not require a coarse partition and, hence, can be applied to
general unstructured topology of the fine scale.

� The SPH based multiscale method provides a reasonably good approximation to
the pressure system and speeds up the convergence when used as a
preconditioner for an iterative fine-scale solver.

� The method exhibits expected good (not ideal!) scalability during parallel fully
implicit simulations.
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Thank you !
Questions?
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Meshless Deflation Theory

Existing Mappings

uF = W̄P · uC , W̄P : SC → SF uC = W̄R · uF , W̄R : SF → SC˜̄WR
= B−1

W W̄R , BW = W̄RW̄P , ˜̄WR
W̄P = I, ˜̄WR

: SF → SC˜̄WP
= W̄PB−1

W , BW = W̄RW̄P , W̄R ˜̄WP
= I, ˜̄WP

: SC → SF ,

where W̄P and ˜̄WP
, W̄R and ˜̄WR

are the deflation operators.

Restriction and Prolongation operators

(I ) P = W̄P , R =
(

W̄P
)T
, (II ) P = ˜̄WP

, R =

( ˜̄WP
)T

,

(III ) P = W̄P , R = W̄R , (IV ) P = W̄P , R = ˜̄WR
, (V ) P = ˜̄WP

, R = W̄R ,

(VI ) P =
(

W̄R
)T
, R = W̄R , (VII ) P =

( ˜̄WR
)T

, R = ˜̄WR
,

where P and R are the restriction and prolongation operators.
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