

POD-deflation method for highly heterogeneous porous media

Gabriela B. Diaz Cortes ¹, Kees Vuik ¹, Jan Dirk Jansen ².

¹EWI Delft University of Technology

²CiTG Delft University of Technology

SIAM Conference on Mathematical and Computational Issues in the Geosciences, 2017

SPE 10

Single-phase flow, grid size $60 \times 220 \times 85$ grid cells, contrast in permeability 10^7 .

SPE 10

Single-phase flow, grid size $60 \times 220 \times 85$ grid cells, contrast in permeability 10^7 .

Method	Number of iterations
ICCG	1029

SPE 10

Single-phase flow, grid size $60 \times 220 \times 85$ grid cells, contrast in permeability 10^7 .

Method	Number of iterations
ICCG	1029
DICCG	1

Problem Definition

2 Linear Solvers

3 Deflation

POD

6 Conclusions

Bibliography

1 Problem Definition

2 Linear Solvers

3 Deflation

POD

6 Results

6 Conclusions

Bibliography

Flow through a porous medium

Darcy's law + mass balance equation. [1]
$$\frac{\partial(\phi\rho_{\alpha}S_{\alpha})}{\partial t} - \nabla \cdot (\rho_{\alpha}\lambda_{\alpha}(\nabla p_{\alpha} - \rho_{\alpha}g\nabla z)) = q_{\alpha}\rho_{\alpha}.$$

 α Fluid Phase (oil (o) / water (w)) S_{α} Phase Saturation ϕ Rock Porosity ρ_{α} Fluid Density p_{α} Phase Pressure K Rock Permeability $k_{r\alpha}$ Relative Permeabilities $\lambda_{\alpha}(S_{\alpha}) = \frac{Kk_{r\alpha}(S_{\alpha})}{\mu_{\alpha}}$ Phase Mobilities μ_{α} Fluid viscosity g Gravity z Reservoir Depth q Sources

Flow through a porous medium

Darcy's law + mass balance equation. [1]
$$\frac{\partial(\phi\rho_{\alpha}S_{\alpha})}{\partial t} - \nabla \cdot (\rho_{\alpha}\lambda_{\alpha}(\nabla p_{\alpha} - \rho_{\alpha}g\nabla z)) = q_{\alpha}\rho_{\alpha}.$$

 α Fluid Phase (oil (o) / water (w)) S_{α} Phase Saturation ϕ Rock Porosity ρ_{α} Fluid Density p_{α} Phase Pressure K Rock Permeability

Single phase incompressible

$$\mathcal{T}\mathbf{p}_w = \mathbf{q}$$

$$\mathcal{T}_{i-\frac{1}{2},j,l} = \frac{\Delta y}{\Delta x} h \lambda_{i-\frac{1}{2},j,l}$$

 $k_{r\alpha}$ Relative Permeabilities $\lambda_{\alpha}(S_{\alpha}) = \frac{\kappa_{k_{r\alpha}}(S_{\alpha})}{\mu_{\alpha}}$ Phase Mobilities μ_{α} Fluid viscosity g Gravity z Reservoir Depth q Sources

Flow through a porous medium

Darcy's law + mass balance equation. [1]

$$\frac{\partial(\phi\rho_{\alpha}S_{\alpha})}{\partial t} - \nabla \cdot (\rho_{\alpha}\lambda_{\alpha}(\nabla p_{\alpha} - \rho_{\alpha}g\nabla z)) = q_{\alpha}\rho_{\alpha}$$

 α Fluid Phase (oil (o) / water (w)) S_{α} Phase Saturation ϕ Rock Porosity ρ_{α} Fluid Density p_{α} Phase Pressure K Rock Permeability $k_{r\alpha}$ Relative Permeabilities $\lambda_{\alpha}(S_{\alpha}) = \frac{\kappa_{k_{r\alpha}}(S_{\alpha})}{\mu_{\alpha}}$ Phase Mobilities μ_{α} Fluid viscosity g Gravity z Reservoir Depth q Sources

Single phase incompressible

 $\mathcal{T}\mathbf{p}_w = \mathbf{q}$

 $\mathcal{T}_{i-\frac{1}{2},j,l} = \frac{\Delta y}{\Delta x} h \lambda_{i-\frac{1}{2},j,l}$

Single phase compressible

$$\mathsf{J}(\mathbf{p}_w^k)\delta\mathbf{p}_w^{k+1}=-\mathsf{F}(\mathbf{p}_w^k;\mathbf{p}_w^n)$$

Flow through a porous medium

Darcy's law + mass balance equation. [1]
$$\frac{\partial(\phi\rho_{\alpha}S_{\alpha})}{\partial t} - \nabla \cdot (\rho_{\alpha}\lambda_{\alpha}(\nabla p_{\alpha} - \rho_{\alpha}g\nabla z)) = q_{\alpha}\rho_{\alpha}$$

 α Fluid Phase (oil (o) / water (w)) S_{α} Phase Saturation ϕ Rock Porosity ρ_{α} Fluid Density p_{α} Phase Pressure K Rock Permeability $k_{r\alpha}$ Relative Permeabilities $\lambda_{\alpha}(S_{\alpha}) = \frac{Kk_{r\alpha}(S_{\alpha})}{\mu_{\alpha}}$ Phase Mobilities μ_{α} Fluid viscosity g Gravity z Reservoir Depth a Sources

Single phase incompressible

 $\mathcal{T}\mathbf{p}_{w} = \mathbf{q}$ $\mathcal{T}_{i-\frac{1}{2},j,l} = \frac{\Delta y}{\Delta x} h \lambda_{i-\frac{1}{2},j,l}$

Single phase compressible

$$\mathsf{J}(\mathbf{p}_w^k)\delta\mathbf{p}_w^{k+1}=-\mathsf{F}(\mathbf{p}_w^k;\mathbf{p}_w^n)$$

Two phases Incompressible

$$-
abla \cdot (\mathbf{f}_w(\mathbf{S}_w)\lambda_T
abla \mathbf{p}_o) = \mathbf{q}$$

MRST (Lie 2013) [2]

Problem Definition

2 Linear Solvers

3 Deflation

4 POD

6 Results

6 Conclusions

🕖 Bibliography

Conjugate Gradient Method (CG)

	Single phase	Two phases	
Incompressible	Compressible	Incompressible	
$\mathcal{T}\mathbf{p}_w = \mathbf{q}$	$J(p_w^k)\deltap_w^{k+1}=-F(p_w^k;p_w^n)$	$- abla \cdot (\mathbf{f}_w(\mathbf{S}_w)\lambda_T abla \mathbf{p}_o) = \mathbf{q}$	

Successive approximations to obtain a more accurate solution x [3]

$$\label{eq:alpha} \begin{split} \mathcal{A} \textbf{x} = \textbf{b}, \\ \textbf{x}^0, \qquad \text{initial guess} \end{split}$$

$$\mathbf{x}^{k} = \mathbf{x}^{k-1} + \mathcal{M}^{-1}\mathbf{r}^{k-1}, \qquad \mathbf{r}^{k} = \mathbf{b} - \mathcal{A}\mathbf{x}^{k-1}.$$

 $\begin{aligned} \min_{\mathbf{x}^{k} \in \kappa_{k}(\mathcal{A}, \mathbf{r}^{0})} ||\mathbf{x} - \mathbf{x}^{k}||_{\mathcal{A}}, & ||\mathbf{x}||_{\mathcal{A}} = \sqrt{\mathbf{x}^{T} \mathcal{A} \mathbf{x}}. \\ \text{Convergence} \\ & \cdots \\ & (\sqrt{\kappa(\mathcal{A})} - 1)^{k+1} \end{aligned}$

$$|\mathbf{x} - \mathbf{x}^{k}||_{\mathcal{A}} \leq 2||\mathbf{x} - \mathbf{x}^{0}||_{\mathcal{A}} \left(\frac{\sqrt{\kappa(\mathcal{A})} - 1}{\sqrt{\kappa(\mathcal{A})} + 1}\right)$$

.

PCG (ICCG)

Preconditioning

Improve the spectrum of \mathcal{A} .

$$\mathcal{M}^{-1}\mathcal{A}\mathbf{x} = \mathcal{M}^{-1}\mathbf{b}.$$

Convergence

$$egin{aligned} ||\mathbf{x}-\mathbf{x}^k||_\mathcal{A} \leq 2 ||\mathbf{x}-\mathbf{x}^0||_\mathcal{A} \left(rac{\sqrt{\kappa(\mathcal{M}^{-1}\mathcal{A})}-1}{\sqrt{\kappa(\mathcal{M}^{-1}\mathcal{A})}+1}
ight)^{k+1}, \ \kappa(\mathcal{M}^{-1}\mathcal{A}) \leq \kappa(\mathcal{A}). \end{aligned}$$

IC(0)

Let $a_{i,j} \in \mathcal{A}$ and $\ell_{i,j} \in \mathcal{L}^*$, \mathcal{L}^* the matrix from the Cholesky decomposition, such that $\ell_{i,j} = 0$ if $a_{i,j} = 0$. Cholesky Decomposition If $\mathcal{A} \in \mathcal{R}^{n \times n}$ is SPD,

$$\mathcal{A} = \mathcal{L}\mathcal{L}^{\mathsf{T}}$$

Problem Definition

2 Linear Solvers

3 Deflation

POD

6 Results

6 Conclusions

Bibliography

DPCG

Deflation

$$\begin{aligned} \mathcal{P} &= \mathcal{I} - \mathcal{A}\mathcal{Q}, \quad \mathcal{P} \in \mathbb{R}^{n \times n}, \quad \mathcal{Q} \in \mathbb{R}^{n \times n}, \\ \mathcal{Q} &= \mathcal{Z} \mathcal{E}^{-1} \mathcal{Z}^{\mathsf{T}}, \quad \mathcal{Z} \in \mathbb{R}^{n \times k}, \quad \mathcal{E} \in \mathbb{R}^{k \times k}, \\ \mathcal{E} &= \mathcal{Z}^{\mathsf{T}} \mathcal{A} \mathcal{Z} \text{ (Tang 2008, [4]).} \end{aligned}$$

Convergence Deflated system

$$||\mathbf{x} - \mathbf{x}^{k}||_{\mathcal{A}} \leq 2||\mathbf{x} - \mathbf{x}^{0}||_{\mathcal{A}} \left(\frac{\sqrt{\kappa_{eff}(\mathcal{P}\mathcal{A})} - 1}{\sqrt{\kappa_{eff}(\mathcal{P}\mathcal{A})} + 1}\right)^{k+1}$$

Deflated and preconditioned system

$$egin{aligned} &||\mathbf{x}-\mathbf{x}^{k}||_{\mathcal{A}}\leq 2||\mathbf{x}-\mathbf{x}^{0}||_{\mathcal{A}}\left(rac{\sqrt{\kappa_{eff}(\mathcal{M}^{-1}\mathcal{P}\mathcal{A})}-1}{\sqrt{\kappa_{eff}(\mathcal{M}^{-1}\mathcal{P}\mathcal{A})}+1}
ight)^{k+1}.\ &\kappa_{eff}(\mathcal{M}^{-1}\mathcal{P}\mathcal{A})\leq\kappa_{eff}(\mathcal{P}\mathcal{A})\leq\kappa(\mathcal{A}). \end{aligned}$$

.

Recycling deflation (Clemens 2004, [5]).

$$\mathcal{Z} = [\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^{q-1}],$$

 x^{i} 's are solutions of the system.

Multigrid and multilevel (Tang 2009, [6]).

The matrices \mathcal{Z} and \mathcal{Z}^T are the restriction and prolongation matrices of multigrid methods.

Subdomain deflation (Vuik 1999,[7]).

Proposal

Use solution of the system with diverse well configurations as deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal Decomposition (POD).

Problem Definition

2 Linear Solvers

3 Deflation

POD

Conclusions

🕖 Bibliography

Proper Orthogonal Decomposition (POD)

POD: find an 'optimal' basis for a given data set (Markovinović 2009 [8], Astrid 2011 [9])

$$\Phi = [\phi_1, \phi_2, \dots, \phi_l] \in \mathbb{R}^{n \times l}$$

 ϕ_i , basis functions.

• Get the snapshots

$$\mathcal{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_m].$$

• *I* eigenvectors of
$$\mathcal{R}$$
 satisfying:

$$\frac{\sum_{j=1}^{l} \lambda_j}{\sum_{j=1}^{m} \lambda_j} \leq \alpha, \qquad 0 < \alpha \leq 1.$$

$$\mathcal{R} := \frac{1}{m} \mathcal{X} \mathcal{X}^{\mathsf{T}} \equiv \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}}.$$

Problem Definition

2 Linear Solvers

3 Deflation

4 POD

6 Conclusions

🕖 Bibliography

Heterogeneous permeability (Neumann boundary conditions).

Single-phase flow nx = ny = 64 grid cells. Neumann boundary conditions. 15 snapshots, 4 linearly independent. W1 = W2 = W3 = W4 = -1 bars, W5 = +4 bars.

Figure: Heterogeneous permeability layers.

$\sigma_2 (mD)$	10^{-1}	10 ⁻³	10^{-5}	10^{-7}
ICCG	90	131	65*	64*
DICCG ₁₅	500*	500*	500*	500*
DICCG ₄	1	1	1*	1*
DICCG _{POD4}	1	1	1*	1*

Table: Iterations, tol 10^{-7}

Numerical experiments (Heterogeneous permeability)

Condition number of a SPD matrix.

$$\kappa_2(\mathcal{A}) = rac{\lambda_{max}(\mathcal{A})}{\lambda_{min}(\mathcal{A})}$$

$\sigma_2 (mD)$	10^1	10^{-3}	10^{-5}	10 ⁻⁷
$\kappa(A)$	2.6×10^{3}	2.4×10 ⁵	$2.4 imes 10^{7}$	$2.4 imes 10^9$
$\kappa(M^{-1}A)$	206.7	$8.3 imes10^3$	$8.3 imes10^5$	$8.3 imes10^7$
$\kappa_{eff}(M^{-1}PA)$	83.27	$6 imes 10^3$	$1 imes 10^{6}$	$6 imes 10^7$

Table: Condition number for various permeability contrasts between the layers, grid size of 32×32 , $\sigma_1 = 1mD$.

Relative error

$$e = \frac{||\mathbf{x} - \mathbf{x}^k||_2}{||\mathbf{x}||_2} \le \kappa_2(A)\epsilon, \qquad \text{with } \mathbf{x} \text{ the true solution and } \mathbf{x}^k \text{ the approximation}.$$

Taking $e = 10^{-7}$,

σ ₂ (mD)	10^{-1}	10^{-3}	10 ⁻⁵	10^{-7}
$tol = \frac{e}{\kappa_2(M^{-1}A)} = \frac{10^{-7}}{\kappa_2(M^{-1}A)}$	$5 imes 10^{-9}$	1×10^{-10}	1×10^{-12}	1×10^{-14}
$tol = \frac{e}{\kappa_{eff}(M^{-1}PA)} = \frac{10^{-7}}{\kappa_{eff}(M^{-1}PA)}$	$1 imes 10^{-8}$	2×10^{-10}	1×10^{-12}	2×10^{-14}

Table: Tolerance needed for various permeability contrast between the layers, grid size of 32 x 32, $\sigma_1 = 1 mD$, for an error of $e = 10^{-7}$.

Numerical experiments (SPE 10)

SPE 10 model, 2nd layer

Figure: Permeability field, 16×56 and 60×220 grid cells (upscaled with MRST [2]).

Grid	16 x 56	30×110	46 x 166	60 x 220
size				
Contrast $(\times 10^7)$	1.04	2.52	2.6	2.8

Table: Contrast in permeability for different grid sizes $(\sigma_{max}/\sigma_{min})$.

Condition number	
$\kappa(A)$	$2.2 imes10^{6}$
$\kappa(M^{-1}A)$	377
$\kappa_{eff}(M^{-1}PA)$	82.7

Table: Table with the condition number of the SPE10 model, grid size of 16×56 .

Numerical experiments(SPE 10)

SPE 10 model, 2nd layer

Tol (snapshots)	Method	16 x 56	30 x 110	46 x 166	60 x 220
	ICCG	34	73	126	159
10^{-1}	DICCG ₄	33	72	125	158
10 ⁻³	DICCG ₄	18	38	123	151
10 ⁻⁵	DICCG ₄	11	21	27	55
10^{-7}	DICCG ₄	1	1	1	1

Table: Number of iterations for ICCG and DICCG, diverse tolerance for the snapshots, different grid sizes. DICCG₄ is computed with 4 deflation vectors.

SPE 10 model, 85 layers

Method	Number of iterations
ICCG	1029
DICCG	1

Table: Number of iterations for the SPE10 benchmark (85 layers) for the ICCG and DICCG methods, relative tolerance 10^{-7} .

Compressible SPE 10 problem $60 \times 220 \times 85$ grid cells. Neumann boundary conditions. W1 = W2 = W3 = W4 = 100 bars, W5 = 600 bars. Initial pressure 200 bars. Contrast in permeability of 3×10^7 .

P-BPFS

Compressible SPE 10 problem

1 st NR Iteration						
Total	Method	ICCG	DICCG	Total	% of total	
ICCG (only)		Snapshots		ICCG+DICCG	ICCG	
10173	DICCG ₁₀	1770	1134	2904	28	
10173	DICCG _{POD4}	1770	1554	3324	32	

Table: Average number of linear iterations for the first NR iteration, full SPE 10 benchmark.

2 nd NR Iteration						
Total	Method	ICCG	DICCG	Total	% of total	
ICCG (only)		Snapshots		ICCG+DICCG	ICCG	
10231	DICCG ₁₀	1830	200	2030	20	
10231	DICCG _{POD4}	1830	200	2030	20	

Table: Average number of linear iterations for the second NR iteration, full SPE 10 benchmark.

Layered problem, two phases, water injection through wells, 35 × 35 cells

Well	Water Sat	Oil Sat	Pressure
P_1	0	1	50 bars
P_2	0	1	50 bars
P ₃	0	1	50 bars
P_4	0	1	50 bars
	1	0	200 bars

Table: Wells properties.

Figure: Water Saturation.

Layered problem, two phases, water injection through wells, 35×35 cells

$\frac{\sigma_2}{\sigma_1}$	Total	Method	ICCG	DICCG	Total	% of total
	ICCG		Snapshots		ICCG	ICCG
					+ DICCG	
101	24394	DICCG _{POD10}	502	1869	2371	10
101	24394	DICCG _{POD5}	502	2477	2979	12
10 ²	27364	DICCG _{POD10}	551	1906	2457	9
10 ²	27364	DICCG _{POD5}	551	2583	3134	11
10 ³	27092	DICCG _{POD10}	529	2033	2562	9
10 ³	27092	DICCG _{POD5}	529	2430	2959	11

Table: No capillary pressure included.

$\frac{\sigma_2}{\sigma_1}$	Total	Method	ICCG	DICCG	Total	% of total
-1	ICCG		Snapshots		ICCG	ICCG
					+ DICCG	
10 ¹	23810	DICCG _{POD10}	502	2641	3143	13
10 ¹	23810	DICCG _{POD5}	502	2683	3185	13
10 ²	27629	DICCG _{POD10}	551	2719	3270	12
10 ²	27629	DICCG _{POD5}	551	2793	3344	12
10 ³	23962	DICCG _{POD10}	517	2872	3389	14
10 ³	23962	DICCG _{POD5}	517	2744	3261	14

Table: Capillary pressure included.

Layered problem, two phases, water injection through the boundary, 24 x 24 x 24 cells.

	Water	Oil
$S_{0,x\neq 0,L_x}$	0	1
$S_{x=0}$	1	0
$S_{x=L_x}$	0	1

Table: Saturations.

Property	Value	Units
$Q_{x=0}$	0.4	m ³ /day
$P_{0,x\neq 0,L_x}$	100	bars
$P_{x=L_x}$	0	bars

Table: Control.

Layered problem, two phases, water injection through the boundary, $24 \times 24 \times 24$ cells.

$\frac{\sigma_2}{\sigma_1}$	Total	Method	ICCG	DICCG	Total	% of total
	ICCG		Snapshots		ICCG	ICCG
					+DICCG	
10 ¹	19426	DICCG _{POD10}	654	1969	2623	14
10 ¹	19426	DICCG _{POD5}	654	2258	2912	15
10 ²	22577	DICCG _{POD10}	762	2340	3102	14
10 ²	22577	DICCG _{POD5}	762	2714	3476	15
10 ³	21832	DICCG _{POD10}	594	2086	2680	12
104	18483	DICCG _{POD10}	529	1868	2397	13

Table: Gravity included.

$\frac{\sigma_2}{\sigma_1}$	Total	Method	ICCG	DICCG	Total	% of total
-1	ICCG		Snapshots		ICCG	ICCG
					+DICCG	
10 ¹	17224	DICCG _{POD10}	660	3431	4091	24
10 ¹	17224	DICCG _{POD5}	660	3658	4318	25
10 ²	20562	DICCG _{POD10}	763	3468	4231	21
10 ²	20562	DICCG _{POD5}	763	3596	4359	21
10 ³	18514	DICCG _{POD10}	605	2894	3499	19
10 ³	18514	DICCG _{POD5}	605	2943	3548	19

Table: Capillary pressure (C = 10 * (1 - S)) and gravity included

SPE 10, first layer, 16 x 56 grid cells

Well	Water Sat	Oil Sat	Pressure
P_1	0	1	275 bars
P_2	0	1	275 bars
P ₃	0	1	275 bars
P_4	0	1	275 bars
1	1	0	1100 bars

Table: Wells properties.

P2	P4
and the second second	1000
	P3

Total	Method	ICCG	DICCG	Total	% of total
ICCG		Snapshots		ICCG	ICCG
				+ DICCG	
11313	DICCG _{POD10}	567	1615	2182	19
11313	DICCG _{POD5}	567	2235	2802	25

Table: Comparison between the ICCC and DICCG methods of the average number of linear iterations for the SPE 10 problem, 16×56 grid cells (upscaled with MRST[2]).

SPE 10, first layer, 16 x 56 grid cells, training example

Well	Water Sat	Oil Sat	Pressure
P_1	0	1	<i>rand</i> (0 – 275) bars
P_2	0	1	<i>rand</i> (0 – 275) bars
P ₃	0	1	$275 - P_1$ bars
P_4	0	1	275 – <i>P</i> ₂ bars
1	1	0	1100 bars

Table: Wells properties.

Total	Method	DICCG	% of total
11362	DICCG _{POD30}	1734	16
11362	DICCG _{POD10}	2498	23

Table: Comparison between the ICCC and DICCG methods of the average number of linear iterations for the SPE 10 problem, 16×56 grid cells.

Problem Definition

2 Linear Solvers

3 Deflation

POD

6 Results

6 Conclusions

🕖 Bibliography

- Solution is reached in 1 iteration for DICCG method for the single phase incompressible problem. TU Delft Report: [10].
- A reduction of ≈ 80% of the ICCG number of iterations is achieved with DICCG method for the solution of the pressure equation, for the two phase layered and SPE 10 problems and for the full SPE 10 compressible problem (≈ 10⁶ grid cells).
 JCAM paper: G.B. Diaz Cortes, C. Vuik and J.D. Jansen, 2017 [11]
- Number of iterations for the DICCG method does not depend on the contrast between the coefficients or the grid size. TU Delft Report: [12].

Problem Definition

2 Linear Solvers

3 Deflation

POD

6 Results

6 Conclusions

Bibliography

References I

J.D. Jansen.

A systems description of flow through porous media. Springer, 2013.

K.A. Lie.

An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST).

SINTEF ICT, 2013.

Y. Saad.

Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics Philadelphia, PA, USA. 2003.

J. Tang.

Two-Level Preconditioned Conjugate Gradient Methods with Applications to Bubbly Flow Problems.

PhD thesis, Delft University of Technology, 2008.

M. Clemens, M. Wilke, R. Schuhmann and T. Weiland.

Subspace projection extrapolation scheme for transient field simulations.

IEEE Transactions on Magnetics, 40(2):934-937, 2004.

References II

J.M. Tang, R. Nabben, C. Vuik and Y. Erlangga.

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.

Journal of scientific computing, 39(3):340-370, 2009.

C. Vuik, A. Segal and J. A. Meijerink.

An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients.

Journal of Computational Physics, 152:385, 1999.

R. Markovinović.

System-Theoretical Model Reduction for Reservoir Simulation and Optimization.

PhD thesis, Delft University of Technology, 2009.

P. Astrid, G. Papaioannou, J.C. Vink and J.D. Jansen.

Pressure Preconditioning Using Proper Orthogonal Decomposition.

In 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, pages 21-23, January 2011.

Physics-based Pre-conditioners for Large-scale Subsurface Flow Simulation. In Proceedings of the 15th European Conference on the Mathematics of Oil Recovery, ECMOR XV, August 2016.

G.B. Diaz Cortes, C. Vuik and J.D. Jansen.

On POD-based Deflation Vectors for DPCG applied to porous media problems.

Journal of Computational and Applied Mathematics.

G.B. Diaz Cortes, C. Vuik and J.D. Jansen.

On POD-based Deflation Vectors for DPCG applied to porous media problems .

Report 17-1, Delft University of Technology, Delft Institute of Applied Mathematics, Delft, 2017.

Lemma 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and \mathbf{x} is the solution of:

Ax = b.

Let $\mathbf{x}_i, \mathbf{b}_i \in \mathbb{R}^n, i = 1, ..., m$, be vectors linearly independent (1.i.) and

$$\mathbf{A}\mathbf{x}_i = \mathbf{b}_i$$
.

The following equivalence holds

$$\mathbf{x} = \sum_{i=1}^{m} c_i \mathbf{x}_i \qquad \Leftrightarrow \qquad \mathbf{b} = \sum_{i=1}^{m} c_i \mathbf{b}_i.$$

Proof
$$\Rightarrow \qquad \mathbf{x} = \sum_{i=1}^{m} c_i \mathbf{x}_i \Rightarrow \mathbf{b} = \sum_{i=1}^{m} c_i \mathbf{b}_i.$$
$$\mathbf{A}\mathbf{x} = \sum_{i=1}^{m} \mathbf{A}c_i \mathbf{x}_i = \mathbf{A}(c_1 \mathbf{x}_1 + \dots + c_m \mathbf{x}_m) =$$
$$= \mathbf{A}c_1 \mathbf{x}_1 + \dots + \mathbf{A}c_m \mathbf{x}_m = c_1 \mathbf{b}_1 + \dots + c_m \mathbf{b}_m = \sum_{i=1}^{m} c_i \mathbf{b}_i = \mathbf{b}.$$

Lemma 2. If the the deflation matrix Z is constructed with a set of m vectors

$$\mathbf{Z} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_m \end{bmatrix},$$

such that $\mathbf{x} = \sum_{i=1}^{m} c_i \mathbf{x}_i$, with \mathbf{x}_i *l.i.*, then the solution of system (34) is obtained with one iteration of DCG.

$$\mathbf{x} = \mathbf{Q}\mathbf{b} + \mathbf{P}^T \mathbf{\hat{x}}.$$

$$\mathbf{Q}\mathbf{b} = \mathbf{Z}\mathbf{E}^{-1}\mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i}\mathbf{b}_{i}\right) = \mathbf{Z}(\mathbf{Z}^{T}\mathbf{A}\mathbf{Z})^{-1}\mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i}\mathbf{A}\mathbf{x}_{i}\right)$$
$$= \mathbf{Z}(\mathbf{Z}^{T}\mathbf{A}\mathbf{Z})^{-1}\mathbf{Z}^{T}(\mathbf{A}\mathbf{Z}\mathbf{c}) = \mathbf{Z}\mathbf{c}$$

$$=c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3+c_4\mathbf{x}_4+c_5\mathbf{x}_5=\sum_{i=1}c_i\mathbf{x}_i=\mathbf{x}.$$

$$\begin{aligned} \mathbf{P}\mathbf{A}\hat{\mathbf{x}} &= \mathbf{P}\mathbf{b} = (\mathbf{I} - \mathbf{A}\mathbf{Q})\mathbf{b} = \mathbf{b} - \mathbf{A}\mathbf{Q}\mathbf{b} = \mathbf{b} - \mathbf{A}\mathbf{x} = \mathbf{0} \\ \mathbf{P}\mathbf{A}\hat{\mathbf{x}} &= \mathbf{A}\mathbf{P}^{\mathsf{T}}\hat{\mathbf{x}} = \mathbf{0} \quad \Rightarrow \quad \mathbf{P}^{\mathsf{T}}\hat{\mathbf{x}} = \mathbf{0} \\ \mathbf{x} &= \mathbf{Q}\mathbf{b} + \mathbf{P}^{\mathsf{T}}\hat{\mathbf{x}} = \mathbf{Q}\mathbf{b} = \mathbf{x}. \end{aligned}$$