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1. Problem description: ship simulator

Linearized Variational Boussinesq for interactive waves:

∂ζ

∂t
+∇ · (ζU + h∇ϕ− hD∇ψ) = 0, (1a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = −Ps, (1b)

Mψ +∇ · (hD∇ϕ−N∇ψ) = 0. (1c)

After discretization (FVM for space, Leapfrog for time):

A~ψ = b, (2)

dq

dt
= Lq+ f . (3)
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Problem Description: Bubbly Flow

Mass-Conserving Level-Set method for Navier Stokes

−∇.(
1

ρ(x)
∇p(x)) = f(x), x ∈ Ω (4)

∂

∂n
p(x) = 0, x ∈ ∂Ω (5)

• Pressure-Correction equation is discretized to Ax = b.

• Most time consuming part is the solution of this SPSD

system
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2. Preconditioners: RRB

The RRB-solver:

• is a PCG-type solver (Preconditioned Conjugate

Gradient)

• uses as preconditioner: the RRB preconditioner

RRB stands for “Repeated Red-Black”.

The RRB preconditioner determines an incomplete

factorization:

A = LDLT +R =⇒ M = LDLT ≈ A
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Preconditioners: RRB

As the name RRB reveals: multiple levels

Therefore the RRB-solver has good scaling behaviour

(Multigrid)

Method of choice because:

• shown to be robust for all of MARIN’s test problems

• solved all test problems up to 1.5 million nodes within 7

iterations(!)
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Special ordering

An 8× 8 example of the RRB-numbering process

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

All levels combined:
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CUDA implementation (1)

Besides the typical Multigrid issues such as idle cores on the coarsest

levels, in CUDA the main problem was getting “coalesced memory

transfers”.

Why is that?

Recall the RRB-numbering: the number of nodes becomes 4× smaller

on every next level:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)
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CUDA implementation (2)

New storage scheme: r1/r2/b1/b2

Nodes are divided into four groups:

r1 b1

r2b2

r1 b1

b2

r1 b1

b2

r2

=⇒

Next level

r1 b1

b2 r2
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Preconditioners: TNS

Truncated Neumann Series Preconditioninga,b

M−1 = KTD−1K, where K = (I − LD−1 + (LD−1)2 + · · · )

L is the strictly lower triangular of A, and D=diag(A).

1. More terms give better approximation.

2. In general the series converges if ‖ LD−1 ‖∞< 1.

3. As much parallelism as Sparse Matrix Vector Product.

a
A vectorizable variant of some ICCG methods. Henk A. van der Vorst. SIAM Journal of Scientific

Computing. Vol. 3 No. 3 September 1982.

b
Approximating the Inverse of a Matrix for use in Iterative Algorithms on Vector Processors. P.F. Dubois.

Computing (22) 1979.
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Preconditioners: Deflation

Removes small eigenvalues from the spectrum of M−1A.

The linear system Ax = b can be solved by the splitting,

x = (I − P T )x+ P Tx where P = I −AQ. (6)

⇔ Pb = PAx̂. (7)

Q = ZE−1ZT , E = ZTAZ.

Em = a1 is the coarse system

Z is an approximation of the ’bad’ eigenvectors of M−1A.

For our experiments Z consists of piecewise constant vectors.
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Preconditioners: Deflation

Operations involved in deflationa b.

• a1 = ZT p.

• m = E−1a1.

• a2 = AZm.

• ŵ = p− a2.

where, E = ZTAZ is the Galerkin Matrix and Z is the matrix of

deflation vectors.
a

Efficient deflation methods applied to 3-D bubbly flow problems. J.M. Tang, C. Vuik Elec. Trans. Numer.

Anal. 2007.

b
An efficient preconditioned CG method for the solution of a class of layered problems with extreme

contrasts in the coefficients. C. Vuik, A. Segal, J.A. Meijerink J. Comput. Phys. 1999.
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3. Numerical results: ship simulator

• Including: 2D Poisson, Gelderse IJssel (NL), Plymouth

Sound (UK)

• Realistic domains up to 1.5 million nodes
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Numerical results: ship simulator
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Speed up numbers for the realistic test problems.
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Numerical results: Bubbly flow

Speedup =
TCPU

TGPU

(8)

• Number of Unknowns = 1283.

• Tolerance set to 10−6.

• Density Contrast is 10−3

Naming deflation vectors

• SD-i -> Sub-domain deflation with i vectors.

• LS-i -> Level-Set deflation with i vectors.

• LSSD-i -> Level-Set Sub-domain deflation with i vectors.
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Numerical results: Bubbly flow

9 bubbles - 64 Sub-domains

CPU GPU-CUSP

DICCG(0) DPCG(TNS)

SD-64 SD-63 LSSD-135

Number of Iterations 472 603 136

Total Time 81.39 13.61 5.58

Iteration Time 81.1 10.61 2.48

Speedup - 7.64 32.7
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4. Conclusions

• ILU type preconditioners can be used on GPU’s by a

Neumann series approach or a carefull reordering

• Deflation type preconditioners are very suitable for

GPU’s

• The combination of Neumann series and Deflation

preconditioners leads to robust and fast solvers on the

GPU

• A special ordering of a red black reordering can lead to

speedup of a factor 30-40 on the GPU.
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Questions and Remarks
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