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Aim and Impact

• Joint-work with PhD candidate Vandana Dwarka

• Contribute to broad research on Helmholtz solvers

• Understand inscalability (convergence)

• This presentation: improve convergence properties
• Two-level methods
• Multilevel methods (multigrid and deflation)
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Introduction - The Helmholtz Equation

• Inhomogeneous Helmholtz equation + BC’s

(−∇2 − k2) u(x) = f (x), x ∈ Ω ⊆ Rn

• k is the wave number: k = 2π
λ

• Practical applications in seismic/medical imaging and plasma
fusion
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Introduction - Numerical Model
• Start with analytical 1D model problem

−d2u

dx2
− k2 u = δ(x − 1

2
),

u(0) = 0, u(1) = 0,

x ∈ Ω = [0, 1] ⊆ R,

• Discretization using second-order FD with at least 10 gpw
• We obtain a linear system Aû = f

A =
1

h2
tridiag[−1 2− (kh)2 − 1],

• A is real, symmetric, normal, indefinite and sparse
• Using Sommerfeld BC’s A becomes non-Hermitian ⇒

non-selfadjoint
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Introduction - Challenges

• Negative & positive eigenvalues ⇒ limits Krylov based solvers

• Fast near-origin moving eigenvalues ⇒ slows convergence
• CSLP (Helmholtz operator with complex shift)
• Deflation + CSLP
• Despite improvements problem remains

• Problems exacerbate in 2D & 3D and as k gets larger

• Additional requirements to meet pollution criteria
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Preconditioning - CSLP

• Preconditioning to speed up
convergence of Krylov
subspace methods

• Solve M−1Au = M−1f , M is
CSLP-preconditioner.

M = L− (β1 − β2i)k2I ,
(β1, β2) ∈ [0, 1]

• Increasing k ⇒ eigenvalues
move fast towards origin ⇒
inscalable CSLP-solver

Figure: σ(M−1A) for k = 50 (top)
and k = 150 bottom.
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Preconditioning - CSLP

x

Table: GMRES iterations
using tol = 10−6 with
(β1, β2) for 1D problem. CSL
inversion using one V-cycle
iteration.

k (1, 1) (1, 0.5)

50 25 20
100 41 30
500 138 87

1 000 254 156
5 000 1 153 693

• Direct solve of CSLP expensive

• Approximate solve of CSLP needs
more iterations

• Iterations grow with k ⇒ more
near-zero eigenvalues

• Project unwanted eigenvalues
onto zero = Deflation
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Preconditioning - Deflation

• Projection principle: solve PAu = Pf

P̃ = AQ where Q = ZE−1ZT and E = ZTAZ ,

P = I − P̃, Z ∈ Rm×n, m < n

• Columns of Z span deflation subspace

• Ideally Z contains eigenvectors

• In practice approximations: inter-grid vectors from multigrid

• Use DEF + CSLP combined ⇒ spectral improvement

M−1PAu = M−1Pf

• Monitor eigenvalues using RFA (Dirichlet)
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Preconditioning - Deflation

• Investigate near-null eigenvalue of all operators involved

Figure: λj(PA), βj , λj(PTM−1A) for k = 500

• Eigenvalues of PA and PTM−1A behave like β̂ = λl (A)
λl (A2h)

• If near-kernel of A and A2h misaligned ⇒ near-null eigenvalues
reappear!

• Equivalent to jhmin 6= j2hmin
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Preconditioning - Deflation

• Recall: deflation space
spanned by linear
approximation basis
vectors

• Transfer coarse-fine
grid ⇒ interpolation
error

• Measure effect by
projection error E

E (kh) = ‖(I − P)φjmin,h‖
2,

P = Z (ZTZ )
−1

ZT

Figure: Restricted & interpolated eigenvectors (left
kh = 0.625, right k3h2 = 0.625

Table: Projection error DEF-scheme

k E (0.625) E (0.3125)

102 0.88 0.10
103 9.29 1.00
104 92.57 10.01
105 926.13 100.13
106 9 261.71 1 001.38

Kees Vuik (TU Delft) ICMS Solvers for Waves Workshop 2022 June 21, 2022 10 / 34



Higher-order Deflation

• Higher-order deflation vectors

• Rational quadratic Bezier curve ⇒ one control-point

• Weight-parameter w to adjust control-point

Figure: Effect of changing weight

• w determined such that projection error minimized
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Projection Error

Table: Projection error E(kh) for various w for 1D

k w = 0.1250 w = 0.0575 w = 0.01875 w = 0.00125

kh = 1 kh = 0.825 kh = 0.625 kh = 0.3125

102 0.0127 0.0075 0.0031 0.0006
103 0.0233 0.0095 0.0036 0.0007
104 0.0246 0.0095 0.0038 0.0007
105 0.0246 0.0095 0.0038 0.0007
106 0.0246 0.0095 0.0038 0.0007

• Weight-parameter w chosen to minimize projection error

• In all cases projection error strictly < 1

• RFA confirms favourable spectrum
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Spectral Analysis
Figure: Spectrum of old (red) and new (blue) method for k = 106 for 1D

Kees Vuik (TU Delft) ICMS Solvers for Waves Workshop 2022 June 21, 2022 13 / 34



Two-Level Deflation - 2D

Table: GMRES-iterations with tol = 10−6 using Sommerfeld BC’s
and MG-approximation of CSLP(1,1). AD contains no CSLP.

k APD(0.1250) APD(0.0575) AD(0)

kh = 0.625 kh = 0.3125 kh = 0.3125

100 4 4 3
250 5 4 4
500 5 5 5
750 7 5 5

1000 8 8 7

• DEF + CSLP needs 471 iterations for k = 250

• Close to k-independence

• Weight-parameter w and CSLP less important as kh decreases
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Two-Level Deflation - 2D Marmousi

Table: Solve time (s) and
GMRES-iterations for 2D Marmousi

DEF-TL APD-TL DEF-TL APD-TL

10 gpw

f Solve time (s) Iterations

1 1.72 4.08 3 4
10 7.20 3.94 16 6
20 77.34 19.85 31 6
40 1 175.99 111.78 77 6

20 gpw

1 9.56 3.83 3 5
10 19.64 15.45 7 5
20 155.70 122.85 10 5
40 1 500.09 1 201.45 15 5
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Two-Level Deflation - 3D

Table: GMRES-iterations with tol = 10−6 using Sommerfeld BC’s
and MG-approximation of CSLP(1,1). AD contains no CSLP.

k APD(0.125) AD(0)

Iterations Iterations

10 4 4
25 4 5
50 4 5
75 4 5

• DEF + CSLP takes 66 iterations for k = 40

• k-independent convergence

• Two-level method memory ⇒ multilevel methods
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Multilevel methods

Multilevel Deflation

• Pros

Close to linear complexity

Memory efficient

Recursive structure

Use as preconditioner with
FGMREs

• Cons

Needs more inner cycles

Convergence depends
weakly on k

Multigrid

• Pros

Linear complexity

Memory efficient

Recursive structure

Use as stand-alone or
preconditioner

• Cons

Diverges for Helmholtz

Slow convergence for small
k

New research on convergent multigrid solver!
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Multilevel Deflation

• Apply two-level method
recursively

• Only 1 FGMRES it. per level

• Krylov ’smoother’ vs Multigrid

• 10 iterations on indefinite levels

• 1 Jacobi iteration on all others

• Reduce time and memory
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Multilevel Deflation - Spectral Analysis

Spectrum of the coarse linear systems for k = 100 for 1D.
m ≤ 3 denotes the levels with m = 0 the original fine grid
matrix E0 = A.

Figure: Linear Interpolation Figure: Quadratic Rational Bezier
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Multilevel Deflation - Spectral Analysis

Spectrum of the deflation + CSLP preconditioned system (20 gpw) for 1D.

Figure: Linear interp. (Dirich.) Figure: Linear interp. (Somm)

Figure: Quadr. (Dirich.) Figure: Quadr. (Somm.)
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Multilevel Deflation - 3D

Table: Number of outer FGMRES-iterations for kh = 0.625. Column
1 quadratic, column 2 linear deflation vectors.

k APD DEF

Iterations Iterations

10 9 11
20 9 12
40 11 17
80 14 45

• Both methods benefit from multilevel implementation

• Reduced time and memory

• Convergence APD slightly depends on k

• What about heterogeneous models?
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Multilevel Deflation - 2D Wedge

Table: Outer FGMRES-iterations and CPU time for kh = 0.625.

k = 2πf 1 000
c(x ,y) c(x , y) ∈ [500, 3 000] m/s c(x , y) ∈ [1 000, 6 000] m/s

f (Hz) Iterations CPU(s) n Iterations CPU(s) n
10 12 4.10 41 209 9 0.58 10 201
20 18 37.14 162 409 12 3.97 41 209
30 22 118.22 366 025 16 18.99 91 809
40 29 370.91 648 025 19 34.29 162 409
60 35 1 097.31 1 456 849 22 174.03 366 025
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Multilevel Deflation - 3D Sine

Table: Outer FGMRES-iterations and CPU time for kh = 0.625

8π

k = 2πf γ = 1 γ = 2

f (Hz) n Iterations CPU(s) Iterations CPU(s)

4 68 921 8 3.04 6 4.02
8 531 441 26 133.68 15 123.21

12 1 771 561 49 1 259.18 28 1 359.92
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Multilevel Deflation - 3D Elastic Wave

• Coupled vector
equations for
time-harmonic

• Wedge domain

• 20 gpw (grid points
per wavelength)

Table: Outer FGMRES-iterations and CPU time.

k = 2πf n γ = 1 γ = 2

f (Hz) Iterations CPU(s) Iterations CPU(s)

1 19 968 8 2.87 8 3.59
2 147 033 11 87.21 9 77.97
4 1 127 463 15 1 665.68 13 1 735.29
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Multigrid

• Standard multigrid diverges for small k

• But, convergence if:

Higher-order prolongation/restriction
Coarsening on CSLP instead of original Helmholtz operator

• Small number of smoothing steps using ω−Jacobi

• No restriction on coarsest grid

• No level-dependent parameters

• Works for both V− and W−cycles

• Let’s start with a two-grid cycle!
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Multigrid - Two-Grid V(1,1)

• Constant k using Dirichlet BC

• Weighted Jacobi smoothing

Table: Two-grid spectral radius using h.o. scheme

k Quadratic Bezier Linear

kh = 0.625 kh = 0.3125 kh = 0.625 kh = 0.3125

50 0.2436 0.2852 1.290 0.9217
100 0.2441 0.2076 3.325 1.0225
250 0.2443 0.1538 5.4108 21.5327
500 0.2443 0.1354 15.5047 21.5327

1000 0.2443 0.1350 27.7478 21.5327

• H.o. scheme gives spectral radius strictly < 1

• Analogous to projection error strictly < 1 for deflation!
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Multigrid - 2D

• Constant k using Sommerfeld BC

• Construct two-grid V(1,1)-cycle

k ω−Jacobi Gaus-Seidel

kh = 0.625 kh = 0.3125 kh = 0.625 kh = 0.3125

50 14 14 6 5
100 14 14 6 5
250 14 14 6 5
500 14 14 6 5

• Both cases k-independence

• Still exact solve on second-level ⇒ memory constraints

• Can we create a deeper V-cycle?
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Multigrid - 2D

• Constant k using Sommerfeld BC

• Three-grid cycle with khcoarsest = 2.5 ≈ 2π
2.5

Figure: V-cycle Figure: F-cycle

• Deeper cycle diverges despite h.o. scheme ⇒ coarsen on CSLP
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Multigrid - 2D
• Constant k using Sommerfeld BC

Table: Number of V- (γ = 1) and W-cycles (γ = 2), tol. 10−5. ν is the
number of ω-Jacobi smoothing steps.

k = 50 k = 100 k = 150 k = 200 k = 250

N = 6 724 N = 26 244 N = 57 600 N = 102400 N = 160 000
ND = 8 ND = 8 ND = 4 ND = 8 ND = 4

γ 1 2 1 2 1 2 1 2 1 2

ν = 4 58 58 104 108 155 159 209 213 267 271
ν = 5 58 58 104 104 150 166 194 229 238 287
ν = 6 55 58 99 102 139 167 183 222 226 283
ν = 7 53 60 97 101 136 163 179 219 221 280
ν = 8 53 60 95 104 131 161 178 212 218 277

• Coarsening on CSLP (shift = 0.7)
• Linear interpolation still diverges (k = 50, γ = 1)
• What about GMRES(3) smoothing?
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Multigrid - 2D
• Constant k using Sommerfeld BC

Table: Number of V- (γ = 1) and W-cycles (γ = 2), tol. 10−5. ν is the
number of GMRES(3) smoothing steps.

k = 50 k = 100 k = 150 k = 200 k = 250

N = 6 724 N = 26 244 N = 57 600 N = 102 400 N = 160 000
ND = 8 ND = 8 ND = 4 ND = 8 ND = 4

γ 1 2 1 2 1 2 1 2 1 2

ν = 1 14 7 24 10 39 19 51 24 64 29
ν = 2 8 5 13 7 22 10 28 13 34 16
ν = 3 6 5 10 6 16 9 20 10 24 12
ν = 4 6 5 8 5 12 7 15 9 18 10
ν = 5 5 5 7 5 11 7 13 8 15 9

• Coarsening + on CSLP (shift = k−1)
• Iteration count with γ = 2 close to k-independent
• Linear interpolation 199 iterations (k = 50, γ = 1)
• What about heterogeneous problems?
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Multigrid - 2D random k (high-contrast)
Figure: k(x , y) Figure: u(x , y)

Table: Number of V- (γ = 1) and W-cycles (γ = 2) with tol
10−5. ν denotes the number of ω-Jacobi smoothing steps.

(k1, k2) = (10, 50) (k1, k2) = (10, 75)

γ 1 2 1 2

ν = 4 102 96 111 107
ν = 5 97 95 103 105
ν = 6 95 95 101 104
ν = 7 94 94 102 104
ν = 8 94 94 102 104
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Multigrid - 2D random k (high-contrast)
Figure: k(x , y) Figure: u(x , y)

Table: Number of V- (γ = 1) and W-cycles (γ = 2) with tol
10−5. ν denotes the number of GMRES(3) smoothing steps.

(k1, k2) = (10, 50) (k1, k2) = (10, 75)

γ 1 2 1 2

ν = 1 28 12 31 12
ν = 2 16 8 17 7
ν = 3 12 7 12 6
ν = 4 10 6 10 6
ν = 5 9 6 9 6
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Conclusion

• Deflation projects unwanted eigenmodes to zero

• Misalignment of near-zero eigenvalues affects convergence

• New deflation scheme: higher-order approximation

• Two-level method k-independent convergence but memory
constrained

• Use higher-order scheme in multilevel methods

1 Multilevel deflation (with FGMRES)
2 Multigrid (preconditioner or stand-alone solver)

• Upcoming work: research on interpolation schemes and
large-scale applications using parallel computing
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