Multilevel Solvers for Waves Resolving Divergence for Indefinite Systems Delft University of Technology

Kees Vuik and Vandana Dwarka February 5, 2025

Aim and Impact

- Joint-work with Dr. V. Dwarka
- Contribute to broad research on frequency domain wave solvers
- Understand inscalability (convergence)
- This presentation: introduce convergence gains
 - Two-level methods
 - Multilevel and multigrid methods
 - Parallel methods

Research Motivation

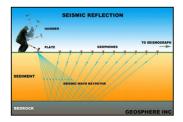
- Blueprint for numerically solving high frequency wave problems.
- Requires robust and scalable solvers.
- Incremental results starting with scalable solvers for the Helmholtz equation (time-harmonic Maxwell).
- Open problem for 45 years

Introduction - The Helmholtz Equation

Inhomogeneous Helmholtz equation + BC's

$$(-
abla^2 - k^2) \, u(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \Omega \subseteq \mathbb{R}^n$$

- k is the dimensionless wave number: $k = \frac{2\pi}{\lambda}$
- Practical applications in quantum mechanics, imaging problems and plasma fusion



Introduction - Numerical Model

• Start with analytical 1D model problem

$$-\frac{d^2u}{dx^2} - k^2 u = \delta(x - \frac{1}{2}),$$

$$u(0) = 0, u(1) = 0,$$

$$x \in \Omega = [0, 1] \subseteq \mathbb{R},$$

- Discretization using second-order FD with at least 10 gpw
- We obtain a linear system $A\hat{u} = f$

$$A = \frac{1}{h^2}$$
tridiag $[-1 \ 2 - (kh)^2 \ -1],$

- A is real, symmetric, normal, indefinite and sparse
- Using Sommerfeld BC's A becomes non-Hermitian ⇒ non-selfadjoint

Introduction - Challenges

- Practical challenges
 - Robust solvers can be difficult to implement

Introduction - Challenges

- Practical challenges
 - Robust solvers can be difficult to implement
- Theoretical challenges
 - Negative & positive eigenvalues \Rightarrow limits choice Krylov solvers
 - Fast near-origin moving eigenvalues \Rightarrow slows convergence
 - Additional accuracy requirements: pollution criteria
 - No general theory for these indefinite systems

Introduction - Challenges

- Practical challenges
 - Robust solvers can be difficult to implement
- Theoretical challenges
 - Negative & positive eigenvalues \Rightarrow limits choice Krylov solvers
 - Fast near-origin moving eigenvalues \Rightarrow slows convergence
 - Additional accuracy requirements: pollution criteria
 - No general theory for these indefinite systems
- Computational challenges
 - Very large linear systems due to pollution criteria
 - Iterations to converge grow with k (inscalable)
 - Problems exacerbate in 2D & 3D
 - Multigrid solvers diverge for indefinite Helmholtz (also still an open problem!)

Preconditioning - CSL

- Preconditioning to speed up convergence of Krylov subspace methods
- Solve $M^{-1}Au = M^{-1}f$, *M* is CSL-preconditioner.

$$\begin{split} M &= L - (\beta_1 + \beta_2 i) k^2 I, \\ (\beta_1, \beta_2) \in [0, 1] \end{split}$$

• *L* is the discretized Laplace operator

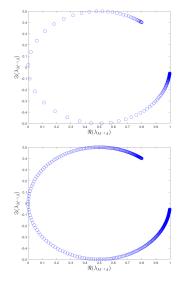
Preconditioning - CSL

- Preconditioning to speed up convergence of Krylov subspace methods
- Solve $M^{-1}Au = M^{-1}f$, *M* is CSL-preconditioner.

$$\begin{split} M &= L - (\beta_1 + \beta_2 i) k^2 I, \\ (\beta_1, \beta_2) \in [0, 1] \end{split}$$

- *L* is the discretized Laplace operator
- Increasing k ⇒ eigenvalues move fast towards origin ⇒ inscalable CSL-solver

Figure: $\sigma(M^{-1}A)$ for k = 50 (top) and k = 150 bottom.



Preconditioning - CSL

Table: GMRES iterations using tol = 10^{-6} with (β_1, β_2) for 1D problem. CSL inversion using multigrid.

k	(1, 1)	(1,0.5)	
50	25	20	
100	41	30	
500	138	87	
1 000	254	156	
5 000	1 153	693	

- Already convergence issues for simple toy problem!
- Direct solve of CSL expensive
- Approximate solve of CSL needs more iterations
- Wavenumber k increases ⇒ more near-zero eigenvalues ⇒ more iterations
- Project unwanted eigenvalues onto zero = Deflation

• Projection principle: solve PAu = Pf

$$\tilde{P} = AQ$$
 where $Q = ZE^{-1}Z^T$ and $E = Z^T AZ$,
 $P = I - \tilde{P}, Z \in \mathbb{R}^{m \times n}, m < n$

- Columns of Z span deflation subspace
- Ideally Z contains eigenvectors
- In practice approximations: inter-grid vectors from multigrid (linear interpolation polynomial)
- Use DEF + CSL combined ⇒ spectral improvement

$$M^{-1}PAu = M^{-1}Pf$$

• Monitor eigenvalues using RFA (Dirichlet)

• Investigate near-null eigenvalue of <u>all</u> operators involved

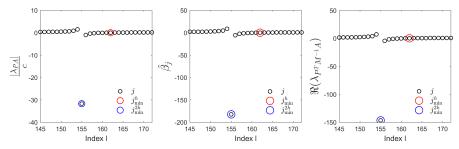


Figure: $\lambda_j(PA), \beta^j, \lambda_j(P^T M^{-1}A)$ for k = 500

- Eigenvalues of PA and $P^T M^{-1} A$ behave like $\hat{\beta} = \frac{\lambda'(A)}{\lambda'(A_{21})}$
- If near-kernel of A and A_{2h} misaligned ⇒ near-null eigenvalues reappear!
- Equivalent to $j_{\min}^h \neq j_{\min}^{2h}$

- Deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid \Rightarrow interpolation error
- Measure effect by projection error E $E(kh) = ||(I - P)\phi_{j_{\min},h}||^2$, $P = Z(Z^T Z)^{-1} Z^T$

Figure: Restricted & interpolated eigenvectors (left kh = 0.625, right $k^3h^2 = 0.625$

- Deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid \Rightarrow interpolation error
- Measure effect by projection error E $E(kh) = \|(I - P)\phi_{j_{\min},h}\|^2,$ $P = Z(Z^T Z)^{-1} Z^T$

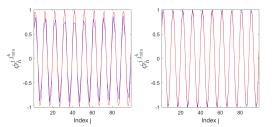
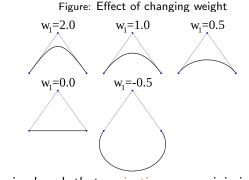


Table: Projection error DEF-scheme

k	E(0.625)	E(0.3125)
10 ²	0.88	0.10
10 ³	9.29	1.00
10^{4}	92.57	10.01
10 ⁵	926.13	100.13
10^{6}	9 261.71	1 001.38

Higher-order Deflation

- Higher-order deflation vectors
- Rational quadratic Bezier curve ⇒ one control-point
- Weight-parameter w to adjust control-point



• w determined such that projection error minimized

Projection Error

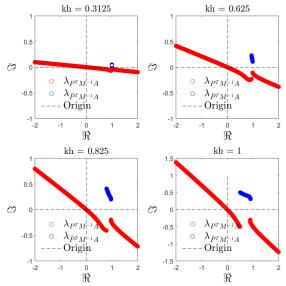
k	w = 0.1250	w = 0.0575	w = 0.01875	w = 0.00125
	kh = 1	kh = 0.825	kh = 0.625	kh = 0.3125
10 ²	0.0127	0.0075	0.0031	0.0006
10 ³	0.0233	0.0095	0.0036	0.0007
10 ⁴	0.0246	0.0095	0.0038	0.0007
10 ⁵	0.0246	0.0095	0.0038	0.0007
10 ⁶	0.0246	0.0095	0.0038	0.0007

Table: Projection error E(kh) for various w for 1D

- Weight-parameter w chosen to minimize projection error
- In all cases projection error *strictly* < 1
- RFA confirms favourable spectrum

Spectral Analysis

Figure: Spectrum of old (red) and new (blue) method for $k = 10^6$ for 1D



Two-Level Deflation - 2D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSL(1,1). AD contains <u>no CSL</u>.

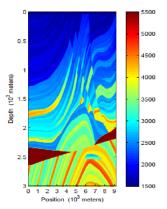
k	APD(0.1250)	APD(0.0575)	AD(0)
	kh = 0.625	kh = 0.3125	kh = 0.3125
100	4	4	3
250	5	4	4
500	5	5	5
750	7	5	5
1000	8	8	7

- DEF (linear) + CSL needs 471 iterations for k = 250
- Close to *k*-independence
- Weight-parameter w and CSL less important as kh decreases

Two-Level Deflation - 2D Marmousi

Table: Solve time (s) and GMRES-iterations for 2D Marmousi

	DEF-TL	APD-TL	DEF-TL	APD-TL				
	10 gpw							
f	Solve t	ime (s)	Iterat	ions				
1	1.72	4.08	3	4				
10	7.20	3.94	16	6				
20	77.34	19.85	31	6				
40	1 175.99	111.78	77	6				
20 gpw								
1	9.56	3.83	3	5				
10	19.64	15.45	7	5				
20	155.70	122.85	10	5				
40	1 500.09	1 201.45	15	5				



Two-Level Deflation - 3D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSL(1,1). AD contains <u>no CSL</u>.

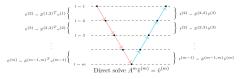
k	APD(0.125)	AD(0)
	Iterations	Iterations
10	4	4
25	4	5
50	4	5
75	4	5

- DEF (linear) + CSL takes 66 iterations for k = 40
- *k*-independent convergence
- Two-level method memory ⇒ multilevel methods

Multilevel Deflation

• Apply two-level method recursively

• Only 1 FGMRES it. per level



- Krylov 'smoother' vs Multigrid
- 10 iterations on indefinite levels
- 1 Jacobi iteration on all others
- Reduce time and memory

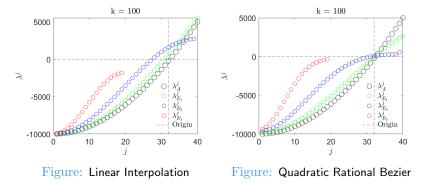
Algorithm 3.1 Two-level Deflation FGMRES Initialization:

Choose u_0 and dimension k of the Krylov subspaces. Define $(k + 1) \times k \overline{H}_{l}$ and initialize to zero. Arnoldi process: $r_0 = f - Au_0$, $\beta = ||r_0||_2$, $v_1 = r_0/\beta$. for j = 1, 2, ...k do $\hat{v} = Z^T v_i$ $\tilde{v} = E^{-1} \hat{v}$ s = At $\tilde{r} = v_i - s$ $r = M^{-1}\tilde{r}$ $x_i = r + t$ $w = Ax_i$ for i = 1, 2, ..., j do $h_{i,i} = (w, v_i) \ w = w - h_{i,i} v_i$ end Compute $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$. Define $X_k = [x_1, x_2, ..., x_k]$ $\bar{H}_k = \{h_{i,j}\}_{1 \le i \le j+1, 1 \le j \le k}$ end Form approximate solution: Compute $u_k = u_0 + X_k y_k$ where $y_k = \arg \min_u \|\beta e_1 - \bar{H}_k y\|_2$. Restart:

If satisfied stop, else set $u_0 \leftarrow u_k$ and repeat Arnoldi process.

Multilevel Deflation - Spectral Analysis

Spectrum of the coarse linear systems for k = 100 for 1D. $m \le 3$ denotes the levels with m = 0 the original fine grid matrix $E_0 = A$.



Multilevel Deflation - Spectral Analysis

Spectrum of the deflation + CSL preconditioned system (20 gpw) for 1D.

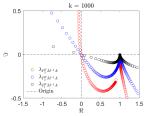


Figure: Linear interp. (Dirich.)

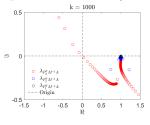


Figure: Quadr. (Dirich.)

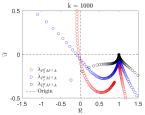
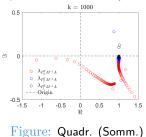


Figure: Linear interp. (Somm)



Multilevel Deflation - 3D

Table: Number of outer FGMRES-iterations for kh = 0.625. Column 1 quadratic, column 2 linear deflation vectors.

ŀ	(APD	DEF
		Iterations	Iterations
1	0	9	11
2	0	9	12
4	0	11	17
8	0	14	45

- Both methods benefit from multilevel implementation
- Reduced time and memory
- But iterations slightly depend on k again

Multilevel Deflation - 3D

Table: Number of outer FGMRES-iterations for kh = 0.625. Column 1 quadratic, column 2 linear deflation vectors.

k	APD	DEF
	Iterations	Iterations
10	9	11
20	9	12
40	11	17
80	14	45

- Both methods benefit from multilevel implementation
- Reduced time and memory
- But iterations slightly depend on k again

What about heterogeneous problems?

Multilevel Deflation - 2D Wedge

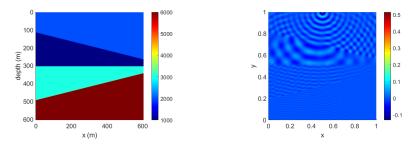


Table: Outer FGMRES-iterations and CPU time for kh = 0.625.

	$c(x, y) \in [500, 3\ 000] \text{ m/s}$			$c(x, y) \in [1 \ 000, 6 \ 000] \ m/s$		
f (Hz)	Iterations	CPU(s)	п	Iterations	CPU(s)	п
10	12	4.10	41 209	9	0.58	10 201
20	18	37.14	162 409	12	3.97	41 209
30	22	118.22	366 025	16	18.99	91 809
40	29	370.91	648 025	19	34.29	162 409
60	35	1 097.31	1 456 849	22	174.03	366 025

f = 60 corresponds to a dimensionless wavenumber k = 753.

Multilevel Deflation - 3D Elastic Wave

- Coupled vector equations
- Wedge domain
- 20 gpw (grid points per wavelength)

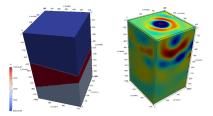


Table: Outer FGMRES-iterations and CPU time.

$k = 2\pi f$	п	$\gamma = 1$		$\gamma =$	= 2
f(Hz)		Iterations	CPU(s)	Iterations	CPU(s)
1	19 968	8	2.87	8	3.59
2	147 033	11	87.21	9	77.97
4	1 127 463	15	1 665.68	13	1 735.29

Status-quo

• Iterative solvers with preconditioners:

- Two-level deflation
- Multilevel deflation
- Trade-off: either *k*-independent convergence or better memory/time complexity yet slight *k* dependence.

Status-quo

• Iterative solvers with preconditioners:

- Two-level deflation
- Multilevel deflation
- Trade-off: either *k*-independent convergence or better memory/time complexity yet slight *k* dependence.

What about multigrid as a stand-alone solver?

Multigrid - Challenges for Helmholtz

- Still open-problem
- Near-zero eigenvalues coarser level(s) (reminiscent of problem with deflation!)
- Smoother amplifies error
- Literature mostly for constant k
- Most works use restricted hierarchy (no full coarsening)

Multigrid - Our Contributions

- We impose **two** requirements:
 - relaxation: classic scheme with small number of smoothing steps
 - intergrid transfer operators: level-independent, easy to construct and implement

Multigrid - Our Contributions

- We impose **two** requirements:
 - relaxation: classic scheme with small number of smoothing steps
 - intergrid transfer operators: level-independent, easy to construct and implement
- Our contribution:
 - **First** convergent classical solver for the 2D indefinite Helmholtz problem (full *V* and *W*-cycle hierarchy)
 - First converging scheme for non-constant wavenumbers in 2D.

Multigrid - Our Contributions

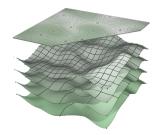
- We impose **two** requirements:
 - relaxation: classic scheme with small number of smoothing steps
 - intergrid transfer operators: level-independent, easy to construct and implement
- Our contribution:
 - **First** convergent classical solver for the 2D indefinite Helmholtz problem (full *V* and *W*-cycle hierarchy)
 - First converging scheme for non-constant wavenumbers in 2D.
- Some remarks:
 - Main focus on convergent solver, not fast solver
 - We focus on 2D problems. So far no 3D cases in literature.

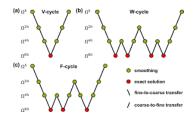
Multigrid - Overview

- Standard multigrid diverges
- But, convergence if:

Higher-order prolongation/restriction Coarsening on CSL instead of original Helmholtz operator

- Small number of smoothing steps using ω–Jacobi
- No restriction on coarsest grid
- Works for both V/W-cycles





Multigrid - Idea of Proof

Instead of two-grid spectral radius, we developed a general condition to check for convergence (not necessarily for Helmholtz):

Instead of two-grid spectral radius, we developed a general condition to check for convergence (not necessarily for Helmholtz):

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = \left(I - PA_c^{-1}P'A\right)\left(I - X^{-1}A\right).$$

Instead of two-grid spectral radius, we developed a general condition to check for convergence (not necessarily for Helmholtz):

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = (I - PA_c^{-1}P'A) (I - X^{-1}A).$$

We write T_0 as $T_0 = I - DA$ (Hackbush, Notay), such that

$$T_0^H T_0 = I - \Gamma$$

If Γ is HPD, then $\|T_0\|_2 < 1$.

Instead of two-grid spectral radius, we developed a general condition to check for convergence (not necessarily for Helmholtz):

We assume post-smoothing, then the iteration matrix T_0 is:

$$T_0 = \left(I - PA_c^{-1}P'A\right)\left(I - X^{-1}A\right).$$

We write T_0 as $T_0 = I - DA$ (Hackbush, Notay), such that

$$T_0^H T_0 = I - \Gamma$$

If Γ is HPD, then $\|T_0\|_2 < 1$.

We show that:

- 1 Coarsening on CSL instead of A and
- **2** Using h.o. interpolation & restriction leads to Γ HPD.

Note: Γ can be HPD, while *DA* is **not**

Consequently, our two-grid iteration matrix becomes:

$$T_0 = (I - PC_c^{-1}P'A) (I - X^{-1}A).$$

with $C_c = P'CP$, X weighted-Jacobi.

Consequently, our two-grid iteration matrix becomes:

$$T_0 = (I - PC_c^{-1}P'A) (I - X^{-1}A).$$

with $C_c = P'CP$, X weighted-Jacobi.

• Using this framework we proof that for Helmholtz problems in particular, coarsening on CSL leads to an HPD T_0

Table: In parenthesis: 2D spectral radius (left) and norm from our proof (right) of the two-grid operator T_0 . *A* is the Helmholtz operator and C is CSL. $A_c = P'AP$, $C_c = P'CP$. \checkmark denotes Γ is HPD, \times if not.

		Linear				
k	(A, A_c)	(A, C_c)		(C, C_c)		
5	× (0.960, 5.619)	imes (0.960, 1.995)	×	(0.915, 1.881)		
10	imes (1.004, 9.594)	imes (0.999, 1.958)	×	(0.907, 1.827)		
20	× (1.081, 20.267)	\times (1.0153, 1.848)	×	(0.898, 1.730)		
40	× (1.125, 32.758)	× (1.024, 1.846)	×	(0.898, 1.863)		

Table: In parenthesis: 2D spectral radius (left) and norm from our proof (right) of the two-grid operator T_0 . A is the Helmholtz operator and C is CSL. $A_c = P'AP, C_c = P'CP. \checkmark$ denotes Γ is HPD, \times if not.

		Linear		
k	(A, A_c)	(A, C_c)	(C, C_c)	
5	× (0.960, 5.619)	imes (0.960, 1.995)	×	(0.915, 1.881)
10	imes (1.004, 9.594)	imes (0.999, 1.958)	×	(0.907, 1.827)
20	× (1.081, 20.267)	\times (1.0153, 1.848)	×	(0.898, 1.730)
40	× (1.125, 32.758)	imes (1.024, 1.846)	×	(0.898, 1.863)

• Without polynomial smoothing, linear transfer operators will still diverge, even when coarsening on CSL.

Table: In parenthesis: 2D spectral radius (left) and the spectral norm from our proof (right) of the two-grid operator T_0 . A is the Helmholtz operator and C is CSL. $A_c = P'AP$, $C_c = P'CP$. \checkmark denotes Γ is HPD, \times if not.

Dotion

		Bezier			
k	(A, A_c)	(A, C_c)	(C, C_c)		
5	 ✓ (0.865, 0.991) × (0.887, 1.055) × (0.896, 1.276) 	✓ (0.865, 0.911)	✓ (0.865, 0.898)		
10	imes (0.887, 1.055)	✓ (0.887, 0.912)	✓ (0.886, 0.898)		
20	× (0.896, 1.276)	✓ (0.896, 0.958)	✓ (0.895, 0.901)		
40	× (0.899, 1.724)	✓ (0.899, 0.994)	✓ (0.898, 0.903)		

Table: In parenthesis: 2D spectral radius (left) and the spectral norm from our proof (right) of the two-grid operator T_0 . A is the Helmholtz operator and C is CSL. $A_c = P'AP$, $C_c = P'CP$. \checkmark denotes Γ is HPD, \times if not.

D --!--

		Bezier			
k	(A, A_c)	(A, C_c)	(C, C_c)		
5	 ✓ (0.865, 0.991) × (0.887, 1.055) × (0.896, 1.276) 	✓ (0.865, 0.911)	✓ (0.865, 0.898)		
10	imes (0.887, 1.055)	✓ (0.887, 0.912)	✓ (0.886, 0.898)		
20	× (0.896, 1.276)	✓ (0.896, 0.958)	✓ (0.895, 0.901)		
40	× (0.899, 1.724)	✓ (0.899, 0.994)	✓ (0.898, 0.903)		

• We resolve divergence using h.o. transfer operators when coarsening on CSL.

Table: Two-grid spectral radius using h.o. scheme and w-Jacobi smoothing. Coarsening on Helmholtz.

k	Be	zier	Linear				
	kh = 0.625	kh = 0.3125	kh = 0.625 $kh = 0.3125$				
50	0.2436	0.2852	1.290	0.9217			
100	0.2441	0.2076	3.325	1.0225			
250	0.2443	0.1538	5.4108	21.5327			
500	0.2443	0.1354	15.5047	21.5327			
1000	0.2443	0.1350	27.7478	21.5327			

Table: Two-grid spectral radius using h.o. scheme and w-Jacobi smoothing. Coarsening on Helmholtz.

k	Be	zier	Linear			
	kh = 0.625	kh = 0.3125	kh = 0.625 $kh = 0.31$			
50	0.2436	0.2852	1.290	0.9217		
100	0.2441	0.2076	3.325	1.0225		
250	0.2443	0.1538	5.4108	21.5327		
500	0.2443	0.1354	15.5047	21.5327		
1000	0.2443	0.1350	27.7478	21.5327		

- H.o. scheme gives spectral radius *strictly* < 1
- Analogous to projection error *strictly* < 1 for deflation!

Table: Number of V(1,1)-cycles using h.o. scheme and w-Jacobi smoothing. Coarsening on Helmholtz.

k	$\omega - J$	acobi	Gaus-Seidel			
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125		
50	14	14	6	5		
100	14	14	6	5		
250	14	14	6	5		
500	14	14	6	5		

Table: Number of V(1,1)-cycles using h.o. scheme and w-Jacobi smoothing. Coarsening on Helmholtz.

k	$\omega - J$	acobi	Gaus-Seidel			
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125		
50	14	14	6	5		
100	14	14	6	5		
250	14	14	6	5		
500	14	14	6	5		

- Both cases *k*-independent convergence
- Still exact solve on second-level ⇒ memory constraints

Table: Number of V(1,1)-cycles using h.o. scheme and w-Jacobi smoothing. Coarsening on Helmholtz.

k	$\omega - J$	acobi	Gaus-Seidel			
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125		
50	14	14	6	5		
100	14	14	6	5		
250	14	14	6	5		
500	14	14	6	5		

- Both cases *k*-independent convergence
- Still exact solve on second-level ⇒ memory constraints

Can we create deeper V-cycles with more levels?

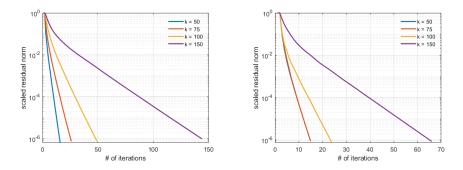
Multigrid - Divergence

Table: Number of $V(\nu, \nu)$ -cycles using the Beziér scheme and coarsening on the **original Helmholtz operator**. × shows no convergence within 500 iterations.

k = 10				k	x = 20)	<i>k</i> = 40			
	N	' = 2!	56	N	= 10	24	N = 4096			
	۸	$I_D =$	4	N	D = 1	16	$N_D = 64$			
Level	2	3	4	2	3	4	2	3	4	
u = 1	46	46	78	50	48	×	52	49	×	
$\nu = 2$	24	24	47	26	25	\times	27	25	×	
$\nu = 4$	14	14	14	14	14	\times	15	15	×	
$\nu = 8$	8	9	8	9	9	×	9	17	X	

Multigrid - Divergence

Figure: V-cycle



• Three-grid cycle with $kh_{coarsest} = 2.5 \approx \frac{2\pi}{2.5}$

• Deeper cycle diverges despite h.o. scheme ⇒ coarsen on CSL

Multigrid - w-Jacobi Smoothing

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$), tol. 10⁻⁵. ν is the number of ω -Jacobi smoothing steps. Coarsening on CSL with shift 0.7.

	k =	= 50	k =	100	k =	k = 150		= 200	k =	= 250	k = 500	
	N =	6724	N =	26244	N =	57600	N = 1	102400	N = 1	160000	N = 640000	
	$ N_D$	8 = 8	N _D	= 8	$N_D = 4$		N_D	= 8	$N_D = 4$		$N_D = 4$	
γ	1	2	1	2	1	2	1	2	1	2		
$\nu = 4$	58	58	104	108	155	159	209	213	267	271	649	598
$\nu = 5$	58	58	104	104	150	166	194	229	238	287	409	515
$\nu = 6$	55	58	99	102	139	167	183	222	226	283	432	492
$\nu = 7$	53	60	97	101	136	163	179	219	221	280	451	563
$\nu = 8$	53	60	95	104	131	161	178	212	218	277	485	723

• Linear interpolation still diverges ($k = 50, \gamma = 1$)

Multigrid - w-Jacobi Smoothing

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$), tol. 10^{-5} . ν is the number of ω -Jacobi smoothing steps. Coarsening on CSL with shift 0.7.

	k =	= 50	k =	k = 100 k = 150		k =	= 200	k = 250		k = 500		
	N = 6724 N = 26244		N =	57600	N = 1	102400	N = 160000		N = 640000			
	$ N_D$	8 = 8	N _D	= 8	$N_D = 4$		N_D	= 8	$N_D = 4$		$N_D = 4$	
γ	1	2	1	2	1	2	1	2	1	2		
$\nu = 4$	58	58	104	108	155	159	209	213	267	271	649	598
$\nu = 5$	58	58	104	104	150	166	194	229	238	287	409	515
$\nu = 6$	55	58	99	102	139	167	183	222	226	283	432	492
$\nu = 7$	53	60	97	101	136	163	179	219	221	280	451	563
$\nu = 8$	53	60	95	104	131	161	178	212	218	277	485	723

• Linear interpolation still diverges $(k = 50, \gamma = 1)$

What if we use GMRES(3) smoothing

Multigrid - GMRES(3) Smoothing

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$). ν is the number of GMRES(3) relaxations. Coarsening on CSL with shift k^{-1} .

	k =	= 50	<i>k</i> =	= 100	k =	= 150	k :	= 200	k =	= 250
	N = 6 724		N = 26 244		$N = 57\ 600$		N = 102 400		$N = 160\ 000$	
	ND	8 = 8	N	o = 8	N	₀ = 4	$N_D = 8$		$N_D = 4$	
γ	1	2	1	2	1	2	1	2	1	2
$\nu = 1$	14	7	24	10	39	19	51	24	64	29
$\nu = 2$	8	5	13	7	22	10	28	13	34	16
$\nu = 3$	6	5	10	6	16	9	20	10	24	12
$\nu = 4$	6	5	8	5	12	7	15	9	18	10
$\nu = 5$	5	5	7	5	11	7	13	8	15	9

- Iteration count with $\gamma = 2$ close to k-independent
- If GMRES(3) and Bezier are used, coarsening on original Helmholtz is possible as well! Here, linear would diverge!

Multigrid - GMRES(3) Smoothing

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$). ν is the number of GMRES(3) relaxations. Coarsening on CSL with shift k^{-1} .

	k =	= 50	<i>k</i> =	= 100	k =	= 150	k :	= 200	k =	= 250
	N = 6 724		N = 26 244		$N = 57\ 600$		N = 102 400		$N = 160\ 000$	
	ND	8 = 8	N	o = 8	N	₀ = 4	$N_D = 8$		$N_D = 4$	
γ	1	2	1	2	1	2	1	2	1	2
$\nu = 1$	14	7	24	10	39	19	51	24	64	29
$\nu = 2$	8	5	13	7	22	10	28	13	34	16
$\nu = 3$	6	5	10	6	16	9	20	10	24	12
$\nu = 4$	6	5	8	5	12	7	15	9	18	10
$\nu = 5$	5	5	7	5	11	7	13	8	15	9

- Iteration count with $\gamma = 2$ close to k-independent
- If GMRES(3) and Bezier are used, coarsening on original Helmholtz is possible as well! Here, linear would diverge!

Multigrid - GMRES(3) Smoothing

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$). ν is the number of GMRES(3) relaxations. Coarsening on CSL with shift k^{-1} .

	k =	= 50	k =	= 100	k =	= 150	k :	= 200	k	= 250
	N = 6 724		N = 26 244		$N = 57\ 600$		N = 102 400		$N = 160\ 000$	
	ND	8 = 8	N	o = 8	N	₀ = 4	$N_D = 8$		$N_D = 4$	
γ	1	2	1	2	1	2	1	2	1	2
$\nu = 1$	14	7	24	10	39	19	51	24	64	29
$\nu = 2$	8	5	13	7	22	10	28	13	34	16
$\nu = 3$	6	5	10	6	16	9	20	10	24	12
$\nu = 4$	6	5	8	5	12	7	15	9	18	10
$\nu = 5$	5	5	7	5	11	7	13	8	15	9

- Iteration count with $\gamma = 2$ close to k-independent
- If GMRES(3) and Bezier are used, coarsening on original Helmholtz is possible as well! Here, linear would diverge!

What about heterogeneous problems?

Multigrid -(Smooth Changes)

Figure: k(x, y)

Figure: u(x, y)

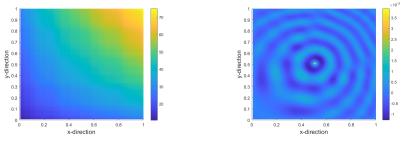


Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$). ν denotes the number of ω -Jacobi relaxations.

	(k_1, k_2)	$k_2) = (10, 50)$	(k_1, k_2)	$k_2) = (10, 75)$
γ	1	2	1	2
$\nu = 4$	65	60	90	88
$\nu = 5$	62	59	86	86
$\nu = 6$	61	58	85	85
$\nu = 7$	60	57	84	84
$\nu = 8$	59	57	83	83

Multigrid - (Sharp Changes)Figure: k(x,y)Figure: u(x,y)

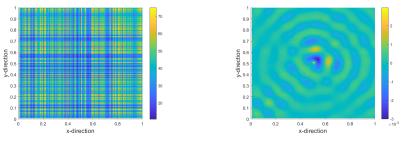


Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) with tol 10⁻⁵. ν denotes the number of ω -Jacobi smoothing steps.

	(k_1, k_2)) = (10, 50)	(k_1, k_2)) = (10,75)
γ	1	2	1	2
$\nu = 4$	102	96	111	107
$\nu = 5$	97	95	103	105
$\nu = 6$	95	95	101	104
$\nu = 7$	94	94	102	104
$\nu = 8$	94	94	102	104

Multigrid - (Sharp Changes)Figure: k(x,y)Figure: u(x,y)

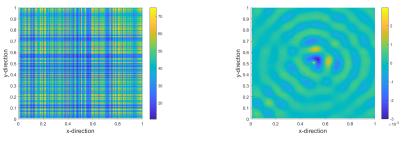


Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) with tol 10⁻⁵. ν denotes the number of GMRES(3) smoothing steps.

	$(k_1, $	$k_2) = (10, 50)$	(k_1, k_2)	$k_2) = (10, 75)$
γ	1	2	1	2
$\nu = 1$	28	12	31	12
$\nu = 2$	16	8	17	7
$\nu = 3$	12	7	12	6
$\nu = 4$	10	6	10	6
$\nu = 5$	9	6	9	6

Conclusion

- Wave problems lead to indefinite systems
- Near-zero eigenvalues of fine/coarse systems
- New deflation scheme: higher-order approximation
- Two-level method *k*-independent convergence but memory constrained
- Use higher-order scheme in multilevel methods
 - 1 Multilevel deflation (preconditioner)
 - 2 Multigrid (stand-alone solver)

First convergent classical solver for the 2D indefinite Helmholtz **First** converging scheme for non-constant wavenumbers in 2D.

• Properties of our Multigrid method

Higher-order prolongation/restriction Coarsening on CSL instead of original Helmholtz operator

References

- Dwarka, V., Vuik, C.: Scalable convergence using two-level deflation preconditioning for the Helmholtz equation, SIAM Journal on Scientific Computing. https://doi.org/10.1137/18M1192093
- Dwarka, V., Vuik, C.: Scalable multi-level deflation preconditioning for highly indefinite time-harmonic waves, *Journal of Computational Physics*. https://doi.org/10.1016/j.jcp.2022.111327
- Dwarka, V., Vuik, C. Stand-alone Multigrid for Helmholtz Revisited: Towards Convergence Using Standard Components. https://arxiv.org/pdf/2308.13476
- Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel two-level deflation preconditioner for the two-dimensional Helmholtz problems, *Journal of Computational Physics* https://doi.org/10.1016/j.jcp.2024.113264.
- Chen, J., Dwarka, V., Vuik, C.: Matrix-Free Parallel Scalable Multilevel Deflation Preconditioning for Heterogeneous Time-Harmonic Wave Problems, *Journal of Scientific*

Computing.https://doi.org/10.1007/s10915-024-02786-w.