Fast and Robust iterative solvers for the Helmholtz equation

2016 NDNS workshop, University of Twente Kees Vuik, Abdul Sheikh and Domenico Lahaye http://ta.twi.tudelft.nl/users/vuik/ July 5, 2016

Delft Institute of Applied Mathematics

1

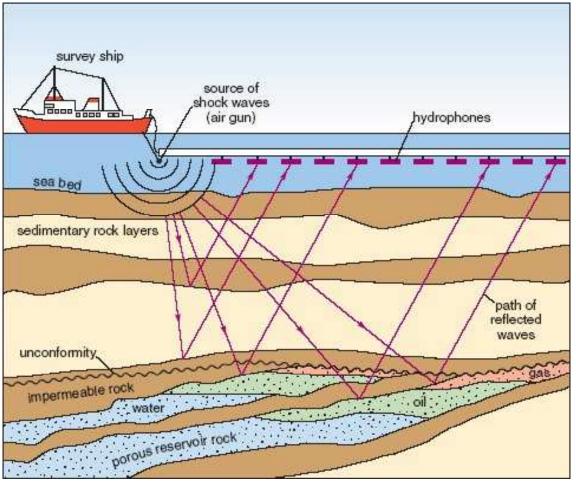
Delft University of Technology

Application: medical imaging

July 5, 2016

Delft Institute of Applied Mathematics

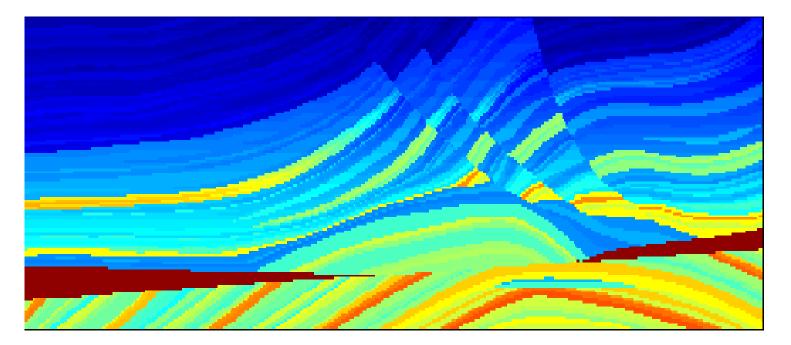
Marine Seismic



July 5, 2016

3

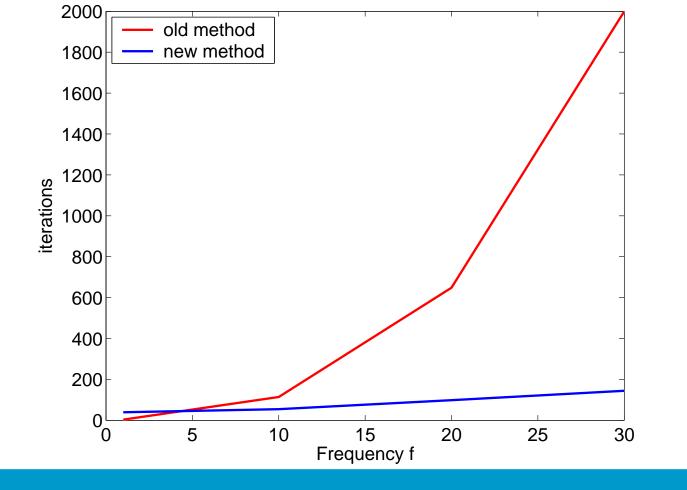
hard Marmousi Model



July 5, 2016

4

hard Marmousi Model (2006)



5

Delft Institute of Applied Mathematics

July 5, 2016

Contents

- 1. Introduction
- 2. Preconditioning (2002-2008)
- 3. Numerical experiments
- 4. Second-level preconditioning (2008-2016)
- 5. Fourier Analysis of two-level methods
- 6. Numerical experiments
- 7. Conclusions

July 5, 2016

6

1. Introduction

The Helmholtz equation without damping

 $-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y) \text{ in } \Omega$

 $\mathbf{u}(x,y)$ is the pressure field,

 $\mathbf{k}(x,y)$ is the wave number,

 $\mathbf{g}(x,y)$ is the point source function and

 Ω is the domain. Absorbing boundary conditions are used on $\Gamma.$

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)

July 5, 2016

Problem description

• Second order Finite Difference stencil:

$$\begin{array}{ccc}
-1 \\
-1 & 4 - k^2 h^2 & -1 \\
-1 & -1
\end{array}$$

- Linear system Au = g: properties
 Sparse & complex valued
 Symmetric & Indefinite for large k
- For high resolution a very fine grid is required: 30 60 gridpoints per wavelength (or ≈ 5 - 10 × k) → A is extremely large!
- Is traditionally solved by a Krylov subspace method, which exploits the sparsity.

July 5, 2016

Survey of solution methods

Special Krylov methods

- COCG van der Vorst and Melissen, 1990
- QMR Freund and Nachtigal, 1991

General purpose Krylov methods

- CGNR Paige and Saunders, 1975
- Short recurrences

 Bi-CGSTAB van der Vorst, 1992
 IDR(s)
 Van Gijzen and Sonneveld, 2008
- Minimal residual

GMRES	Saad and Schultz, 1986
GCR	Eisenstat, Elman and Schultz, 1983
GMRESR	van der Vorst and Vuik, 1994

July 5, 2016

9

2. Preconditioning

Equivalent linear system $M_1^{-1}AM_2^{-1}\tilde{x} = \tilde{b}$, where $M = M_1 \cdot M_2$ is the preconditioning matrix and

$$\tilde{x} = M_2 x, \quad \tilde{b} = M_1 b.$$

Requirements for a preconditioner

- better spectral properties of $M^{-1}A$
- cheap to perform $M^{-1}r$.

Spectrum of A is $\{\mu_i - k^2\}$, with k a given constant and μ_i are the

eigenvalues of the Laplace operator. Note that $\mu_1 - k^2$ may be negative.

July 5, 2016

Preconditioning (overview)

ILU Meijerink and van der Vorst, 1977

ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997

Multigrid Lahaye, 2001 Elman, Ernst and O' Leary, 2001

AILU Gander and Nataf, 2001 analytic parabolic factorization

ILU-SV Plessix and Mulder, 2003 separation of variables

July 5, 2016

11

Preconditioning (Laplace type)

Laplace operatorBayliss and Turkel, 1983Definite HelmholtzLaird, 2000Shifted LaplaceY.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner (SLP)

$$M \equiv -\Delta + (\beta_1 - i\beta_2)k^2, \ \beta_1, \beta_2 \in \mathbb{R}, \text{ and } \beta_1 \leq 0.$$

Condition $\beta_1 \leq 0$ is used to ensure that M is a (semi) definite operator.

- $\rightarrow \beta_1, \beta_2 = 0$: Bayliss and Turkel
- $\rightarrow \beta_1 = 1, \beta_2 = 0$: Laird
- $\beta_1 = -1, \beta_2 = 0.5$: Y.A. Erlangga, C. Vuik and C.W.Oosterlee

Delft Institute of Applied Mathematics

3. Numerical experiments

Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same method as the Helmholtz operator.

k	ILU(0.01)	M_0	M_1	M_i
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	> 1000	150	52

July 5, 2016

13

Spectrum of SLP

References: Manteuffel, Parter, 1990; Yserentant, 1988

Since *L* is SPD we have the following eigenpairs

 $Lv_j = \lambda_j v_j$, where, $\lambda_j \in \mathbb{R}^+$

The eigenvalues σ_i of the preconditioned matrix satisfy

$$(L-z_1I)v_j = \sigma_j(L-z_2I)v_j.$$

Theorem 1

Provided that $z_2 \neq \lambda_j$, the relation

$$\sigma_j = rac{\lambda_j - z_1}{\lambda_j - z_2}$$
 holds.

July 5, 2016

Delft Institute of Applied Mathematics

Spectrum of SLP

Theorem 2

If $\beta_2 = 0$, the eigenvalues $\sigma_r + i\sigma_i$ are located on the straight line in the complex plane given by

$$\beta_1 \sigma_r - (\alpha_1 - \alpha_2) \sigma_i = \beta_1.$$

Theorem 3

If $\beta_2 \neq 0$, the eigenvalues $\sigma_r + i\sigma_i$ are on the circle in the complex plane with center *c* and radius *R*:

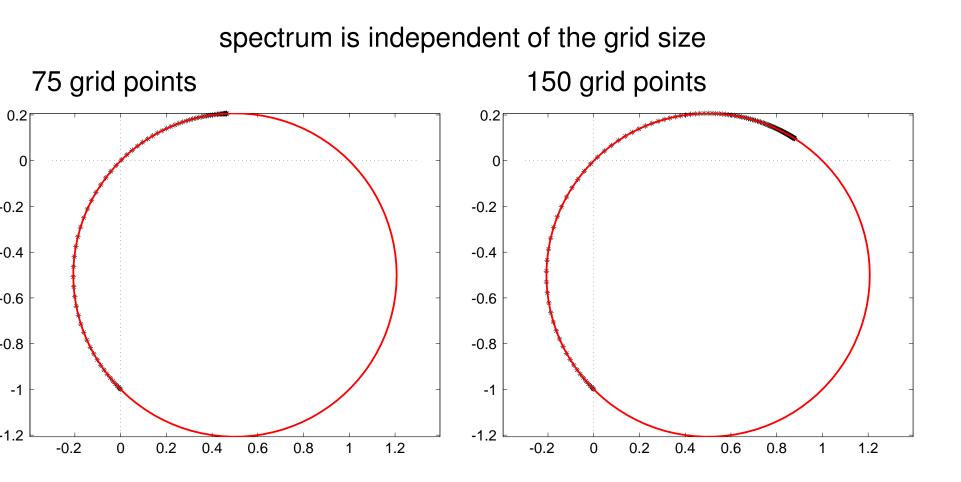
$$c = \frac{z_1 - \bar{z}_2}{z_2 - \bar{z}_2}, \quad R = \left| \frac{z_2 - z_1}{z_2 - \bar{z}_2} \right|.$$

Note that if $\beta_1\beta_2 > 0$ the origin is not enclosed in the circle.

July 5, 2016

Delft Institute of Applied Mathematics

Eigenvalues for Complex preco k = 100



July 5, 2016

Delft Institute of Applied Mathematics

TUDelft

Inner iteration

Possible solvers for solution of Mz = r:

- ILU approximation of *M*
- inner iteration with ILU as preconditioner
- Multigrid

July 5, 2016

Multigrid components

- geometric multigrid
- Gauss-Seidel with red-black ordering
- matrix dependent interpolation, full weighting restriction
- Galerkin coarse grid approximation

17

Inner iteration

- geometric multigrid
- ω -JAC smoother
- bilinear interpolation, restriction operator full weighting
- Galerkin coarse grid approximation
- F(1,1)-cycle
- M^{-1} is approximated by *one* multigrid iteration

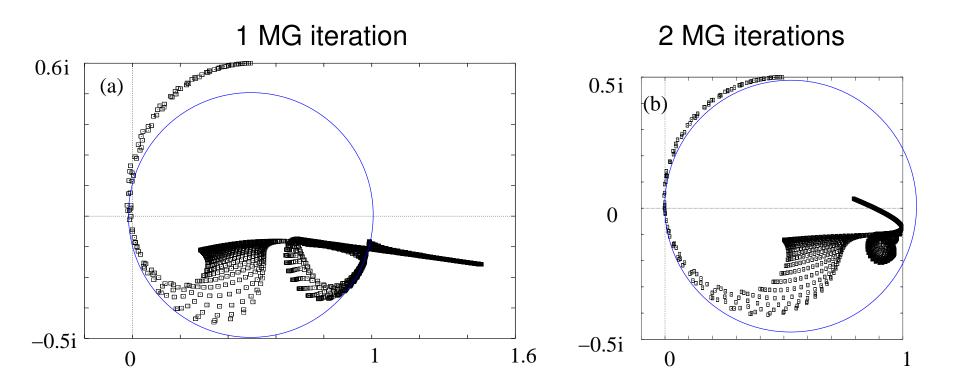
18

Numerical results for a wedge problem

k_2	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	201(0.56)	1028(12)	5170(316)	_	—
ILU(A,0)	55(0.36)	348(9)	1484(131)	2344(498)	—
ILU(A, 1)	26(0.14)	126(4)	577(62)	894(207)	—
ILU(M, 0)	57(0.29)	213(8)	1289(122)	2072(451)	—
ILU(M, 1)	28(0.28)	116(4)	443(48)	763(191)	2021(1875)
MG(V(1,1))	13(0.21)	38(3)	94(28)	115(82)	252(850)

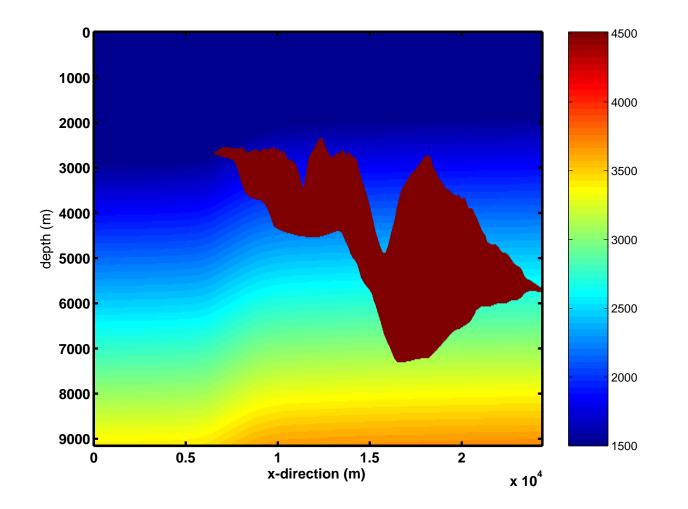
Delft Institute of Applied Mathematics

Spectrum with inner iteration



July 5, 2016

Sigsbee model



July 5, 2016

Sigsbee model

 $dx = dz = 22.86 \text{ m}; D = 24369 \times 9144 \text{ m}^2; \text{ grid points } 1067 \times 401.$

Bi-CGSTAB	5 Hz		10 Hz	
	CPU (sec) Iter		CPU (sec)	lter
NO preco	3128	16549	1816	9673
With preco	86	48	92	58

July 5, 2016

22

4. Second Level Precond. (2008-2016)

Summary so far

- ILU and variants
- From Laplace to complex Shifted Laplace Preconditioner (2005)
- Shifted Laplace Preconditioner (SLP)

$$M := -\Delta \mathbf{u} + (\beta_1 - \iota \beta_2) k^2 \mathbf{u}$$

- Results show: $(\beta_1, \beta_2) = (1, 0.5)$ is the shift of choice
- Properties of SLP?

23

Delft Institute of Applied Mathematics

July 5, 2016

Shifted Laplace Preconditioner (SLP)

- Introduces damping, Multi-grid approximation is possible
- The modulus of all eigenvalues of the preconditioned operator is bounded by 1
- Small eigenvalues move to zero, as k increases.

Spectrum of $M^{-1}(1, 0.5)A$ for

k = 30and 0.4 0.3 02 0.2 0.1 -0.1 -0.1 -0.2 -0.2-0.3 -0.3 -0.4 -0.4 -0.5 -0.5 0.2 0.4 0.6 0.8 0

0.5 0.4 0.3 0.2 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1

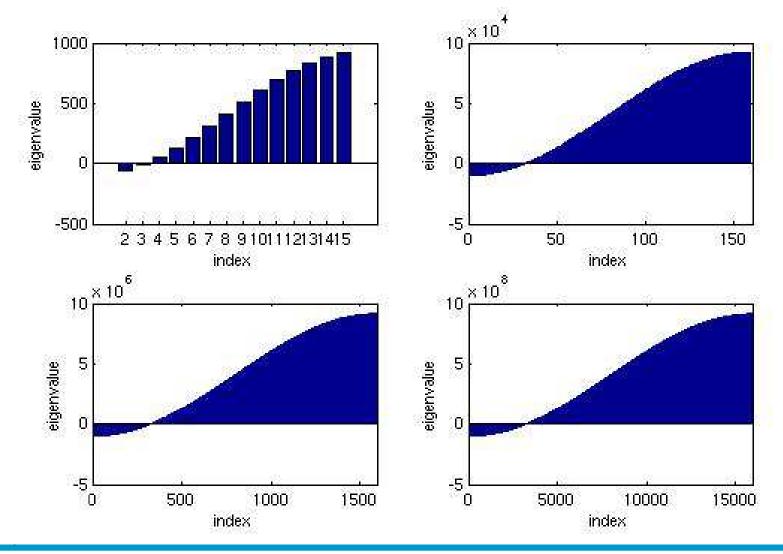
k = 120

24

Delft Institute of Applied Mathematics

July 5, 2016

Spectrum as function of k



Deflation: or two-grid method

Deflation, a projection preconditioner

P = I - AQ, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

where,

 $Z \in \mathbb{R}^{n \times r}$, with deflation vectors $Z = [z_1, ..., z_r]$, $rank(Z) = r \le n$

Along with a traditional preconditioner M, deflated preconditioned system reads

 $PM^{-1}Au = PM^{-1}g.$

Deflation vectors shifted the eigenvalues to zero.

26

July 5, 2016

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z = I_h^{2h}$ and $Z^T = I_{2h}^h$ then

 $P_h = I_h - A_h Q_h$, with $Q_h = I_h^{2h} A_{2h}^{-1} I_{2h}^h$ and $A_{2h} = I_{2h}^h A_h I_h^{2h}$

where

- P_h can be interpreted as a coarse grid correction and
- Q_h as the coarse grid operator

Deflation: ADEF1

Deflation can be implemented combined with SLP M_h ,

 $M_h^{-1}P_hA_hu_h = M_h^{-1}P_hg_h$

 $A_h u_h = g_h$ is preconditioned by the two-level preconditioner $M_h^{-1} P_h$.

For large problems, A_{2h} is too large to invert exactly. Inversion of A_{2h} is sensitive, since P_h deflates the spectrum to zero.

To do: Solve A_{2h} iteratively to a required accuracy on certain levels, and shift the deflated spectrum to λ_h^{max} by adding a shift in the two level preconditioner. This leads to the **ADEF1** preconditioner

 $P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^{max} Q_h$

July 5, 2016

Deflation: MLKM

Multi Level Krylov Method ^{*a*}, take $\hat{A}_h = M_h^{-1}A_h$, and define \hat{P}_h by using \hat{A}_h (instead of A_h) will be

$$\hat{P}_h = I_h - \hat{A}_h \hat{Q}_h,$$

where

$$\hat{Q}_h = I_h^{2h} \hat{A}_{2h}^{-1} I_{2h}^h$$
 and $\hat{A}_{2h} = I_{2h}^h \hat{A}_h I_h^{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$

Construction of coarse matrix A_{2h} at level 2h costs inversion of preconditioner at level h. Approximate A_{2h}

	I
Ideal	Practical
$A_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$	$A_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$
	$A_{2h} \approx I_{2h}^{h} I_{h}^{2h} M_{2h}^{-1} A_{2h}$

^aErlangga, Y.A and Nabben R., ETNA 2008

July 5, 2016

Delft Institute of Applied Mathematics

5. Fourier Analysis of two-level methods

Dirichlet boundary conditions for analysis. With above deflation,

 $\operatorname{spec}(PM^{-1}A) = f(\beta_1, \beta_2, k, h)$

is a complex valued function.

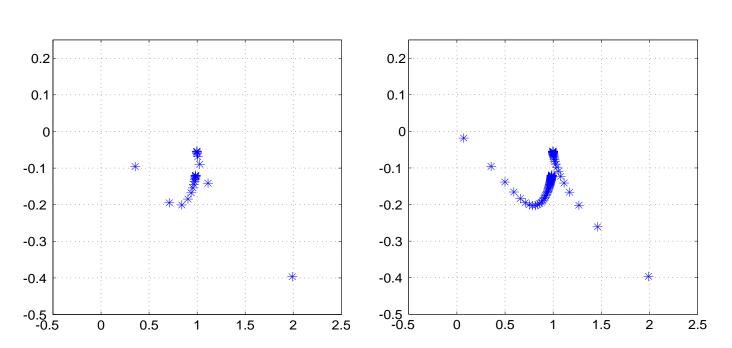
Setting kh = 0.625,

July 5, 2016

- Spectrum of $PM^{-1}A$ with shifts (1, 0.5) is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift for the preconditioner is varied from 0.5 to 1.

Fourier Analysis

<u>ADEF1:</u> Analysis shows spectrum clustered around 1 with few outliers.



 $k = 30 \qquad \qquad k = 120$

July 5, 2016

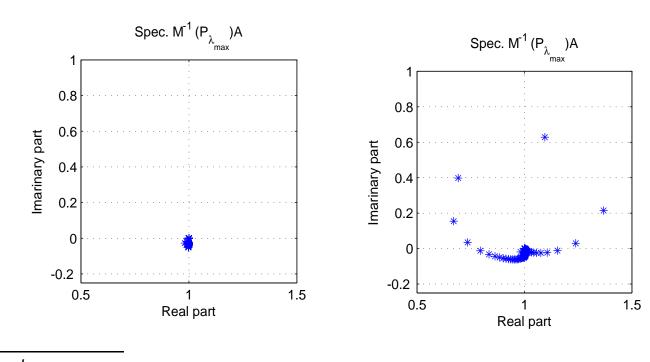
Delft Institute of Applied Mathematics

31

TUDelft

Fourier Analysis

Spectrum of Helmholtz preconditioned by <u>MLKM</u> b , k = 160 and 20 gp/wl Ideal Practical

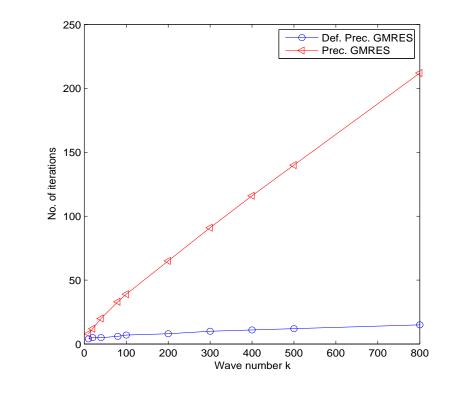


^bTwo-level

July 5, 2016

32

6. Numerical results

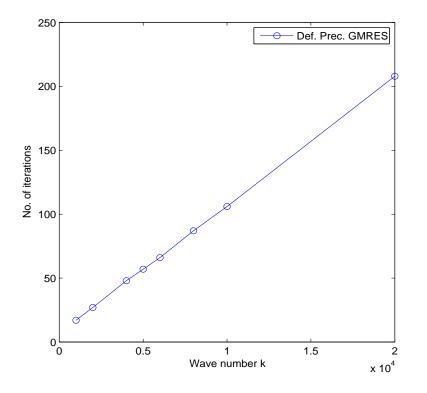


Number of GMRES iterations for the 1D Helmholtz equation $10 \le k \le 800$

33

July 5, 2016

Numerical results



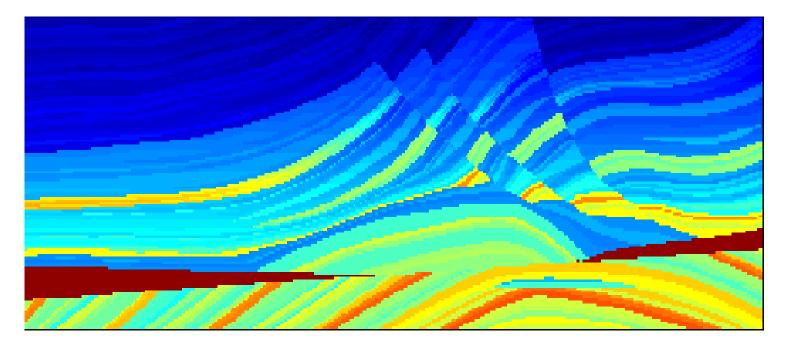
Number of GMRES iterations for the 1D Helmholtz equation $1000 \le k \le 20000$

fUDelft

34

July 5, 2016

hard Marmousi Model



July 5, 2016

hard Marmousi Model, PETSc solver

kh = 0.39, Bi-CGSTAB for SLP, FGMRES(20) for ADEF1(8,2,1)

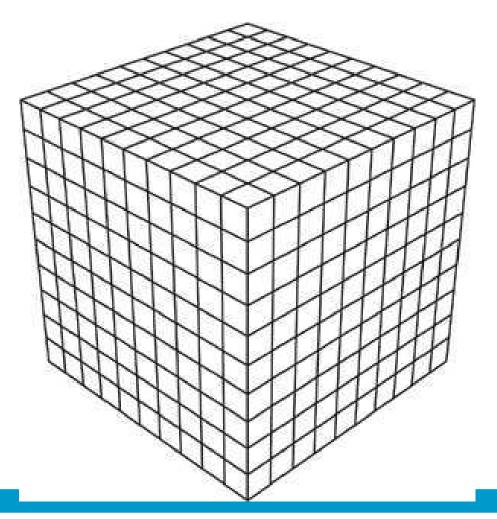
Frequency f	Solve Time		lter	ations
	SLP-F	ADEF1-F	SLP-F	ADEF1-F
1	1.22	5.07	13	7
10	10.18	9.43	112	13
20	72.16	60.32	189	22
40	550.20	426.79	354	39

36

Delft Institute of Applied Mathematics

July 5, 2016

Cube with constant k



July 5, 2016

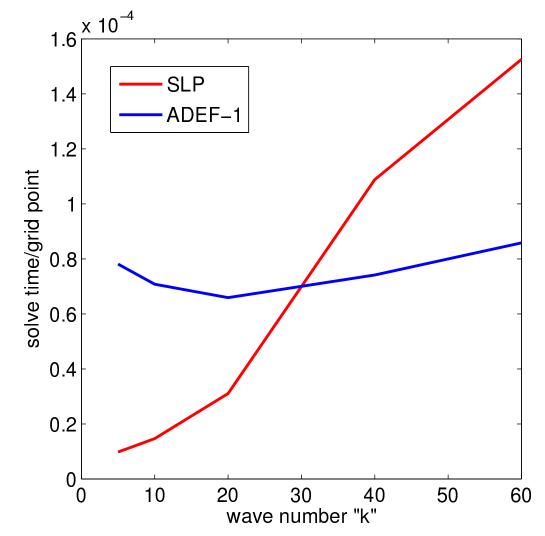
37

Cube with constant k

Wave number	Solve Time		lter	ations
k	SLP-F	ADEF1-F	SLP-F	ADEF1-F
5	0.04	0.32	7	8
10	0.48	2.32	9	9
20	8.14	17.28	20	9
40	228.29	155.52	70	10
60	1079.99	607.45	97	11

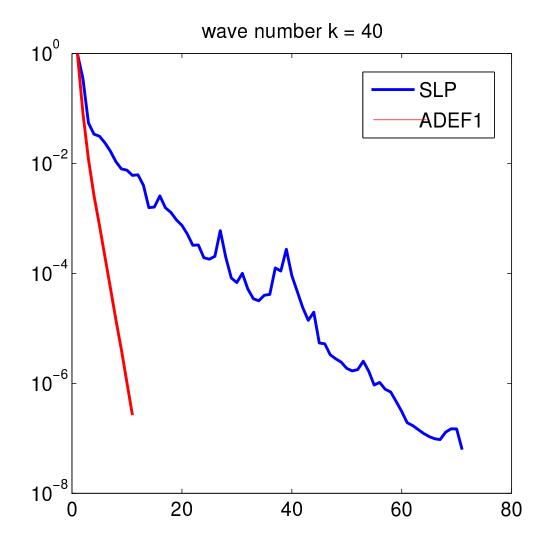
July 5, 2016

Cube with constant k



Delft Institute of Applied Mathematics

Cube with constant k



Delft Institute of Applied Mathematics

7. Conclusions

- The proposed preconditioner (shifted Laplacian + multi-grid) is independent of the grid size and linearly dependent of *k*.
- With physical damping the proposed preconditioner is also independent of *k*.
- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- With deflation the convergence is nearly independent of the imaginary shift.
- With deflation the convergence is initially weakly depending on k.
 For large k is scales again linearly.
- With deflation the CPU time is less than without deflation.
- The convergence of ADEF1 and the practical variant of MLKM are similar.

July 5, 2016

References

- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
- M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. Numerical Linear Algebra with Applications, 20, pp. 645-662, 2013
- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html

July 5, 2016

