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Application: medical imaging
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Application: geophysical survey

Marine Seismic
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Application: geophysical survey

hard Marmousi Model
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Application: geophysical survey

hard Marmousi Model (2006)
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1. Introduction

The Helmholtz equation without damping

−∆u(x, y)− k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,

k(x, y) is the wave number,

g(x, y) is the point source function and

Ω is the domain. Absorbing boundary conditions are used on Γ.

∂u

∂n
− ιu = 0

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)
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Problem description

• Second order Finite Difference stencil:









−1

−1 4− k2h2 −1

−1









• Linear system Au = g: properties

Sparse & complex valued

Symmetric & Indefinite for large k

• For high resolution a very fine grid is required: 30− 60 gridpoints

per wavelength (or ≈ 5− 10× k) → A is extremely large!

• Is traditionally solved by a Krylov subspace method, which

exploits the sparsity.
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Survey of solution methods
Special Krylov methods

• COCG van der Vorst and Melissen, 1990

• QMR Freund and Nachtigal, 1991

General purpose Krylov methods

• CGNR Paige and Saunders, 1975

• Short recurrences

Bi-CGSTAB van der Vorst, 1992

IDR(s) Van Gijzen and Sonneveld, 2008

• Minimal residual

GMRES Saad and Schultz, 1986

GCR Eisenstat, Elman and Schultz, 1983

GMRESR van der Vorst and Vuik, 1994
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2. Preconditioning

Equivalent linear system M−1
1 AM−1

2 x̃ = b̃, where M = M1 ·M2 is the

preconditioning matrix and

x̃ = M2x, b̃ = M1b.

Requirements for a preconditioner

• better spectral properties of M−1A

• cheap to perform M−1r.

Spectrum of A is {µi − k2}, with k a given constant and µi are the

eigenvalues of the Laplace operator. Note that µ1−k2 may be negative.
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Preconditioning (overview)

ILU Meijerink and van der Vorst, 1977

ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997

Multigrid Lahaye, 2001

Elman, Ernst and O’ Leary, 2001

AILU Gander and Nataf, 2001

analytic parabolic factorization

ILU-SV Plessix and Mulder, 2003

separation of variables
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Preconditioning (Laplace type)

Laplace operator Bayliss and Turkel, 1983

Definite Helmholtz Laird, 2000

Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner (SLP)

M ≡ −∆+ (β1 − iβ2)k
2, β1, β2 ∈ R, and β1 ≤ 0.

Condition β1 ≤ 0 is used to ensure that M is a (semi) definite operator.

→ β1, β2 = 0 : Bayliss and Turkel

→ β1 = 1, β2 = 0 : Laird

→ β1 = −1, β2 = 0.5 : Y.A. Erlangga, C. Vuik and C.W.Oosterlee
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3. Numerical experiments

Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same

method as the Helmholtz operator.

k ILU(0.01) M0 M1 Mi

5 9 13 13 13

10 25 29 28 22

15 47 114 45 26

20 82 354 85 34

30 139 > 1000 150 52
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Spectrum of SLP

References: Manteuffel, Parter, 1990; Yserentant, 1988

Since L is SPD we have the following eigenpairs

Lvj = λjvj , where, λj ∈ R
+

The eigenvalues σj of the preconditioned matrix satisfy

(L− z1I)vj = σj(L− z2I)vj .

Theorem 1

Provided that z2 6= λj , the relation

σj =
λj − z1

λj − z2
holds.
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Spectrum of SLP

Theorem 2

If β2 = 0, the eigenvalues σr + iσi are located on the straight line in the

complex plane given by

β1σr − (α1 − α2)σi = β1.

Theorem 3

If β2 6= 0, the eigenvalues σr + iσi are on the circle in the complex

plane with center c and radius R:

c =
z1 − z̄2

z2 − z̄2
, R =

∣

∣

∣

∣

z2 − z1

z2 − z̄2

∣

∣

∣

∣

.

Note that if β1β2 > 0 the origin is not enclosed in the circle.



July 5, 2016 16

Delft Institute of Applied Mathematics

Eigenvalues for Complex preco k = 100

spectrum is independent of the grid size

75 grid points 150 grid points

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2



July 5, 2016 17

Delft Institute of Applied Mathematics

Inner iteration

Possible solvers for solution of Mz = r:

• ILU approximation of M

• inner iteration with ILU as preconditioner

• Multigrid

Multigrid components

- geometric multigrid

- Gauss-Seidel with red-black ordering

- matrix dependent interpolation, full weighting restriction

- Galerkin coarse grid approximation
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Inner iteration

• geometric multigrid

• ω-JAC smoother

• bilinear interpolation, restriction operator full weighting

• Galerkin coarse grid approximation

• F(1,1)-cycle

• M−1 is approximated by one multigrid iteration
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Numerical results for a wedge problem

k2 10 20 40 50 100

grid 322 642 1282 1922 3842

No-Prec 201(0.56) 1028(12) 5170(316) – –

ILU(A,0) 55(0.36) 348(9) 1484(131) 2344(498) –

ILU(A,1) 26(0.14) 126(4) 577(62) 894(207) –

ILU(M ,0) 57(0.29) 213(8) 1289(122) 2072(451) –

ILU(M ,1) 28(0.28) 116(4) 443(48) 763(191) 2021(1875)

MG(V(1,1)) 13(0.21) 38(3) 94(28) 115(82) 252(850)
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Spectrum with inner iteration

1 MG iteration 2 MG iterations
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Sigsbee model
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Sigsbee model

dx = dz = 22.86 m; D = 24369× 9144 m2; grid points 1067× 401.

Bi-CGSTAB 5 Hz 10 Hz

CPU (sec) Iter CPU (sec) Iter

NO preco 3128 16549 1816 9673

With preco 86 48 92 58
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4. Second Level Precond. (2008-2016)

Summary so far

• ILU and variants

• From Laplace to complex Shifted Laplace Preconditioner (2005)

• Shifted Laplace Preconditioner (SLP)

M := −∆u+ (β1 − ιβ2)k
2
u

• Results show: (β1, β2) = (1, 0.5) is the shift of choice

• Properties of SLP?
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Shifted Laplace Preconditioner (SLP)

• Introduces damping, Multi-grid approximation is possible

• The modulus of all eigenvalues of the preconditioned operator is

bounded by 1

• Small eigenvalues move to zero, as k increases.

Spectrum of M−1(1, 0.5)A for

k = 30 and k = 120
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Spectrum as function of k
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Deflation: or two-grid method

Deflation, a projection preconditioner

P = I −AQ, with Q = ZE−1ZT and E = ZTAZ

where,

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rank(Z) = r ≤ n

Along with a traditional preconditioner M , deflated preconditioned

system reads

PM−1Au = PM−1g.

Deflation vectors shifted the eigenvalues to zero.
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Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as

deflation matrix, i.e. Z = I2hh and ZT = Ih2h then

Ph = Ih −AhQh, with Qh = I2hh A−1
2h I

h
2h and A2h = Ih2hAhI

2h
h

where

Ph can be interpreted as a coarse grid correction and

Qh as the coarse grid operator
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Deflation: ADEF1

Deflation can be implemented combined with SLP Mh,

M−1
h PhAhuh = M−1

h Phgh

Ahuh = gh is preconditioned by the two-level preconditioner M−1
h Ph.

For large problems, A2h is too large to invert exactly.

Inversion of A2h is sensitive, since Ph deflates the spectrum to zero.

To do: Solve A2h iteratively to a required accuracy on certain levels,

and shift the deflated spectrum to λmax
h by adding a shift in the two

level preconditioner. This leads to the ADEF1 preconditioner

P(h,ADEF1) = M−1
h Ph + λmax

h Qh
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Deflation: MLKM
Multi Level Krylov Method a, take Âh = M−1

h Ah, and define P̂h by

using Âh (instead of Ah) will be

P̂h = Ih − ÂhQ̂h,

where

Q̂h = I2hh Â−1
2h I

h
2h and Â2h = Ih2hÂhI

2h
h = Ih2h(M

−1
h Ah)I

2h
h

Construction of coarse matrix A2h at level 2h costs inversion of preconditioner at level h.

Approximate A2h

Ideal Practical

A2h = Ih2h(M
−1
h Ah)I

2h
h A2h = Ih2h(M

−1
h Ah)I

2h
h

A2h ≈ Ih2hI
2h
h M−1

2h A2h

aErlangga, Y.A and Nabben R., ETNA 2008
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5. Fourier Analysis of two-level methods

Dirichlet boundary conditions for analysis.

With above deflation,

spec(PM−1A) = f(β1, β2, k, h)

is a complex valued function.

Setting kh = 0.625,

• Spectrum of PM−1A with shifts (1, 0.5) is clustered around 1 with

a few outliers.

• Spectrum remains almost the same, when the imaginary shift for

the preconditioner is varied from 0.5 to 1.
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Fourier Analysis

ADEF1: Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM b,

k = 160 and 20 gp/wl
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6. Numerical results

•
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Numerical results
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Application: geophysical survey

hard Marmousi Model
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Application: geophysical survey

hard Marmousi Model, PETSc solver

kh = 0.39, Bi-CGSTAB for SLP, FGMRES(20) for ADEF1(8,2,1)

Frequency f Solve Time Iterations

SLP-F ADEF1-F SLP-F ADEF1-F

1 1.22 5.07 13 7

10 10.18 9.43 112 13

20 72.16 60.32 189 22

40 550.20 426.79 354 39
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Application: geophysical survey

Cube with constant k



July 5, 2016 38

Delft Institute of Applied Mathematics

Application: geophysical survey

Cube with constant k

Wave number Solve Time Iterations

k SLP-F ADEF1-F SLP-F ADEF1-F

5 0.04 0.32 7 8

10 0.48 2.32 9 9

20 8.14 17.28 20 9

40 228.29 155.52 70 10

60 1079.99 607.45 97 11
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Application: geophysical survey

Cube with constant k
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Application: geophysical survey

Cube with constant k
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7. Conclusions
• The proposed preconditioner (shifted Laplacian + multi-grid) is

independent of the grid size and linearly dependent of k.

• With physical damping the proposed preconditioner is also

independent of k.

• Without deflation, when imaginary shift is increased in SLP,

spectrum remains bounded above 1, but lower part moves to zero.

• With deflation the convergence is nearly independent of the

imaginary shift.

• With deflation the convergence is initially weakly depending on k.

For large k is scales again linearly.

• With deflation the CPU time is less than without deflation.

• The convergence of ADEF1 and the practical variant of MLKM are

similar.
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